src/HOL/Hyperreal/HyperDef.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14705 14b2c22a7e40
child 15013 34264f5e4691
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title       : HOL/Real/Hyperreal/HyperDef.thy
     2     ID          : $Id$
     3     Author      : Jacques D. Fleuriot
     4     Copyright   : 1998  University of Cambridge
     5     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
     6 *)
     7 
     8 header{*Construction of Hyperreals Using Ultrafilters*}
     9 
    10 theory HyperDef = Filter + Real
    11 files ("fuf.ML"):  (*Warning: file fuf.ML refers to the name Hyperdef!*)
    12 
    13 
    14 constdefs
    15 
    16   FreeUltrafilterNat   :: "nat set set"    ("\<U>")
    17     "FreeUltrafilterNat == (SOME U. U \<in> FreeUltrafilter (UNIV:: nat set))"
    18 
    19   hyprel :: "((nat=>real)*(nat=>real)) set"
    20     "hyprel == {p. \<exists>X Y. p = ((X::nat=>real),Y) &
    21                    {n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}"
    22 
    23 typedef hypreal = "UNIV//hyprel" 
    24     by (auto simp add: quotient_def) 
    25 
    26 instance hypreal :: "{ord, zero, one, plus, times, minus, inverse}" ..
    27 
    28 defs (overloaded)
    29 
    30   hypreal_zero_def:
    31   "0 == Abs_hypreal(hyprel``{%n. 0})"
    32 
    33   hypreal_one_def:
    34   "1 == Abs_hypreal(hyprel``{%n. 1})"
    35 
    36   hypreal_minus_def:
    37   "- P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). hyprel``{%n. - (X n)})"
    38 
    39   hypreal_diff_def:
    40   "x - y == x + -(y::hypreal)"
    41 
    42   hypreal_inverse_def:
    43   "inverse P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P).
    44                     hyprel``{%n. if X n = 0 then 0 else inverse (X n)})"
    45 
    46   hypreal_divide_def:
    47   "P / Q::hypreal == P * inverse Q"
    48 
    49 constdefs
    50 
    51   hypreal_of_real  :: "real => hypreal"
    52   "hypreal_of_real r         == Abs_hypreal(hyprel``{%n. r})"
    53 
    54   omega   :: hypreal   -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
    55   "omega == Abs_hypreal(hyprel``{%n. real (Suc n)})"
    56 
    57   epsilon :: hypreal   -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
    58   "epsilon == Abs_hypreal(hyprel``{%n. inverse (real (Suc n))})"
    59 
    60 syntax (xsymbols)
    61   omega   :: hypreal   ("\<omega>")
    62   epsilon :: hypreal   ("\<epsilon>")
    63 
    64 syntax (HTML output)
    65   omega   :: hypreal   ("\<omega>")
    66   epsilon :: hypreal   ("\<epsilon>")
    67 
    68 
    69 defs (overloaded)
    70 
    71   hypreal_add_def:
    72   "P + Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q).
    73                 hyprel``{%n. X n + Y n})"
    74 
    75   hypreal_mult_def:
    76   "P * Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q).
    77                 hyprel``{%n. X n * Y n})"
    78 
    79   hypreal_le_def:
    80   "P \<le> (Q::hypreal) == \<exists>X Y. X \<in> Rep_hypreal(P) &
    81                                Y \<in> Rep_hypreal(Q) &
    82                                {n. X n \<le> Y n} \<in> FreeUltrafilterNat"
    83 
    84   hypreal_less_def: "(x < (y::hypreal)) == (x \<le> y & x \<noteq> y)"
    85 
    86   hrabs_def:  "abs (r::hypreal) == (if 0 \<le> r then r else -r)"
    87 
    88 
    89 subsection{*The Set of Naturals is not Finite*}
    90 
    91 (*** based on James' proof that the set of naturals is not finite ***)
    92 lemma finite_exhausts [rule_format]:
    93      "finite (A::nat set) --> (\<exists>n. \<forall>m. Suc (n + m) \<notin> A)"
    94 apply (rule impI)
    95 apply (erule_tac F = A in finite_induct)
    96 apply (blast, erule exE)
    97 apply (rule_tac x = "n + x" in exI)
    98 apply (rule allI, erule_tac x = "x + m" in allE)
    99 apply (auto simp add: add_ac)
   100 done
   101 
   102 lemma finite_not_covers [rule_format (no_asm)]:
   103      "finite (A :: nat set) --> (\<exists>n. n \<notin>A)"
   104 by (rule impI, drule finite_exhausts, blast)
   105 
   106 lemma not_finite_nat: "~ finite(UNIV:: nat set)"
   107 by (fast dest!: finite_exhausts)
   108 
   109 
   110 subsection{*Existence of Free Ultrafilter over the Naturals*}
   111 
