src/HOL/Hyperreal/MacLaurin_lemmas.ML
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
child 15047 fa62de5862b9
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title       : MacLaurin.thy
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 2001 University of Edinburgh
     4     Description : MacLaurin series
     5 *)
     6 
     7 Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
     8 by (induct_tac "n" 1);
     9 by Auto_tac;
    10 qed "sumr_offset";
    11 
    12 Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
    13 by (induct_tac "n" 1);
    14 by Auto_tac;
    15 qed "sumr_offset2";
    16 
    17 Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
    18 by (simp_tac (simpset() addsimps [sumr_offset]) 1);
    19 qed "sumr_offset3";
    20 
    21 Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
    22 by (simp_tac (simpset() addsimps [sumr_offset]) 1);
    23 qed "sumr_offset4";
    24 
    25 Goal "0 < n ==> \
    26 \     sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
    27 \            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
    28 \     sumr 0 (Suc n) (%n. (if even(n) then 0 else \
    29 \            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
    30 by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
    31 by Auto_tac;
    32 qed "sumr_from_1_from_0";
    33 
    34 (*---------------------------------------------------------------------------*)
    35 (* Maclaurin's theorem with Lagrange form of remainder                       *)
    36 (*---------------------------------------------------------------------------*)
    37 
    38 (* Annoying: Proof is now even longer due mostly to 
    39    change in behaviour of simplifier  since Isabelle99 *)
    40 Goal " [| 0 < h; 0 < n; diff 0 = f; \
    41 \      ALL m t. \
    42 \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
    43 \   ==> EX t. 0 < t & \
    44 \             t < h & \
    45 \             f h = \
    46 \             sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
    47 \             (diff n t / real (fact n)) * h ^ n";
    48 by (case_tac "n = 0" 1);
    49 by (Force_tac 1);
    50 by (dtac not0_implies_Suc 1);
    51 by (etac exE 1);
    52 by (subgoal_tac 
    53      "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
    54 \                  + (B * ((h ^ n) / real (fact n)))" 1);
    55 
    56 by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
    57     ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
    58 by (res_inst_tac 
    59   [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
    60 \        * real (fact n) / (h ^ n)")] exI 2);
    61 by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
    62  by (rtac (CLAIM "x = (1::real) ==>  a = a * (x::real)") 2);
    63 by (asm_simp_tac (HOL_ss addsimps 
    64     [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
    65      delsimps [realpow_Suc]) 2);
    66 by (stac left_inverse 2);
    67 by (stac left_inverse 3);
    68 by (rtac (real_not_refl2 RS not_sym) 2);
    69 by (etac zero_less_power 2);
    70 by (rtac real_of_nat_fact_not_zero 2);
    71 by (Simp_tac 2);
    72 by (etac exE 1);
    73 by (cut_inst_tac [("b","%t. f t - \
    74 \      (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
    75 \                       (B * ((t ^ n) / real (fact n))))")] 
    76     (CLAIM "EX g. g = b") 1);
    77 by (etac exE 1);
    78 by (subgoal_tac "g 0 = 0 & g h =0" 1);
    79 by (asm_simp_tac (simpset() addsimps 
    80     [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
    81     delsimps [sumr_Suc]) 2);
    82 by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
    83 by (asm_full_simp_tac (simpset() addsimps 
    84     [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
    85     delsimps [sumr_Suc]) 2);
    86 by (cut_inst_tac [("b","%m t. diff m t - \
    87 \      (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
    88 \       + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] 
    89     (CLAIM "EX difg. difg = b") 1);
    90 by (etac exE 1);
    91 by (subgoal_tac "difg 0 = g" 1);
