src/HOL/Finite_Set.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14661 9ead82084de8
child 14740 c8e1937110c2
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
     1 (*  Title:      HOL/Finite_Set.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
     4                 Additions by Jeremy Avigad in Feb 2004
     5     License:    GPL (GNU GENERAL PUBLIC LICENSE)
     6 *)
     7 
     8 header {* Finite sets *}
     9 
    10 theory Finite_Set = Divides + Power + Inductive:
    11 
    12 subsection {* Collection of finite sets *}
    13 
    14 consts Finites :: "'a set set"
    15 syntax
    16   finite :: "'a set => bool"
    17 translations
    18   "finite A" == "A : Finites"
    19 
    20 inductive Finites
    21   intros
    22     emptyI [simp, intro!]: "{} : Finites"
    23     insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"
    24 
    25 axclass finite \<subseteq> type
    26   finite: "finite UNIV"
    27 
    28 lemma ex_new_if_finite: -- "does not depend on def of finite at all"
    29   assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
    30   shows "\<exists>a::'a. a \<notin> A"
    31 proof -
    32   from prems have "A \<noteq> UNIV" by blast
    33   thus ?thesis by blast
    34 qed
    35 
    36 lemma finite_induct [case_names empty insert, induct set: Finites]:
    37   "finite F ==>
    38     P {} ==> (!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
    39   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
    40 proof -
    41   assume "P {}" and
    42     insert: "!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)"
    43   assume "finite F"
    44   thus "P F"
    45   proof induct
    46     show "P {}" .
    47     fix F x assume F: "finite F" and P: "P F"
    48     show "P (insert x F)"
    49     proof cases
    50       assume "x \<in> F"
    51       hence "insert x F = F" by (rule insert_absorb)
    52       with P show ?thesis by (simp only:)
    53     next
    54       assume "x \<notin> F"
    55       from F this P show ?thesis by (rule insert)
    56     qed
    57   qed
    58 qed
    59 
    60 lemma finite_subset_induct [consumes 2, case_names empty insert]:
    61   "finite F ==> F \<subseteq> A ==>
    62     P {} ==> (!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==>
    63     P F"
    64 proof -
    65   assume "P {}" and insert:
    66     "!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
    67   assume "finite F"
    68   thus "F \<subseteq> A ==> P F"
    69   proof induct
    70     show "P {}" .
    71     fix F x assume "finite F" and "x \<notin> F"
    72       and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A"
    73     show "P (insert x F)"
    74     proof (rule insert)
    75       from i show "x \<in> A" by blast
    76       from i have "F \<subseteq> A" by blast
    77       with P show "P F" .
    78     qed
    79   qed
    80 qed
    81 
    82 lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)"
    83   -- {* The union of two finite sets is finite. *}
    84   by (induct set: Finites) simp_all
    85 
    86 lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A"
    87   -- {* Every subset of a finite set is finite. *}
    88 proof -
    89   assume "finite B"
    90   thus "!!A. A \<subseteq> B ==> finite A"
    91   proof induct
    92     case empty
    93     thus ?case by simp
    94   next
    95     case (insert F x A)
    96     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" .
    97     show "finite A"
    98     proof cases
    99       assume x: "x \<in> A"
   100       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
   101       with r have "finite (A - {x})" .
   102       hence "finite (insert x (A - {x}))" ..
   103       also have "insert x (A - {x}) = A" by (rule insert_Diff)
   104       finally show ?thesis .
   105     next
   106       show "A \<subseteq> F ==> ?thesis" .
   107       assume "x \<notin> A"
   108       with A show "A \<subseteq> F" by (simp add: subset_insert_iff)
   109     qed
   110   qed
   111 qed
   112 
   113 lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"
   114   by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI)
   115 
   116 lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)"
   117   -- {* The converse obviously fails. *}
   118   by (blast intro: finite_subset)
   119 
   120 lemma finite_insert [simp]: "finite (insert a A) = finite A"
   121   apply (subst insert_is_Un)
   122   apply (simp only: finite_Un, blast)
   123   done
   124 
   125 lemma finite_empty_induct:
   126   "finite A ==>
   127   P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}"
   128 proof -
   129   assume "finite A"
   130     and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
   131   have "P (A - A)"
   132   proof -
   133     fix c b :: "'a set"
   134     presume c: "finite c" and b: "finite b"
   135       and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
   136     from c show "c \<subseteq> b ==> P (b - c)"
   137     proof induct
   138       case empty
   139       from P1 show ?case by simp
   140     next
   141       case (insert F x)
   142       have "P (b - F - {x})"
   143       proof (rule P2)
   144         from _ b show "finite (b - F)" by (rule finite_subset) blast
   145         from insert show "x \<in> b - F" by simp
   146         from insert show "P (b - F)" by simp
   147       qed
   148       also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
   149       finally show ?case .