   112 text{*Also, proof of various properties of @{term FreeUltrafilterNat}: 
   113 an arbitrary free ultrafilter*}
   114 
   115 lemma FreeUltrafilterNat_Ex: "\<exists>U. U \<in> FreeUltrafilter (UNIV::nat set)"
   116 by (rule not_finite_nat [THEN FreeUltrafilter_Ex])
   117 
   118 lemma FreeUltrafilterNat_mem [simp]: 
   119      "FreeUltrafilterNat \<in> FreeUltrafilter(UNIV:: nat set)"
   120 apply (unfold FreeUltrafilterNat_def)
   121 apply (rule FreeUltrafilterNat_Ex [THEN exE])
   122 apply (rule someI2, assumption+)
   123 done
   124 
   125 lemma FreeUltrafilterNat_finite: "finite x ==> x \<notin> FreeUltrafilterNat"
   126 apply (unfold FreeUltrafilterNat_def)
   127 apply (rule FreeUltrafilterNat_Ex [THEN exE])
   128 apply (rule someI2, assumption)
   129 apply (blast dest: mem_FreeUltrafiltersetD1)
   130 done
   131 
   132 lemma FreeUltrafilterNat_not_finite: "x \<in> FreeUltrafilterNat ==> ~ finite x"
   133 by (blast dest: FreeUltrafilterNat_finite)
   134 
   135 lemma FreeUltrafilterNat_empty [simp]: "{} \<notin> FreeUltrafilterNat"
   136 apply (unfold FreeUltrafilterNat_def)
   137 apply (rule FreeUltrafilterNat_Ex [THEN exE])
   138 apply (rule someI2, assumption)
   139 apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter 
   140                    Filter_empty_not_mem)
   141 done
   142 
   143 lemma FreeUltrafilterNat_Int:
   144      "[| X \<in> FreeUltrafilterNat;  Y \<in> FreeUltrafilterNat |]   
   145       ==> X Int Y \<in> FreeUltrafilterNat"
   146 apply (insert FreeUltrafilterNat_mem)
   147 apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD1)
   148 done
   149 
   150 lemma FreeUltrafilterNat_subset:
   151      "[| X \<in> FreeUltrafilterNat;  X \<subseteq> Y |]  
   152       ==> Y \<in> FreeUltrafilterNat"
   153 apply (insert FreeUltrafilterNat_mem)
   154 apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD2)
   155 done
   156 
   157 lemma FreeUltrafilterNat_Compl:
   158      "X \<in> FreeUltrafilterNat ==> -X \<notin> FreeUltrafilterNat"
   159 proof
   160   assume "X \<in> \<U>" and "- X \<in> \<U>"
   161   hence "X Int - X \<in> \<U>" by (rule FreeUltrafilterNat_Int) 
   162   thus False by force
   163 qed
   164 
   165 lemma FreeUltrafilterNat_Compl_mem:
   166      "X\<notin> FreeUltrafilterNat ==> -X \<in> FreeUltrafilterNat"
   167 apply (cut_tac FreeUltrafilterNat_mem [THEN FreeUltrafilter_iff [THEN iffD1]])
   168 apply (safe, drule_tac x = X in bspec)
   169 apply (auto simp add: UNIV_diff_Compl)
   170 done
   171 
   172 lemma FreeUltrafilterNat_Compl_iff1:
   173      "(X \<notin> FreeUltrafilterNat) = (-X \<in> FreeUltrafilterNat)"
   174 by (blast dest: FreeUltrafilterNat_Compl FreeUltrafilterNat_Compl_mem)
   175 
   176 lemma FreeUltrafilterNat_Compl_iff2:
   177      "(X \<in> FreeUltrafilterNat) = (-X \<notin> FreeUltrafilterNat)"
   178 by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric])
   179 
   180 lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \<in> FreeUltrafilterNat"
   181 apply (drule FreeUltrafilterNat_finite)  
   182 apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric])
   183 done
   184 
   185 lemma FreeUltrafilterNat_UNIV [simp]: "(UNIV::nat set) \<in> FreeUltrafilterNat"
   186 by (rule FreeUltrafilterNat_mem [THEN FreeUltrafilter_Ultrafilter, THEN Ultrafilter_Filter, THEN mem_FiltersetD4])
   187 
   188 lemma FreeUltrafilterNat_Nat_set [simp]: "UNIV \<in> FreeUltrafilterNat"
   189 by auto
   190 
   191 lemma FreeUltrafilterNat_Nat_set_refl [intro]:
   192      "{n. P(n) = P(n)} \<in> FreeUltrafilterNat"
   193 by simp
   194 
   195 lemma FreeUltrafilterNat_P: "{n::nat. P} \<in> FreeUltrafilterNat ==> P"
   196 by (rule ccontr, simp)
   197 
   198 lemma FreeUltrafilterNat_Ex_P: "{n. P(n)} \<in> FreeUltrafilterNat ==> \<exists>n. P(n)"
   199 by (rule ccontr, simp)
   200 
   201 lemma FreeUltrafilterNat_all: "\<forall>n. P(n) ==> {n. P(n)} \<in> FreeUltrafilterNat"
   202 by (auto intro: FreeUltrafilterNat_Nat_set)
   203 
   204 
   205 text{*Define and use Ultrafilter tactics*}
   206 use "fuf.ML"
   207 
   208 method_setup fuf = {*
   209     Method.ctxt_args (fn ctxt =>
   210         Method.METHOD (fn facts =>
   211             fuf_tac (Classical.get_local_claset ctxt,