    92 by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
    93 by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
    94 \                   DERIV (difg m) t :> difg (Suc m) t" 1);
    95 by (Clarify_tac 2);
    96 by (rtac DERIV_diff 2);
    97 by (Asm_simp_tac 2);
    98 by DERIV_tac;
    99 by DERIV_tac;
   100 by (rtac lemma_DERIV_subst 3);
   101 by (rtac DERIV_quotient 3);
   102 by (rtac DERIV_const 4);
   103 by (rtac DERIV_pow 3);
   104 by (asm_simp_tac (simpset() addsimps [inverse_mult_distrib,
   105     CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" 
   106     mult_ac,fact_diff_Suc]) 4);
   107 by (Asm_simp_tac 3);
   108 by (forw_inst_tac [("m","ma")] less_add_one 2);
   109 by (Clarify_tac 2);
   110 by (asm_simp_tac (simpset() addsimps 
   111     [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
   112     delsimps [sumr_Suc]) 2);
   113 by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
   114           (read_instantiate [("k","1")] sumr_offset4))] 
   115     delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
   116 by (rtac lemma_DERIV_subst 2);
   117 by (rtac DERIV_add 2);
   118 by (rtac DERIV_const 3);
   119 by (rtac DERIV_sumr 2);
   120 by (Clarify_tac 2);
   121 by (Simp_tac 3);
   122 by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] 
   123     delsimps [fact_Suc,realpow_Suc]) 2);
   124 by (rtac DERIV_cmult 2);
   125 by (rtac lemma_DERIV_subst 2);
   126 by DERIV_tac;
   127 by (stac fact_Suc 2);
   128 by (stac real_of_nat_mult 2);
   129 by (simp_tac (simpset() addsimps [inverse_mult_distrib] @
   130     mult_ac) 2);
   131 by (subgoal_tac "ALL ma. ma < n --> \
   132 \        (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
   133 by (rotate_tac 11 1);
   134 by (dres_inst_tac [("x","m")] spec 1);
   135 by (etac impE 1);
   136 by (Asm_simp_tac 1);
   137 by (etac exE 1);
   138 by (res_inst_tac [("x","t")] exI 1);
   139 by (asm_full_simp_tac (simpset() addsimps 
   140      [ARITH_PROVE "(x - y = 0) = (y = (x::real))"] 
   141       delsimps [realpow_Suc,fact_Suc]) 1);
   142 by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
   143 by (Clarify_tac 2);
   144 by (Asm_simp_tac 2);
   145 by (forw_inst_tac [("m","ma")] less_add_one 2);
   146 by (Clarify_tac 2);
   147 by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
   148 by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
   149           (read_instantiate [("k","1")] sumr_offset4))] 
   150     delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
   151 by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
   152 \                DERIV (difg m) t :> 0)" 1);
   153 by (rtac allI 1 THEN rtac impI 1);
   154 by (rotate_tac 12 1);
   155 by (dres_inst_tac [("x","ma")] spec 1);
   156 by (etac impE 1 THEN assume_tac 1);
   157 by (etac exE 1);
   158 by (res_inst_tac [("x","t")] exI 1);
   159 (* do some tidying up *)
   160 by (ALLGOALS(thin_tac "difg = \
   161 \          (%m t. diff m t - \
   162 \                 (sumr 0 (n - m) \
   163 \                   (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
   164 \                  B * (t ^ (n - m) / real (fact (n - m)))))"));
   165 by (ALLGOALS(thin_tac "g = \
   166 \          (%t. f t - \
   167 \               (sumr 0 n (%m. diff m 0 / real  (fact m) * t ^ m) + \
   168 \                B * (t ^ n / real (fact n))))"));
   169 by (ALLGOALS(thin_tac "f h = \
   170 \          sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   171 \          B * (h ^ n / real (fact n))"));
   172 (* back to business *)
   173 by (Asm_simp_tac 1);
   174 by (rtac DERIV_unique 1);
   175 by (Blast_tac 2);
   176 by (Force_tac 1);
   177 by (rtac allI 1 THEN induct_tac "ma" 1);
   178 by (rtac impI 1 THEN rtac Rolle 1);
   179 by (assume_tac 1);
   180 by (Asm_full_simp_tac 1);
   181 by (Asm_full_simp_tac 1);
   182 by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
   183 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
   184 by (blast_tac (claset() addDs [DERIV_isCont]) 1);
   185 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