   150     qed
   151   next
   152     show "A \<subseteq> A" ..
   153   qed
   154   thus "P {}" by simp
   155 qed
   156 
   157 lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)"
   158   by (rule Diff_subset [THEN finite_subset])
   159 
   160 lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)"
   161   apply (subst Diff_insert)
   162   apply (case_tac "a : A - B")
   163    apply (rule finite_insert [symmetric, THEN trans])
   164    apply (subst insert_Diff, simp_all)
   165   done
   166 
   167 
   168 subsubsection {* Image and Inverse Image over Finite Sets *}
   169 
   170 lemma finite_imageI[simp]: "finite F ==> finite (h ` F)"
   171   -- {* The image of a finite set is finite. *}
   172   by (induct set: Finites) simp_all
   173 
   174 lemma finite_surj: "finite A ==> B <= f ` A ==> finite B"
   175   apply (frule finite_imageI)
   176   apply (erule finite_subset, assumption)
   177   done
   178 
   179 lemma finite_range_imageI:
   180     "finite (range g) ==> finite (range (%x. f (g x)))"
   181   apply (drule finite_imageI, simp)
   182   done
   183 
   184 lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A"
   185 proof -
   186   have aux: "!!A. finite (A - {}) = finite A" by simp
   187   fix B :: "'a set"
   188   assume "finite B"
   189   thus "!!A. f`A = B ==> inj_on f A ==> finite A"
   190     apply induct
   191      apply simp
   192     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
   193      apply clarify
   194      apply (simp (no_asm_use) add: inj_on_def)
   195      apply (blast dest!: aux [THEN iffD1], atomize)
   196     apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl)
   197     apply (frule subsetD [OF equalityD2 insertI1], clarify)
   198     apply (rule_tac x = xa in bexI)
   199      apply (simp_all add: inj_on_image_set_diff)
   200     done
   201 qed (rule refl)
   202 
   203 
   204 lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
   205   -- {* The inverse image of a singleton under an injective function
   206          is included in a singleton. *}
   207   apply (auto simp add: inj_on_def)
   208   apply (blast intro: the_equality [symmetric])
   209   done
   210 
   211 lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)"
   212   -- {* The inverse image of a finite set under an injective function
   213          is finite. *}
   214   apply (induct set: Finites, simp_all)
   215   apply (subst vimage_insert)
   216   apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton])
   217   done
   218 
   219 
   220 subsubsection {* The finite UNION of finite sets *}
   221 
   222 lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)"
   223   by (induct set: Finites) simp_all
   224 
   225 text {*
   226   Strengthen RHS to
   227   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
   228 
   229   We'd need to prove
   230   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
   231   by induction. *}
   232 
   233 lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))"
   234   by (blast intro: finite_UN_I finite_subset)
   235 
   236 
   237 subsubsection {* Sigma of finite sets *}
   238 
   239 lemma finite_SigmaI [simp]:
   240     "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)"
   241   by (unfold Sigma_def) (blast intro!: finite_UN_I)
   242 
   243 lemma finite_Prod_UNIV:
   244     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
   245   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
   246    apply (erule ssubst)
   247    apply (erule finite_SigmaI, auto)
   248   done
   249 
   250 instance unit :: finite
   251 proof
   252   have "finite {()}" by simp
   253   also have "{()} = UNIV" by auto
   254   finally show "finite (UNIV :: unit set)" .