   212                      Simplifier.get_local_simpset ctxt) 1)) *}
   213     "free ultrafilter tactic"
   214 
   215 method_setup ultra = {*
   216     Method.ctxt_args (fn ctxt =>
   217         Method.METHOD (fn facts =>
   218             ultra_tac (Classical.get_local_claset ctxt,
   219                        Simplifier.get_local_simpset ctxt) 1)) *}
   220     "ultrafilter tactic"
   221 
   222 
   223 text{*One further property of our free ultrafilter*}
   224 lemma FreeUltrafilterNat_Un:
   225      "X Un Y \<in> FreeUltrafilterNat  
   226       ==> X \<in> FreeUltrafilterNat | Y \<in> FreeUltrafilterNat"
   227 by (auto, ultra)
   228 
   229 
   230 subsection{*Properties of @{term hyprel}*}
   231 
   232 text{*Proving that @{term hyprel} is an equivalence relation*}
   233 
   234 lemma hyprel_iff: "((X,Y) \<in> hyprel) = ({n. X n = Y n} \<in> FreeUltrafilterNat)"
   235 by (simp add: hyprel_def)
   236 
   237 lemma hyprel_refl: "(x,x) \<in> hyprel"
   238 by (simp add: hyprel_def)
   239 
   240 lemma hyprel_sym [rule_format (no_asm)]: "(x,y) \<in> hyprel --> (y,x) \<in> hyprel"
   241 by (simp add: hyprel_def eq_commute)
   242 
   243 lemma hyprel_trans: 
   244       "[|(x,y) \<in> hyprel; (y,z) \<in> hyprel|] ==> (x,z) \<in> hyprel"
   245 by (simp add: hyprel_def, ultra)
   246 
   247 lemma equiv_hyprel: "equiv UNIV hyprel"
   248 apply (simp add: equiv_def refl_def sym_def trans_def hyprel_refl)
   249 apply (blast intro: hyprel_sym hyprel_trans) 
   250 done
   251 
   252 (* (hyprel `` {x} = hyprel `` {y}) = ((x,y) \<in> hyprel) *)
   253 lemmas equiv_hyprel_iff =
   254     eq_equiv_class_iff [OF equiv_hyprel UNIV_I UNIV_I, simp] 
   255 
   256 lemma hyprel_in_hypreal [simp]: "hyprel``{x}:hypreal"
   257 by (simp add: hypreal_def hyprel_def quotient_def, blast)
   258 
   259 lemma inj_on_Abs_hypreal: "inj_on Abs_hypreal hypreal"
   260 apply (rule inj_on_inverseI)
   261 apply (erule Abs_hypreal_inverse)
   262 done
   263 
   264 declare inj_on_Abs_hypreal [THEN inj_on_iff, simp] 
   265         Abs_hypreal_inverse [simp]
   266 
   267 declare equiv_hyprel [THEN eq_equiv_class_iff, simp]
   268 
   269 declare hyprel_iff [iff]
   270 
   271 lemmas eq_hyprelD = eq_equiv_class [OF _ equiv_hyprel]
   272 
   273 lemma inj_Rep_hypreal: "inj(Rep_hypreal)"
   274 apply (rule inj_on_inverseI)
   275 apply (rule Rep_hypreal_inverse)
   276 done
   277 
   278 lemma lemma_hyprel_refl [simp]: "x \<in> hyprel `` {x}"
   279 by (simp add: hyprel_def)
   280 
   281 lemma hypreal_empty_not_mem [simp]: "{} \<notin> hypreal"
   282 apply (simp add: hypreal_def)
   283 apply (auto elim!: quotientE equalityCE)
   284 done
   285 
   286 lemma Rep_hypreal_nonempty [simp]: "Rep_hypreal x \<noteq> {}"
   287 by (insert Rep_hypreal [of x], auto)
   288 
   289 
   290 subsection{*@{term hypreal_of_real}: 
   291             the Injection from @{typ real} to @{typ hypreal}*}
   292 
   293 lemma inj_hypreal_of_real: "inj(hypreal_of_real)"
   294 apply (rule inj_onI)
   295 apply (simp add: hypreal_of_real_def split: split_if_asm)
   296 done
   297 
   298 lemma eq_Abs_hypreal:
   299     "(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P"
   300 apply (rule_tac x1=z in Rep_hypreal [unfolded hypreal_def, THEN quotientE])
   301 apply (drule_tac f = Abs_hypreal in arg_cong)
   302 apply (force simp add: Rep_hypreal_inverse)
   303 done
   304 
   305 theorem hypreal_cases [case_names Abs_hypreal, cases type: hypreal]:
   306     "(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P"
   307 by (rule eq_Abs_hypreal [of z], blast)
   308 
   309 
   310 subsection{*Hyperreal Addition*}
   311 
   312 lemma hypreal_add_congruent2: 
   313     "congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n + Y n})"
   314 by (simp add: congruent2_def, auto, ultra)
   315 
   316 lemma hypreal_add: 
   317   "Abs_hypreal(hyprel``{%n. X n}) + Abs_hypreal(hyprel``{%n. Y n}) =  
   318    Abs_hypreal(hyprel``{%n. X n + Y n})"
   319 by (simp add: hypreal_add_def 
   320          UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_add_congruent2])
   321 
   322 lemma hypreal_add_commute: "(z::hypreal) + w = w + z"
   323 apply (cases z, cases w)
   324 apply (simp add: add_ac hypreal_add)
   325 done
   326 