   186 by (Clarify_tac 1);
   187 by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
   188 by (Force_tac 1);
   189 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
   190 by (Clarify_tac 1);
   191 by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
   192 by (Force_tac 1);
   193 by (Step_tac 1);
   194 by (Force_tac 1);
   195 by (subgoal_tac "EX ta. 0 < ta & ta < t & \
   196 \                DERIV difg (Suc n) ta :> 0" 1);
   197 by (rtac Rolle 2 THEN assume_tac 2);
   198 by (Asm_full_simp_tac 2);
   199 by (rotate_tac 2 2);
   200 by (dres_inst_tac [("x","n")] spec 2);
   201 by (ftac (ARITH_PROVE "n < m  ==> n < Suc m") 2);
   202 by (rtac DERIV_unique 2);
   203 by (assume_tac 3);
   204 by (Force_tac 2);
   205 by (subgoal_tac 
   206     "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
   207 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
   208 by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
   209 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
   210 by (Clarify_tac 2);
   211 by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
   212 by (Force_tac 2);
   213 by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
   214 by (Clarify_tac 2);
   215 by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
   216 by (Force_tac 2);
   217 by (Step_tac 1);
   218 by (res_inst_tac [("x","ta")] exI 1);
   219 by (Force_tac 1);
   220 qed "Maclaurin";
   221 
   222 Goal "0 < h & 0 < n & diff 0 = f & \
   223 \      (ALL m t. \
   224 \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
   225 \   --> (EX t. 0 < t & \
   226 \             t < h & \
   227 \             f h = \
   228 \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   229 \             diff n t / real (fact n) * h ^ n)";
   230 by (blast_tac (claset() addIs [Maclaurin]) 1);
   231 qed "Maclaurin_objl";
   232 
   233 Goal " [| 0 < h; diff 0 = f; \
   234 \      ALL m t. \
   235 \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
   236 \   ==> EX t. 0 < t & \
   237 \             t <= h & \
   238 \             f h = \
   239 \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   240 \             diff n t / real (fact n) * h ^ n";
   241 by (case_tac "n" 1);
   242 by Auto_tac;
   243 by (dtac Maclaurin 1 THEN Auto_tac);
   244 qed "Maclaurin2";
   245 
   246 Goal "0 < h & diff 0 = f & \
   247 \      (ALL m t. \
   248 \         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
   249 \   --> (EX t. 0 < t & \
   250 \             t <= h & \
   251 \             f h = \
   252 \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   253 \             diff n t / real (fact n) * h ^ n)";
   254 by (blast_tac (claset() addIs [Maclaurin2]) 1);
   255 qed "Maclaurin2_objl";
   256 
   257 Goal " [| h < 0; 0 < n; diff 0 = f; \
   258 \      ALL m t. \
   259 \         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
   260 \   ==> EX t. h < t & \
   261 \             t < 0 & \
   262 \             f h = \
   263 \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   264 \             diff n t / real (fact n) * h ^ n";
   265 by (cut_inst_tac [("f","%x. f (-x)"),
   266                  ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
   267                  ("h","-h"),("n","n")] Maclaurin_objl 1);
   268 by (Asm_full_simp_tac 1);
   269 by (etac impE 1 THEN Step_tac 1);
   270 by (stac minus_mult_right 1);
   271 by (rtac DERIV_cmult 1);
   272 by (rtac lemma_DERIV_subst 1);
   273 by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
   274 by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
   275 by (Force_tac 2);
   276 by (Force_tac 1);
   277 by (res_inst_tac [("x","-t")] exI 1);
   278 by Auto_tac;
   279 by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
   280 by (rtac sumr_fun_eq 1);
   281 by (Asm_full_simp_tac 1);
   282 by (auto_tac (claset(),simpset() addsimps [real_divide_def,
   283     CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
   284     power_mult_distrib RS sym]));
   285 qed "Maclaurin_minus";
   286 
   287 Goal "(h < 0 & 0 < n & diff 0 = f & \