   255 qed
   256 
   257 instance * :: (finite, finite) finite
   258 proof
   259   show "finite (UNIV :: ('a \<times> 'b) set)"
   260   proof (rule finite_Prod_UNIV)
   261     show "finite (UNIV :: 'a set)" by (rule finite)
   262     show "finite (UNIV :: 'b set)" by (rule finite)
   263   qed
   264 qed
   265 
   266 
   267 subsubsection {* The powerset of a finite set *}
   268 
   269 lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A"
   270 proof
   271   assume "finite (Pow A)"
   272   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
   273   thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp
   274 next
   275   assume "finite A"
   276   thus "finite (Pow A)"
   277     by induct (simp_all add: finite_UnI finite_imageI Pow_insert)
   278 qed
   279 
   280 lemma finite_converse [iff]: "finite (r^-1) = finite r"
   281   apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")
   282    apply simp
   283    apply (rule iffI)
   284     apply (erule finite_imageD [unfolded inj_on_def])
   285     apply (simp split add: split_split)
   286    apply (erule finite_imageI)
   287   apply (simp add: converse_def image_def, auto)
   288   apply (rule bexI)
   289    prefer 2 apply assumption
   290   apply simp
   291   done
   292 
   293 
   294 subsubsection {* Finiteness of transitive closure *}
   295 
   296 text {* (Thanks to Sidi Ehmety) *}
   297 
   298 lemma finite_Field: "finite r ==> finite (Field r)"
   299   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
   300   apply (induct set: Finites)
   301    apply (auto simp add: Field_def Domain_insert Range_insert)
   302   done
   303 
   304 lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r"
   305   apply clarify
   306   apply (erule trancl_induct)
   307    apply (auto simp add: Field_def)
   308   done
   309 
   310 lemma finite_trancl: "finite (r^+) = finite r"
   311   apply auto
   312    prefer 2
   313    apply (rule trancl_subset_Field2 [THEN finite_subset])
   314    apply (rule finite_SigmaI)
   315     prefer 3
   316     apply (blast intro: r_into_trancl' finite_subset)
   317    apply (auto simp add: finite_Field)
   318   done
   319 
   320 lemma finite_cartesian_product: "[| finite A; finite B |] ==>
   321     finite (A <*> B)"
   322   by (rule finite_SigmaI)
   323 
   324 
   325 subsection {* Finite cardinality *}
   326 
   327 text {*
   328   This definition, although traditional, is ugly to work with: @{text
   329   "card A == LEAST n. EX f. A = {f i | i. i < n}"}.  Therefore we have
   330   switched to an inductive one:
   331 *}
   332 
   333 consts cardR :: "('a set \<times> nat) set"
   334 
   335 inductive cardR
   336   intros
   337     EmptyI: "({}, 0) : cardR"
   338     InsertI: "(A, n) : cardR ==> a \<notin> A ==> (insert a A, Suc n) : cardR"
   339 
   340 constdefs
   341   card :: "'a set => nat"
   342   "card A == THE n. (A, n) : cardR"
   343 
   344 inductive_cases cardR_emptyE: "({}, n) : cardR"
   345 inductive_cases cardR_insertE: "(insert a A,n) : cardR"
   346 
   347 lemma cardR_SucD: "(A, n) : cardR ==> a : A --> (EX m. n = Suc m)"
   348   by (induct set: cardR) simp_all
   349 
   350 lemma cardR_determ_aux1:
   351     "(A, m): cardR ==> (!!n a. m = Suc n ==> a:A ==> (A - {a}, n) : cardR)"
   352   apply (induct set: cardR, auto)
   353   apply (simp add: insert_Diff_if, auto)
   354   apply (drule cardR_SucD)
   355   apply (blast intro!: cardR.intros)
   356   done
   357 
   358 lemma cardR_determ_aux2: "(insert a A, Suc m) : cardR ==> a \<notin> A ==> (A, m) : cardR"
   359   by (drule cardR_determ_aux1) auto
   360 
   361 lemma cardR_determ: "(A, m): cardR ==> (!!n. (A, n) : cardR ==> n = m)"
   362   apply (induct set: cardR)
   363    apply (safe elim!: cardR_emptyE cardR_insertE)
   364   apply (rename_tac B b m)
   365   apply (case_tac "a = b")
   366    apply (subgoal_tac "A = B")
   367     prefer 2 apply (blast elim: equalityE, blast)
   368   apply (subgoal_tac "EX C. A = insert b C & B = insert a C")