   327 lemma hypreal_add_assoc: "((z1::hypreal) + z2) + z3 = z1 + (z2 + z3)"
   328 apply (cases z1, cases z2, cases z3)
   329 apply (simp add: hypreal_add real_add_assoc)
   330 done
   331 
   332 lemma hypreal_add_zero_left: "(0::hypreal) + z = z"
   333 by (cases z, simp add: hypreal_zero_def hypreal_add)
   334 
   335 instance hypreal :: comm_monoid_add
   336   by intro_classes
   337     (assumption | 
   338       rule hypreal_add_commute hypreal_add_assoc hypreal_add_zero_left)+
   339 
   340 lemma hypreal_add_zero_right [simp]: "z + (0::hypreal) = z"
   341 by (simp add: hypreal_add_zero_left hypreal_add_commute)
   342 
   343 
   344 subsection{*Additive inverse on @{typ hypreal}*}
   345 
   346 lemma hypreal_minus_congruent: 
   347   "congruent hyprel (%X. hyprel``{%n. - (X n)})"
   348 by (force simp add: congruent_def)
   349 
   350 lemma hypreal_minus: 
   351    "- (Abs_hypreal(hyprel``{%n. X n})) = Abs_hypreal(hyprel `` {%n. -(X n)})"
   352 by (simp add: hypreal_minus_def Abs_hypreal_inject 
   353               hyprel_in_hypreal [THEN Abs_hypreal_inverse] 
   354               UN_equiv_class [OF equiv_hyprel hypreal_minus_congruent])
   355 
   356 lemma hypreal_diff:
   357      "Abs_hypreal(hyprel``{%n. X n}) - Abs_hypreal(hyprel``{%n. Y n}) =  
   358       Abs_hypreal(hyprel``{%n. X n - Y n})"
   359 by (simp add: hypreal_diff_def hypreal_minus hypreal_add)
   360 
   361 lemma hypreal_add_minus [simp]: "z + -z = (0::hypreal)"
   362 by (cases z, simp add: hypreal_zero_def hypreal_minus hypreal_add)
   363 
   364 lemma hypreal_add_minus_left: "-z + z = (0::hypreal)"
   365 by (simp add: hypreal_add_commute hypreal_add_minus)
   366 
   367 
   368 subsection{*Hyperreal Multiplication*}
   369 
   370 lemma hypreal_mult_congruent2: 
   371     "congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n * Y n})"
   372 by (simp add: congruent2_def, auto, ultra)
   373 
   374 lemma hypreal_mult: 
   375   "Abs_hypreal(hyprel``{%n. X n}) * Abs_hypreal(hyprel``{%n. Y n}) =  
   376    Abs_hypreal(hyprel``{%n. X n * Y n})"
   377 by (simp add: hypreal_mult_def
   378         UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_mult_congruent2])
   379 
   380 lemma hypreal_mult_commute: "(z::hypreal) * w = w * z"
   381 by (cases z, cases w, simp add: hypreal_mult mult_ac)
   382 
   383 lemma hypreal_mult_assoc: "((z1::hypreal) * z2) * z3 = z1 * (z2 * z3)"
   384 by (cases z1, cases z2, cases z3, simp add: hypreal_mult mult_assoc)
   385 
   386 lemma hypreal_mult_1: "(1::hypreal) * z = z"
   387 by (cases z, simp add: hypreal_one_def hypreal_mult)
   388 
   389 lemma hypreal_add_mult_distrib:
   390      "((z1::hypreal) + z2) * w = (z1 * w) + (z2 * w)"
   391 by (cases z1, cases z2, cases w, simp add: hypreal_mult hypreal_add left_distrib)
   392 
   393 text{*one and zero are distinct*}
   394 lemma hypreal_zero_not_eq_one: "0 \<noteq> (1::hypreal)"
   395 by (simp add: hypreal_zero_def hypreal_one_def)
   396 
   397 
   398 subsection{*Multiplicative Inverse on @{typ hypreal} *}
   399 
   400 lemma hypreal_inverse_congruent: 
   401   "congruent hyprel (%X. hyprel``{%n. if X n = 0 then 0 else inverse(X n)})"
   402 by (auto simp add: congruent_def, ultra)
   403 
   404 lemma hypreal_inverse: 
   405       "inverse (Abs_hypreal(hyprel``{%n. X n})) =  
   406        Abs_hypreal(hyprel `` {%n. if X n = 0 then 0 else inverse(X n)})"
   407 by (simp add: hypreal_inverse_def Abs_hypreal_inject 
   408               hyprel_in_hypreal [THEN Abs_hypreal_inverse] 
   409               UN_equiv_class [OF equiv_hyprel hypreal_inverse_congruent])
   410 
   411 lemma hypreal_mult_inverse: 
   412      "x \<noteq> 0 ==> x*inverse(x) = (1::hypreal)"
   413 apply (cases x)
   414 apply (simp add: hypreal_one_def hypreal_zero_def hypreal_inverse hypreal_mult)
   415 apply (drule FreeUltrafilterNat_Compl_mem)
   416 apply (blast intro!: right_inverse FreeUltrafilterNat_subset)
   417 done
   418 
   419 lemma hypreal_mult_inverse_left:
   420      "x \<noteq> 0 ==> inverse(x)*x = (1::hypreal)"
   421 by (simp add: hypreal_mult_inverse hypreal_mult_commute)
   422 
   423 instance hypreal :: field
   424 proof
   425   fix x y z :: hypreal
   426   show "- x + x = 0" by (simp add: hypreal_add_minus_left)