   288 \      (ALL m t. \
   289 \         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
   290 \   --> (EX t. h < t & \
   291 \             t < 0 & \
   292 \             f h = \
   293 \             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
   294 \             diff n t / real (fact n) * h ^ n)";
   295 by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
   296 qed "Maclaurin_minus_objl";
   297 
   298 (* ------------------------------------------------------------------------- *)
   299 (* More convenient "bidirectional" version.                                  *)
   300 (* ------------------------------------------------------------------------- *)
   301 
   302 (* not good for PVS sin_approx, cos_approx *)
   303 Goal " [| diff 0 = f; \
   304 \      ALL m t. \
   305 \         m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
   306 \   ==> EX t. abs t <= abs x & \
   307 \             f x = \
   308 \             sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
   309 \             diff n t / real (fact n) * x ^ n";
   310 by (case_tac "n = 0" 1);
   311 by (Force_tac 1);
   312 by (case_tac "x = 0" 1);
   313 by (res_inst_tac [("x","0")] exI 1);
   314 by (Asm_full_simp_tac 1);
   315 by (res_inst_tac [("P","0 < n")] impE 1);
   316 by (assume_tac 2 THEN assume_tac 2);
   317 by (induct_tac "n" 1);
   318 by (Simp_tac 1);
   319 by Auto_tac;
   320 by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1);
   321 by Auto_tac;
   322 by (cut_inst_tac [("f","diff 0"),
   323                  ("diff","diff"),
   324                  ("h","x"),("n","n")] Maclaurin_objl 2);
   325 by (Step_tac 2);
   326 by (blast_tac (claset() addDs 
   327     [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
   328 by (res_inst_tac [("x","t")] exI 2);
   329 by (force_tac (claset() addIs 
   330     [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
   331 by (cut_inst_tac [("f","diff 0"),
   332                  ("diff","diff"),
   333                  ("h","x"),("n","n")] Maclaurin_minus_objl 1);
   334 by (Step_tac 1);
   335 by (blast_tac (claset() addDs 
   336     [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
   337 by (res_inst_tac [("x","t")] exI 1);
   338 by (force_tac (claset() addIs 
   339     [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
   340 qed "Maclaurin_bi_le";
   341 
   342 Goal "[| diff 0 = f; \
   343 \        ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ 
   344 \       x ~= 0; 0 < n \
   345 \     |] ==> EX t. 0 < abs t & abs t < abs x & \
   346 \              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
   347 \                    (diff n t / real (fact n)) * x ^ n";
   348 by (res_inst_tac [("x","x"),("y","0")] linorder_cases 1);
   349 by (Blast_tac 2);
   350 by (dtac Maclaurin_minus 1);
   351 by (dtac Maclaurin 5);
   352 by (TRYALL(assume_tac));
   353 by (Blast_tac 1);
   354 by (Blast_tac 2);
   355 by (Step_tac 1);
   356 by (ALLGOALS(res_inst_tac [("x","t")] exI));
   357 by (Step_tac 1);
   358 by (ALLGOALS(arith_tac));
   359 qed "Maclaurin_all_lt";
   360 
   361 Goal "diff 0 = f & \
   362 \     (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
   363 \     x ~= 0 & 0 < n \
   364 \     --> (EX t. 0 < abs t & abs t < abs x & \
   365 \              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
   366 \                    (diff n t / real (fact n)) * x ^ n)";
   367 by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
   368 qed "Maclaurin_all_lt_objl";
   369 
   370 Goal "x = (0::real)  \
   371 \     ==> 0 < n --> \
   372 \         sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
   373 \         diff 0 0";
   374 by (Asm_simp_tac 1);
   375 by (induct_tac "n" 1);
   376 by Auto_tac; 
   377 qed_spec_mp "Maclaurin_zero";
   378 
   379 Goal "[| diff 0 = f; \
   380 \       ALL m x. DERIV (diff m) x :> diff (Suc m) x \
   381 \     |] ==> EX t. abs t <= abs x & \
   382 \             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
   383 \                   (diff n t / real (fact n)) * x ^ n";