   369    prefer 2
   370    apply (rule_tac x = "A Int B" in exI)
   371    apply (blast elim: equalityE)
   372   apply (frule_tac A = B in cardR_SucD)
   373   apply (blast intro!: cardR.intros dest!: cardR_determ_aux2)
   374   done
   375 
   376 lemma cardR_imp_finite: "(A, n) : cardR ==> finite A"
   377   by (induct set: cardR) simp_all
   378 
   379 lemma finite_imp_cardR: "finite A ==> EX n. (A, n) : cardR"
   380   by (induct set: Finites) (auto intro!: cardR.intros)
   381 
   382 lemma card_equality: "(A,n) : cardR ==> card A = n"
   383   by (unfold card_def) (blast intro: cardR_determ)
   384 
   385 lemma card_empty [simp]: "card {} = 0"
   386   by (unfold card_def) (blast intro!: cardR.intros elim!: cardR_emptyE)
   387 
   388 lemma card_insert_disjoint [simp]:
   389   "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)"
   390 proof -
   391   assume x: "x \<notin> A"
   392   hence aux: "!!n. ((insert x A, n) : cardR) = (EX m. (A, m) : cardR & n = Suc m)"
   393     apply (auto intro!: cardR.intros)
   394     apply (rule_tac A1 = A in finite_imp_cardR [THEN exE])
   395      apply (force dest: cardR_imp_finite)
   396     apply (blast intro!: cardR.intros intro: cardR_determ)
   397     done
   398   assume "finite A"
   399   thus ?thesis
   400     apply (simp add: card_def aux)
   401     apply (rule the_equality)
   402      apply (auto intro: finite_imp_cardR
   403        cong: conj_cong simp: card_def [symmetric] card_equality)
   404     done
   405 qed
   406 
   407 lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
   408   apply auto
   409   apply (drule_tac a = x in mk_disjoint_insert, clarify)
   410   apply (rotate_tac -1, auto)
   411   done
   412 
   413 lemma card_insert_if:
   414     "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))"
   415   by (simp add: insert_absorb)
   416 
   417 lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
   418 apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
   419 apply(simp del:insert_Diff_single)
   420 done
   421 
   422 lemma card_Diff_singleton:
   423     "finite A ==> x: A ==> card (A - {x}) = card A - 1"
   424   by (simp add: card_Suc_Diff1 [symmetric])
   425 
   426 lemma card_Diff_singleton_if:
   427     "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
   428   by (simp add: card_Diff_singleton)
   429 
   430 lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
   431   by (simp add: card_insert_if card_Suc_Diff1)
   432 
   433 lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
   434   by (simp add: card_insert_if)
   435 
   436 lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
   437   apply (induct set: Finites, simp, clarify)
   438   apply (subgoal_tac "finite A & A - {x} <= F")
   439    prefer 2 apply (blast intro: finite_subset, atomize)
   440   apply (drule_tac x = "A - {x}" in spec)
   441   apply (simp add: card_Diff_singleton_if split add: split_if_asm)
   442   apply (case_tac "card A", auto)
   443   done
   444 
   445 lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
   446   apply (simp add: psubset_def linorder_not_le [symmetric])
   447   apply (blast dest: card_seteq)
   448   done
   449 
   450 lemma card_mono: "finite B ==> A <= B ==> card A <= card B"
   451   apply (case_tac "A = B", simp)
   452   apply (simp add: linorder_not_less [symmetric])
   453   apply (blast dest: card_seteq intro: order_less_imp_le)
   454   done
   455 
   456 lemma card_Un_Int: "finite A ==> finite B
   457     ==> card A + card B = card (A Un B) + card (A Int B)"
   458   apply (induct set: Finites, simp)
   459   apply (simp add: insert_absorb Int_insert_left)
   460   done
   461 
   462 lemma card_Un_disjoint: "finite A ==> finite B
   463     ==> A Int B = {} ==> card (A Un B) = card A + card B"
   464   by (simp add: card_Un_Int)
   465 
   466 lemma card_Diff_subset:
   467     "finite A ==> B <= A ==> card A - card B = card (A - B)"
   468   apply (subgoal_tac "(A - B) Un B = A")
   469    prefer 2 apply blast