   427   show "x - y = x + (-y)" by (simp add: hypreal_diff_def)
   428   show "(x * y) * z = x * (y * z)" by (rule hypreal_mult_assoc)
   429   show "x * y = y * x" by (rule hypreal_mult_commute)
   430   show "1 * x = x" by (simp add: hypreal_mult_1)
   431   show "(x + y) * z = x * z + y * z" by (simp add: hypreal_add_mult_distrib)
   432   show "0 \<noteq> (1::hypreal)" by (rule hypreal_zero_not_eq_one)
   433   show "x \<noteq> 0 ==> inverse x * x = 1" by (simp add: hypreal_mult_inverse_left)
   434   show "x / y = x * inverse y" by (simp add: hypreal_divide_def)
   435 qed
   436 
   437 
   438 instance hypreal :: division_by_zero
   439 proof
   440   show "inverse 0 = (0::hypreal)" 
   441     by (simp add: hypreal_inverse hypreal_zero_def)
   442 qed
   443 
   444 
   445 subsection{*Properties of The @{text "\<le>"} Relation*}
   446 
   447 lemma hypreal_le: 
   448       "(Abs_hypreal(hyprel``{%n. X n}) \<le> Abs_hypreal(hyprel``{%n. Y n})) =  
   449        ({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
   450 apply (simp add: hypreal_le_def)
   451 apply (auto intro!: lemma_hyprel_refl, ultra)
   452 done
   453 
   454 lemma hypreal_le_refl: "w \<le> (w::hypreal)"
   455 by (cases w, simp add: hypreal_le)
   456 
   457 lemma hypreal_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypreal)"
   458 by (cases i, cases j, cases k, simp add: hypreal_le, ultra)
   459 
   460 lemma hypreal_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypreal)"
   461 by (cases z, cases w, simp add: hypreal_le, ultra)
   462 
   463 (* Axiom 'order_less_le' of class 'order': *)
   464 lemma hypreal_less_le: "((w::hypreal) < z) = (w \<le> z & w \<noteq> z)"
   465 by (simp add: hypreal_less_def)
   466 
   467 instance hypreal :: order
   468   by intro_classes
   469     (assumption |
   470       rule hypreal_le_refl hypreal_le_trans hypreal_le_anti_sym hypreal_less_le)+
   471 
   472 
   473 (* Axiom 'linorder_linear' of class 'linorder': *)
   474 lemma hypreal_le_linear: "(z::hypreal) \<le> w | w \<le> z"
   475 apply (cases z, cases w)
   476 apply (auto simp add: hypreal_le, ultra)
   477 done
   478 
   479 instance hypreal :: linorder 
   480   by intro_classes (rule hypreal_le_linear)
   481 
   482 lemma hypreal_not_refl2: "!!(x::hypreal). x < y ==> x \<noteq> y"
   483 by (auto simp add: order_less_irrefl)
   484 
   485 lemma hypreal_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypreal)"
   486 apply (cases x, cases y, cases z)
   487 apply (auto simp add: hypreal_le hypreal_add) 
   488 done
   489 
   490 lemma hypreal_mult_less_mono2: "[| (0::hypreal)<z; x<y |] ==> z*x<z*y"
   491 apply (cases x, cases y, cases z)
   492 apply (auto simp add: hypreal_zero_def hypreal_le hypreal_mult 
   493                       linorder_not_le [symmetric], ultra) 
   494 done
   495 
   496 
   497 subsection{*The Hyperreals Form an Ordered Field*}
   498 
   499 instance hypreal :: ordered_field
   500 proof
   501   fix x y z :: hypreal
   502   show "x \<le> y ==> z + x \<le> z + y" 
   503     by (rule hypreal_add_left_mono)
   504   show "x < y ==> 0 < z ==> z * x < z * y" 
   505     by (simp add: hypreal_mult_less_mono2)
   506   show "\<bar>x\<bar> = (if x < 0 then -x else x)"
   507     by (auto dest: order_le_less_trans simp add: hrabs_def linorder_not_le)
   508 qed
   509 
   510 lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)"
   511 apply auto
   512 apply (rule OrderedGroup.add_right_cancel [of _ "-y", THEN iffD1], auto)
   513 done
   514 
   515 lemma hypreal_mult_left_cancel: "(c::hypreal) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
   516 by auto
   517     
   518 lemma hypreal_mult_right_cancel: "(c::hypreal) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
   519 by auto
   520 
   521 
   522 subsection{*The Embedding @{term hypreal_of_real} Preserves Field and 
   523       Order Properties*}
   524 
   525 lemma hypreal_of_real_add [simp]: 
   526      "hypreal_of_real (w + z) = hypreal_of_real w + hypreal_of_real z"
   527 by (simp add: hypreal_of_real_def, simp add: hypreal_add left_distrib)
   528 
   529 lemma hypreal_of_real_mult [simp]: 
   530      "hypreal_of_real (w * z) = hypreal_of_real w * hypreal_of_real z"