   384 by (cut_inst_tac [("n","n"),("m","0")] 
   385        (ARITH_PROVE "n <= m | m < (n::nat)") 1);
   386 by (etac disjE 1);
   387 by (Force_tac 1);
   388 by (case_tac "x = 0" 1);
   389 by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
   390 by (assume_tac 1);
   391 by (dtac (gr_implies_not0 RS  not0_implies_Suc) 1);
   392 by (res_inst_tac [("x","0")] exI 1);
   393 by (Force_tac 1);
   394 by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
   395 by (TRYALL(assume_tac));
   396 by (Step_tac 1);
   397 by (res_inst_tac [("x","t")] exI 1);
   398 by Auto_tac;
   399 qed "Maclaurin_all_le";
   400 
   401 Goal "diff 0 = f & \
   402 \     (ALL m x. DERIV (diff m) x :> diff (Suc m) x)  \
   403 \     --> (EX t. abs t <= abs x & \
   404 \             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
   405 \                   (diff n t / real (fact n)) * x ^ n)";
   406 by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
   407 qed "Maclaurin_all_le_objl";
   408 
   409 (* ------------------------------------------------------------------------- *)
   410 (* Version for exp.                                                          *)
   411 (* ------------------------------------------------------------------------- *)
   412 
   413 Goal "[| x ~= 0; 0 < n |] \
   414 \     ==> (EX t. 0 < abs t & \
   415 \               abs t < abs x & \
   416 \               exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
   417 \                       (exp t / real (fact n)) * x ^ n)";
   418 by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
   419     Maclaurin_all_lt_objl 1);
   420 by Auto_tac;
   421 qed "Maclaurin_exp_lt";
   422 
   423 Goal "EX t. abs t <= abs x & \
   424 \           exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
   425 \                      (exp t / real (fact n)) * x ^ n";
   426 by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
   427     Maclaurin_all_le_objl 1);
   428 by Auto_tac;
   429 qed "Maclaurin_exp_le";
   430 
   431 (* ------------------------------------------------------------------------- *)
   432 (* Version for sin function                                                  *)
   433 (* ------------------------------------------------------------------------- *)
   434 
   435 Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
   436 \     ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
   437 by (dtac MVT 1);
   438 by (blast_tac (claset() addIs [DERIV_isCont]) 1);
   439 by (force_tac (claset() addDs [order_less_imp_le],
   440     simpset() addsimps [differentiable_def]) 1);
   441 by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
   442 qed "MVT2";
   443 
   444 Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
   445 by (case_tac "d" 1 THEN Auto_tac);
   446 qed "lemma_exhaust_less_4";
   447 
   448 bind_thm ("real_mult_le_lemma",
   449           simplify (simpset()) (inst "b" "1" mult_right_mono));
   450 
   451 
   452 Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
   453 by (induct_tac "n" 1);
   454 by Auto_tac;
   455 qed_spec_mp "Suc_Suc_mult_two_diff_two";
   456 Addsimps [Suc_Suc_mult_two_diff_two];
   457 
   458 Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
   459 by (induct_tac "n" 1);
   460 by Auto_tac;
   461 qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
   462 Addsimps [lemma_Suc_Suc_4n_diff_2];
   463 
   464 Goal "0 < n --> Suc (2 * n - 1) = 2*n";
   465 by (induct_tac "n" 1);
   466 by Auto_tac;
   467 qed_spec_mp "Suc_mult_two_diff_one";
   468 Addsimps [Suc_mult_two_diff_one];
   469 
   470 Goal "EX t. sin x = \
   471 \      (sumr 0 n (%m. (if even m then 0 \
   472 \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
   473 \                      x ^ m)) \
   474 \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   475 by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
   476        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
   477        Maclaurin_all_lt_objl 1);
   478 by (Safe_tac);
   479 by (Simp_tac 1);
   480 by (Simp_tac 1);
   481 by (case_tac "n" 1);