   470   apply (rule nat_add_right_cancel [THEN iffD1])
   471   apply (rule card_Un_disjoint [THEN subst])
   472      apply (erule_tac [4] ssubst)
   473      prefer 3 apply blast
   474     apply (simp_all add: add_commute not_less_iff_le
   475       add_diff_inverse card_mono finite_subset)
   476   done
   477 
   478 lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
   479   apply (rule Suc_less_SucD)
   480   apply (simp add: card_Suc_Diff1)
   481   done
   482 
   483 lemma card_Diff2_less:
   484     "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
   485   apply (case_tac "x = y")
   486    apply (simp add: card_Diff1_less)
   487   apply (rule less_trans)
   488    prefer 2 apply (auto intro!: card_Diff1_less)
   489   done
   490 
   491 lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
   492   apply (case_tac "x : A")
   493    apply (simp_all add: card_Diff1_less less_imp_le)
   494   done
   495 
   496 lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
   497 by (erule psubsetI, blast)
   498 
   499 
   500 subsubsection {* Cardinality of image *}
   501 
   502 lemma card_image_le: "finite A ==> card (f ` A) <= card A"
   503   apply (induct set: Finites, simp)
   504   apply (simp add: le_SucI finite_imageI card_insert_if)
   505   done
   506 
   507 lemma card_image: "finite A ==> inj_on f A ==> card (f ` A) = card A"
   508   apply (induct set: Finites, simp_all, atomize, safe)
   509    apply (unfold inj_on_def, blast)
   510   apply (subst card_insert_disjoint)
   511     apply (erule finite_imageI, blast, blast)
   512   done
   513 
   514 lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
   515   by (simp add: card_seteq card_image)
   516 
   517 
   518 subsubsection {* Cardinality of the Powerset *}
   519 
   520 lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A"  (* FIXME numeral 2 (!?) *)
   521   apply (induct set: Finites)
   522    apply (simp_all add: Pow_insert)
   523   apply (subst card_Un_disjoint, blast)
   524     apply (blast intro: finite_imageI, blast)
   525   apply (subgoal_tac "inj_on (insert x) (Pow F)")
   526    apply (simp add: card_image Pow_insert)
   527   apply (unfold inj_on_def)
   528   apply (blast elim!: equalityE)
   529   done
   530 
   531 text {*
   532   \medskip Relates to equivalence classes.  Based on a theorem of
   533   F. Kammüller's.  The @{prop "finite C"} premise is redundant.
   534 *}
   535 
   536 lemma dvd_partition:
   537   "finite C ==> finite (Union C) ==>
   538     ALL c : C. k dvd card c ==>
   539     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
   540   k dvd card (Union C)"
   541   apply (induct set: Finites, simp_all, clarify)
   542   apply (subst card_Un_disjoint)
   543   apply (auto simp add: dvd_add disjoint_eq_subset_Compl)
   544   done
   545 
   546 
   547 subsection {* A fold functional for finite sets *}
   548 
   549 text {*
   550   For @{text n} non-negative we have @{text "fold f e {x1, ..., xn} =
   551   f x1 (... (f xn e))"} where @{text f} is at least left-commutative.
   552 *}
   553 
   554 consts
   555   foldSet :: "('b => 'a => 'a) => 'a => ('b set \<times> 'a) set"
   556 
   557 inductive "foldSet f e"
   558   intros
   559     emptyI [intro]: "({}, e) : foldSet f e"
   560     insertI [intro]: "x \<notin> A ==> (A, y) : foldSet f e ==> (insert x A, f x y) : foldSet f e"
   561 
   562 inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f e"
   563 
   564 constdefs
   565   fold :: "('b => 'a => 'a) => 'a => 'b set => 'a"
   566   "fold f e A == THE x. (A, x) : foldSet f e"
   567 
   568 lemma Diff1_foldSet: "(A - {x}, y) : foldSet f e ==> x: A ==> (A, f x y) : foldSet f e"
   569 by (erule insert_Diff [THEN subst], rule foldSet.intros, auto)
   570 
   571 lemma foldSet_imp_finite [simp]: "(A, x) : foldSet f e ==> finite A"
   572   by (induct set: foldSet) auto
   573 
   574 lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f e"
   575   by (induct set: Finites) auto
   576 
   577 
   578 subsubsection {* Left-commutative operations *}