   531 by (simp add: hypreal_of_real_def, simp add: hypreal_mult right_distrib)
   532 
   533 lemma hypreal_of_real_one [simp]: "hypreal_of_real 1 = (1::hypreal)"
   534 by (simp add: hypreal_of_real_def hypreal_one_def)
   535 
   536 lemma hypreal_of_real_zero [simp]: "hypreal_of_real 0 = 0"
   537 by (simp add: hypreal_of_real_def hypreal_zero_def)
   538 
   539 lemma hypreal_of_real_le_iff [simp]: 
   540      "(hypreal_of_real w \<le> hypreal_of_real z) = (w \<le> z)"
   541 apply (simp add: hypreal_le_def hypreal_of_real_def, auto)
   542 apply (rule_tac [2] x = "%n. w" in exI, safe)
   543 apply (rule_tac [3] x = "%n. z" in exI, auto)
   544 apply (rule FreeUltrafilterNat_P, ultra)
   545 done
   546 
   547 lemma hypreal_of_real_less_iff [simp]: 
   548      "(hypreal_of_real w < hypreal_of_real z) = (w < z)"
   549 by (simp add: linorder_not_le [symmetric]) 
   550 
   551 lemma hypreal_of_real_eq_iff [simp]:
   552      "(hypreal_of_real w = hypreal_of_real z) = (w = z)"
   553 by (force intro: order_antisym hypreal_of_real_le_iff [THEN iffD1])
   554 
   555 text{*As above, for 0*}
   556 
   557 declare hypreal_of_real_less_iff [of 0, simplified, simp]
   558 declare hypreal_of_real_le_iff   [of 0, simplified, simp]
   559 declare hypreal_of_real_eq_iff   [of 0, simplified, simp]
   560 
   561 declare hypreal_of_real_less_iff [of _ 0, simplified, simp]
   562 declare hypreal_of_real_le_iff   [of _ 0, simplified, simp]
   563 declare hypreal_of_real_eq_iff   [of _ 0, simplified, simp]
   564 
   565 text{*As above, for 1*}
   566 
   567 declare hypreal_of_real_less_iff [of 1, simplified, simp]
   568 declare hypreal_of_real_le_iff   [of 1, simplified, simp]
   569 declare hypreal_of_real_eq_iff   [of 1, simplified, simp]
   570 
   571 declare hypreal_of_real_less_iff [of _ 1, simplified, simp]
   572 declare hypreal_of_real_le_iff   [of _ 1, simplified, simp]
   573 declare hypreal_of_real_eq_iff   [of _ 1, simplified, simp]
   574 
   575 lemma hypreal_of_real_minus [simp]:
   576      "hypreal_of_real (-r) = - hypreal_of_real  r"
   577 by (auto simp add: hypreal_of_real_def hypreal_minus)
   578 
   579 lemma hypreal_of_real_inverse [simp]:
   580      "hypreal_of_real (inverse r) = inverse (hypreal_of_real r)"
   581 apply (case_tac "r=0", simp)
   582 apply (rule_tac c1 = "hypreal_of_real r" in hypreal_mult_left_cancel [THEN iffD1])
   583 apply (auto simp add: hypreal_of_real_mult [symmetric])
   584 done
   585 
   586 lemma hypreal_of_real_divide [simp]:
   587      "hypreal_of_real (w / z) = hypreal_of_real w / hypreal_of_real z"
   588 by (simp add: hypreal_divide_def real_divide_def)
   589 
   590 
   591 subsection{*Misc Others*}
   592 
   593 lemma hypreal_less: 
   594       "(Abs_hypreal(hyprel``{%n. X n}) < Abs_hypreal(hyprel``{%n. Y n})) =  
   595        ({n. X n < Y n} \<in> FreeUltrafilterNat)"
   596 by (auto simp add: hypreal_le linorder_not_le [symmetric], ultra+)
   597 
   598 lemma hypreal_zero_num: "0 = Abs_hypreal (hyprel `` {%n. 0})"
   599 by (simp add: hypreal_zero_def [THEN meta_eq_to_obj_eq, symmetric])
   600 
   601 lemma hypreal_one_num: "1 = Abs_hypreal (hyprel `` {%n. 1})"
   602 by (simp add: hypreal_one_def [THEN meta_eq_to_obj_eq, symmetric])
   603 
   604 lemma hypreal_omega_gt_zero [simp]: "0 < omega"
   605 by (auto simp add: omega_def hypreal_less hypreal_zero_num)
   606 
   607 lemma hypreal_hrabs:
   608      "abs (Abs_hypreal (hyprel `` {X})) = 
   609       Abs_hypreal(hyprel `` {%n. abs (X n)})"
   610 apply (auto simp add: hrabs_def hypreal_zero_def hypreal_le hypreal_minus)
   611 apply (ultra, arith)+
   612 done
   613 
   614 
   615 
   616 lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y"
   617 by (auto dest: add_less_le_mono)
   618 
   619 text{*The precondition could be weakened to @{term "0\<le>x"}*}
   620 lemma hypreal_mult_less_mono:
   621      "[| u<v;  x<y;  (0::hypreal) < v;  0 < x |] ==> u*x < v* y"
   622  by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
   623 
   624 
   625 subsection{*Existence of Infinite Hyperreal Number*}
   626 
   627 lemma Rep_hypreal_omega: "Rep_hypreal(omega) \<in> hypreal"
   628 by (simp add: omega_def)
   629 
   630 text{*Existence of infinite number not corresponding to any real number.