   482 by (Clarify_tac 1); 
   483 by (Asm_full_simp_tac 1);
   484 by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
   485 by (Asm_full_simp_tac 1);
   486 by (rtac ccontr 1);
   487 by (Asm_full_simp_tac 1);
   488 by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
   489 by (dtac ssubst 1 THEN assume_tac 2);
   490 by (res_inst_tac [("x","t")] exI 1);
   491 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   492 by (rtac sumr_fun_eq 1);
   493 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   494 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
   495 (*Could sin_zero_iff help?*)
   496 qed "Maclaurin_sin_expansion";
   497 
   498 Goal "EX t. abs t <= abs x &  \
   499 \      sin x = \
   500 \      (sumr 0 n (%m. (if even m then 0 \
   501 \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
   502 \                      x ^ m)) \
   503 \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   504 
   505 by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
   506        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
   507        Maclaurin_all_lt_objl 1);
   508 by (Step_tac 1);
   509 by (Simp_tac 1);
   510 by (Simp_tac 1);
   511 by (case_tac "n" 1);
   512 by (Clarify_tac 1); 
   513 by (Asm_full_simp_tac 1);
   514 by (Asm_full_simp_tac 1);
   515 by (rtac ccontr 1);
   516 by (Asm_full_simp_tac 1);
   517 by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
   518 by (dtac ssubst 1 THEN assume_tac 2);
   519 by (res_inst_tac [("x","t")] exI 1);
   520 by (rtac conjI 1);
   521 by (arith_tac 1);
   522 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   523 by (rtac sumr_fun_eq 1);
   524 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   525 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
   526 qed "Maclaurin_sin_expansion2";
   527 
   528 Goal "[| 0 < n; 0 < x |] ==> \
   529 \      EX t. 0 < t & t < x & \
   530 \      sin x = \
   531 \      (sumr 0 n (%m. (if even m then 0 \
   532 \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
   533 \                      x ^ m)) \
   534 \     + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
   535 by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
   536        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
   537        Maclaurin_objl 1);
   538 by (Step_tac 1);
   539 by (Asm_full_simp_tac 1);
   540 by (Simp_tac 1);
   541 by (dtac ssubst 1 THEN assume_tac 2);
   542 by (res_inst_tac [("x","t")] exI 1);
   543 by (rtac conjI 1 THEN rtac conjI 2);
   544 by (assume_tac 1 THEN assume_tac 1);
   545 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   546 by (rtac sumr_fun_eq 1);
   547 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   548 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
   549 qed "Maclaurin_sin_expansion3";
   550 
   551 Goal "0 < x ==> \
   552 \      EX t. 0 < t & t <= x & \
   553 \      sin x = \
   554 \      (sumr 0 n (%m. (if even m then 0 \
   555 \                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
   556 \                      x ^ m)) \
   557 \     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   558 by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
   559        ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
   560        Maclaurin2_objl 1);
   561 by (Step_tac 1);
   562 by (Asm_full_simp_tac 1);
   563 by (Simp_tac 1);
   564 by (dtac ssubst 1 THEN assume_tac 2);
   565 by (res_inst_tac [("x","t")] exI 1);
   566 by (rtac conjI 1 THEN rtac conjI 2);
   567 by (assume_tac 1 THEN assume_tac 1);
   568 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   569 by (rtac sumr_fun_eq 1);
   570 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   571 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
   572 qed "Maclaurin_sin_expansion4";
   573 
   574 (*-----------------------------------------------------------------------------*)
   575 (* Maclaurin expansion for cos                                                 *)
   576 (*-----------------------------------------------------------------------------*)
   577 