   579 
   580 locale LC =
   581   fixes f :: "'b => 'a => 'a"    (infixl "\<cdot>" 70)
   582   assumes left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
   583 
   584 lemma (in LC) foldSet_determ_aux:
   585   "ALL A x. card A < n --> (A, x) : foldSet f e -->
   586     (ALL y. (A, y) : foldSet f e --> y = x)"
   587   apply (induct n)
   588    apply (auto simp add: less_Suc_eq)
   589   apply (erule foldSet.cases, blast)
   590   apply (erule foldSet.cases, blast, clarify)
   591   txt {* force simplification of @{text "card A < card (insert ...)"}. *}
   592   apply (erule rev_mp)
   593   apply (simp add: less_Suc_eq_le)
   594   apply (rule impI)
   595   apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb")
   596    apply (subgoal_tac "Aa = Ab")
   597     prefer 2 apply (blast elim!: equalityE, blast)
   598   txt {* case @{prop "xa \<notin> xb"}. *}
   599   apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab")
   600    prefer 2 apply (blast elim!: equalityE, clarify)
   601   apply (subgoal_tac "Aa = insert xb Ab - {xa}")
   602    prefer 2 apply blast
   603   apply (subgoal_tac "card Aa <= card Ab")
   604    prefer 2
   605    apply (rule Suc_le_mono [THEN subst])
   606    apply (simp add: card_Suc_Diff1)
   607   apply (rule_tac A1 = "Aa - {xb}" and f1 = f in finite_imp_foldSet [THEN exE])
   608   apply (blast intro: foldSet_imp_finite finite_Diff)
   609   apply (frule (1) Diff1_foldSet)
   610   apply (subgoal_tac "ya = f xb x")
   611    prefer 2 apply (blast del: equalityCE)
   612   apply (subgoal_tac "(Ab - {xa}, x) : foldSet f e")
   613    prefer 2 apply simp
   614   apply (subgoal_tac "yb = f xa x")
   615    prefer 2 apply (blast del: equalityCE dest: Diff1_foldSet)
   616   apply (simp (no_asm_simp) add: left_commute)
   617   done
   618 
   619 lemma (in LC) foldSet_determ: "(A, x) : foldSet f e ==> (A, y) : foldSet f e ==> y = x"
   620   by (blast intro: foldSet_determ_aux [rule_format])
   621 
   622 lemma (in LC) fold_equality: "(A, y) : foldSet f e ==> fold f e A = y"
   623   by (unfold fold_def) (blast intro: foldSet_determ)
   624 
   625 lemma fold_empty [simp]: "fold f e {} = e"
   626   by (unfold fold_def) blast
   627 
   628 lemma (in LC) fold_insert_aux: "x \<notin> A ==>
   629     ((insert x A, v) : foldSet f e) =
   630     (EX y. (A, y) : foldSet f e & v = f x y)"
   631   apply auto
   632   apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE])
   633    apply (fastsimp dest: foldSet_imp_finite)
   634   apply (blast intro: foldSet_determ)
   635   done
   636 
   637 lemma (in LC) fold_insert:
   638     "finite A ==> x \<notin> A ==> fold f e (insert x A) = f x (fold f e A)"
   639   apply (unfold fold_def)
   640   apply (simp add: fold_insert_aux)
   641   apply (rule the_equality)
   642   apply (auto intro: finite_imp_foldSet
   643     cong add: conj_cong simp add: fold_def [symmetric] fold_equality)
   644   done
   645 
   646 lemma (in LC) fold_commute: "finite A ==> (!!e. f x (fold f e A) = fold f (f x e) A)"
   647   apply (induct set: Finites, simp)
   648   apply (simp add: left_commute fold_insert)
   649   done
   650 
   651 lemma (in LC) fold_nest_Un_Int:
   652   "finite A ==> finite B
   653     ==> fold f (fold f e B) A = fold f (fold f e (A Int B)) (A Un B)"
   654   apply (induct set: Finites, simp)
   655   apply (simp add: fold_insert fold_commute Int_insert_left insert_absorb)
   656   done
   657 
   658 lemma (in LC) fold_nest_Un_disjoint:
   659   "finite A ==> finite B ==> A Int B = {}
   660     ==> fold f e (A Un B) = fold f (fold f e B) A"
   661   by (simp add: fold_nest_Un_Int)
   662 
   663 declare foldSet_imp_finite [simp del]
   664     empty_foldSetE [rule del]  foldSet.intros [rule del]
   665   -- {* Delete rules to do with @{text foldSet} relation. *}
   666 
   667 
   668 
   669 subsubsection {* Commutative monoids *}
   670 
   671 text {*
   672   We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
   673   instead of @{text "'b => 'a => 'a"}.