   631 Use assumption that member @{term FreeUltrafilterNat} is not finite.*}
   632 
   633 
   634 text{*A few lemmas first*}
   635 
   636 lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} |  
   637       (\<exists>y. {n::nat. x = real n} = {y})"
   638 by force
   639 
   640 lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
   641 by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto)
   642 
   643 lemma not_ex_hypreal_of_real_eq_omega: 
   644       "~ (\<exists>x. hypreal_of_real x = omega)"
   645 apply (simp add: omega_def hypreal_of_real_def)
   646 apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric] 
   647             lemma_finite_omega_set [THEN FreeUltrafilterNat_finite])
   648 done
   649 
   650 lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> omega"
   651 by (insert not_ex_hypreal_of_real_eq_omega, auto)
   652 
   653 text{*Existence of infinitesimal number also not corresponding to any
   654  real number*}
   655 
   656 lemma lemma_epsilon_empty_singleton_disj:
   657      "{n::nat. x = inverse(real(Suc n))} = {} |  
   658       (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
   659 by auto
   660 
   661 lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
   662 by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)
   663 
   664 lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = epsilon)"
   665 by (auto simp add: epsilon_def hypreal_of_real_def 
   666                    lemma_finite_epsilon_set [THEN FreeUltrafilterNat_finite])
   667 
   668 lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> epsilon"
   669 by (insert not_ex_hypreal_of_real_eq_epsilon, auto)
   670 
   671 lemma hypreal_epsilon_not_zero: "epsilon \<noteq> 0"
   672 by (simp add: epsilon_def hypreal_zero_def)
   673 
   674 lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)"
   675 by (simp add: hypreal_inverse omega_def epsilon_def)
   676 
   677 
   678 ML
   679 {*
   680 val hrabs_def = thm "hrabs_def";
   681 val hypreal_hrabs = thm "hypreal_hrabs";
   682 
   683 val hypreal_zero_def = thm "hypreal_zero_def";
   684 val hypreal_one_def = thm "hypreal_one_def";
   685 val hypreal_minus_def = thm "hypreal_minus_def";
   686 val hypreal_diff_def = thm "hypreal_diff_def";
   687 val hypreal_inverse_def = thm "hypreal_inverse_def";
   688 val hypreal_divide_def = thm "hypreal_divide_def";
   689 val hypreal_of_real_def = thm "hypreal_of_real_def";
   690 val omega_def = thm "omega_def";
   691 val epsilon_def = thm "epsilon_def";
   692 val hypreal_add_def = thm "hypreal_add_def";
   693 val hypreal_mult_def = thm "hypreal_mult_def";
   694 val hypreal_less_def = thm "hypreal_less_def";
   695 val hypreal_le_def = thm "hypreal_le_def";
   696 
   697 val finite_exhausts = thm "finite_exhausts";
   698 val finite_not_covers = thm "finite_not_covers";
   699 val not_finite_nat = thm "not_finite_nat";
   700 val FreeUltrafilterNat_Ex = thm "FreeUltrafilterNat_Ex";
   701 val FreeUltrafilterNat_mem = thm "FreeUltrafilterNat_mem";
   702 val FreeUltrafilterNat_finite = thm "FreeUltrafilterNat_finite";
   703 val FreeUltrafilterNat_not_finite = thm "FreeUltrafilterNat_not_finite";
   704 val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty";
   705 val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int";
   706 val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset";
   707 val FreeUltrafilterNat_Compl = thm "FreeUltrafilterNat_Compl";
   708 val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem";
   709 val FreeUltrafilterNat_Compl_iff1 = thm "FreeUltrafilterNat_Compl_iff1";
   710 val FreeUltrafilterNat_Compl_iff2 = thm "FreeUltrafilterNat_Compl_iff2";
   711 val FreeUltrafilterNat_UNIV = thm "FreeUltrafilterNat_UNIV";
   712 val FreeUltrafilterNat_Nat_set = thm "FreeUltrafilterNat_Nat_set";
   713 val FreeUltrafilterNat_Nat_set_refl = thm "FreeUltrafilterNat_Nat_set_refl";
   714 val FreeUltrafilterNat_P = thm "FreeUltrafilterNat_P";
   715 val FreeUltrafilterNat_Ex_P = thm "FreeUltrafilterNat_Ex_P";