   578 Goal "sumr 0 (Suc n) \
   579 \        (%m. (if even m \
   580 \              then (- 1) ^ (m div 2)/(real  (fact m)) \
   581 \              else 0) * \
   582 \             0 ^ m) = 1";
   583 by (induct_tac "n" 1);
   584 by Auto_tac;
   585 qed "sumr_cos_zero_one";
   586 Addsimps [sumr_cos_zero_one];
   587 
   588 Goal "EX t. abs t <= abs x & \
   589 \      cos x = \
   590 \      (sumr 0 n (%m. (if even m \
   591 \                      then (- 1) ^ (m div 2)/(real (fact m)) \
   592 \                      else 0) * \
   593 \                      x ^ m)) \
   594 \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   595 by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
   596        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
   597        Maclaurin_all_lt_objl 1);
   598 by (Step_tac 1);
   599 by (Simp_tac 1);
   600 by (Simp_tac 1);
   601 by (case_tac "n" 1);
   602 by (Asm_full_simp_tac 1);
   603 by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
   604 by (rtac ccontr 1);
   605 by (Asm_full_simp_tac 1);
   606 by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
   607 by (dtac ssubst 1 THEN assume_tac 2);
   608 by (res_inst_tac [("x","t")] exI 1);
   609 by (rtac conjI 1);
   610 by (arith_tac 1);
   611 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   612 by (rtac sumr_fun_eq 1);
   613 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   614 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps 
   615     [fact_Suc,realpow_Suc]));
   616 by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
   617 qed "Maclaurin_cos_expansion";
   618 
   619 Goal "[| 0 < x; 0 < n |] ==> \
   620 \      EX t. 0 < t & t < x & \
   621 \      cos x = \
   622 \      (sumr 0 n (%m. (if even m \
   623 \                      then (- 1) ^ (m div 2)/(real (fact m)) \
   624 \                      else 0) * \
   625 \                      x ^ m)) \
   626 \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   627 by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
   628        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
   629        Maclaurin_objl 1);
   630 by (Step_tac 1);
   631 by (Asm_full_simp_tac 1);
   632 by (Simp_tac 1);
   633 by (dtac ssubst 1 THEN assume_tac 2);
   634 by (res_inst_tac [("x","t")] exI 1);
   635 by (rtac conjI 1 THEN rtac conjI 2);
   636 by (assume_tac 1 THEN assume_tac 1);
   637 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   638 by (rtac sumr_fun_eq 1);
   639 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   640 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
   641 by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
   642 qed "Maclaurin_cos_expansion2";
   643 
   644 Goal "[| x < 0; 0 < n |] ==> \
   645 \      EX t. x < t & t < 0 & \
   646 \      cos x = \
   647 \      (sumr 0 n (%m. (if even m \
   648 \                      then (- 1) ^ (m div 2)/(real (fact m)) \
   649 \                      else 0) * \
   650 \                      x ^ m)) \
   651 \     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
   652 by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
   653        ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
   654        Maclaurin_minus_objl 1);
   655 by (Step_tac 1);
   656 by (Asm_full_simp_tac 1);
   657 by (Simp_tac 1);
   658 by (dtac ssubst 1 THEN assume_tac 2);
   659 by (res_inst_tac [("x","t")] exI 1);
   660 by (rtac conjI 1 THEN rtac conjI 2);
   661 by (assume_tac 1 THEN assume_tac 1);
   662 by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
   663 by (rtac sumr_fun_eq 1);
   664 by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
   665 by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
   666 by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
   667 qed "Maclaurin_minus_cos_expansion";
   668 
   669 (* ------------------------------------------------------------------------- *)
   670 (* Version for ln(1 +/- x). Where is it??                                    *)
   671 (* ------------------------------------------------------------------------- *)
   672