   716 val FreeUltrafilterNat_all = thm "FreeUltrafilterNat_all";
   717 val FreeUltrafilterNat_Un = thm "FreeUltrafilterNat_Un";
   718 val hyprel_iff = thm "hyprel_iff";
   719 val hyprel_in_hypreal = thm "hyprel_in_hypreal";
   720 val Abs_hypreal_inverse = thm "Abs_hypreal_inverse";
   721 val inj_on_Abs_hypreal = thm "inj_on_Abs_hypreal";
   722 val inj_Rep_hypreal = thm "inj_Rep_hypreal";
   723 val lemma_hyprel_refl = thm "lemma_hyprel_refl";
   724 val hypreal_empty_not_mem = thm "hypreal_empty_not_mem";
   725 val Rep_hypreal_nonempty = thm "Rep_hypreal_nonempty";
   726 val inj_hypreal_of_real = thm "inj_hypreal_of_real";
   727 val eq_Abs_hypreal = thm "eq_Abs_hypreal";
   728 val hypreal_minus_congruent = thm "hypreal_minus_congruent";
   729 val hypreal_minus = thm "hypreal_minus";
   730 val hypreal_add = thm "hypreal_add";
   731 val hypreal_diff = thm "hypreal_diff";
   732 val hypreal_add_commute = thm "hypreal_add_commute";
   733 val hypreal_add_assoc = thm "hypreal_add_assoc";
   734 val hypreal_add_zero_left = thm "hypreal_add_zero_left";
   735 val hypreal_add_zero_right = thm "hypreal_add_zero_right";
   736 val hypreal_add_minus = thm "hypreal_add_minus";
   737 val hypreal_add_minus_left = thm "hypreal_add_minus_left";
   738 val hypreal_mult = thm "hypreal_mult";
   739 val hypreal_mult_commute = thm "hypreal_mult_commute";
   740 val hypreal_mult_assoc = thm "hypreal_mult_assoc";
   741 val hypreal_mult_1 = thm "hypreal_mult_1";
   742 val hypreal_zero_not_eq_one = thm "hypreal_zero_not_eq_one";
   743 val hypreal_inverse_congruent = thm "hypreal_inverse_congruent";
   744 val hypreal_inverse = thm "hypreal_inverse";
   745 val hypreal_mult_inverse = thm "hypreal_mult_inverse";
   746 val hypreal_mult_inverse_left = thm "hypreal_mult_inverse_left";
   747 val hypreal_mult_left_cancel = thm "hypreal_mult_left_cancel";
   748 val hypreal_mult_right_cancel = thm "hypreal_mult_right_cancel";
   749 val hypreal_not_refl2 = thm "hypreal_not_refl2";
   750 val hypreal_less = thm "hypreal_less";
   751 val hypreal_eq_minus_iff = thm "hypreal_eq_minus_iff";
   752 val hypreal_le = thm "hypreal_le";
   753 val hypreal_le_refl = thm "hypreal_le_refl";
   754 val hypreal_le_linear = thm "hypreal_le_linear";
   755 val hypreal_le_trans = thm "hypreal_le_trans";
   756 val hypreal_le_anti_sym = thm "hypreal_le_anti_sym";
   757 val hypreal_less_le = thm "hypreal_less_le";
   758 val hypreal_of_real_add = thm "hypreal_of_real_add";
   759 val hypreal_of_real_mult = thm "hypreal_of_real_mult";
   760 val hypreal_of_real_less_iff = thm "hypreal_of_real_less_iff";
   761 val hypreal_of_real_le_iff = thm "hypreal_of_real_le_iff";
   762 val hypreal_of_real_eq_iff = thm "hypreal_of_real_eq_iff";
   763 val hypreal_of_real_minus = thm "hypreal_of_real_minus";
   764 val hypreal_of_real_one = thm "hypreal_of_real_one";
   765 val hypreal_of_real_zero = thm "hypreal_of_real_zero";
   766 val hypreal_of_real_inverse = thm "hypreal_of_real_inverse";
   767 val hypreal_of_real_divide = thm "hypreal_of_real_divide";
   768 val hypreal_zero_num = thm "hypreal_zero_num";
   769 val hypreal_one_num = thm "hypreal_one_num";
   770 val hypreal_omega_gt_zero = thm "hypreal_omega_gt_zero";
   771 
   772 val hypreal_add_zero_less_le_mono = thm"hypreal_add_zero_less_le_mono";
   773 val Rep_hypreal_omega = thm"Rep_hypreal_omega";
   774 val lemma_omega_empty_singleton_disj = thm"lemma_omega_empty_singleton_disj";
   775 val lemma_finite_omega_set = thm"lemma_finite_omega_set";
   776 val not_ex_hypreal_of_real_eq_omega = thm"not_ex_hypreal_of_real_eq_omega";
   777 val hypreal_of_real_not_eq_omega = thm"hypreal_of_real_not_eq_omega";
   778 val not_ex_hypreal_of_real_eq_epsilon = thm"not_ex_hypreal_of_real_eq_epsilon";
   779 val hypreal_of_real_not_eq_epsilon = thm"hypreal_of_real_not_eq_epsilon";
   780 val hypreal_epsilon_not_zero = thm"hypreal_epsilon_not_zero";
   781 val hypreal_epsilon_inverse_omega = thm"hypreal_epsilon_inverse_omega";
   782 *}
   783 
   784 end