   674 *}
   675 
   676 locale ACe =
   677   fixes f :: "'a => 'a => 'a"    (infixl "\<cdot>" 70)
   678     and e :: 'a
   679   assumes ident [simp]: "x \<cdot> e = x"
   680     and commute: "x \<cdot> y = y \<cdot> x"
   681     and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
   682 
   683 lemma (in ACe) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
   684 proof -
   685   have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute)
   686   also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc)
   687   also have "z \<cdot> x = x \<cdot> z" by (simp only: commute)
   688   finally show ?thesis .
   689 qed
   690 
   691 lemmas (in ACe) AC = assoc commute left_commute
   692 
   693 lemma (in ACe) left_ident [simp]: "e \<cdot> x = x"
   694 proof -
   695   have "x \<cdot> e = x" by (rule ident)
   696   thus ?thesis by (subst commute)
   697 qed
   698 
   699 lemma (in ACe) fold_Un_Int:
   700   "finite A ==> finite B ==>
   701     fold f e A \<cdot> fold f e B = fold f e (A Un B) \<cdot> fold f e (A Int B)"
   702   apply (induct set: Finites, simp)
   703   apply (simp add: AC insert_absorb Int_insert_left
   704     LC.fold_insert [OF LC.intro])
   705   done
   706 
   707 lemma (in ACe) fold_Un_disjoint:
   708   "finite A ==> finite B ==> A Int B = {} ==>
   709     fold f e (A Un B) = fold f e A \<cdot> fold f e B"
   710   by (simp add: fold_Un_Int)
   711 
   712 lemma (in ACe) fold_Un_disjoint2:
   713   "finite A ==> finite B ==> A Int B = {} ==>
   714     fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B"
   715 proof -
   716   assume b: "finite B"
   717   assume "finite A"
   718   thus "A Int B = {} ==>
   719     fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B"
   720   proof induct
   721     case empty
   722     thus ?case by simp
   723   next
   724     case (insert F x)
   725     have "fold (f o g) e (insert x F \<union> B) = fold (f o g) e (insert x (F \<union> B))"
   726       by simp
   727     also have "... = (f o g) x (fold (f o g) e (F \<union> B))"
   728       by (rule LC.fold_insert [OF LC.intro])
   729         (insert b insert, auto simp add: left_commute)
   730     also from insert have "fold (f o g) e (F \<union> B) =
   731       fold (f o g) e F \<cdot> fold (f o g) e B" by blast
   732     also have "(f o g) x ... = (f o g) x (fold (f o g) e F) \<cdot> fold (f o g) e B"
   733       by (simp add: AC)
   734     also have "(f o g) x (fold (f o g) e F) = fold (f o g) e (insert x F)"
   735       by (rule LC.fold_insert [OF LC.intro, symmetric]) (insert b insert,
   736         auto simp add: left_commute)
   737     finally show ?case .
   738   qed
   739 qed
   740 
   741 
   742 subsection {* Generalized summation over a set *}
   743 
   744 constdefs
   745   setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
   746   "setsum f A == if finite A then fold (op + o f) 0 A else 0"
   747 
   748 syntax
   749   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_:_. _)" [0, 51, 10] 10)
   750 syntax (xsymbols)
   751   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
   752 syntax (HTML output)
   753   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
   754 translations
   755   "\<Sum>i:A. b" == "setsum (%i. b) A"  -- {* Beware of argument permutation! *}
   756 
   757 
   758 lemma setsum_empty [simp]: "setsum f {} = 0"
   759   by (simp add: setsum_def)
   760 
   761 lemma setsum_insert [simp]:
   762     "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
   763   by (simp add: setsum_def
   764     LC.fold_insert [OF LC.intro] add_left_commute)
   765 
   766 lemma setsum_reindex [rule_format]: "finite B ==>
   767                   inj_on f B --> setsum h (f ` B) = setsum (h \<circ> f) B"
   768 apply (rule finite_induct, assumption, force)
   769 apply (rule impI, auto)
   770 apply (simp add: inj_on_def)
   771 apply (subgoal_tac "f x \<notin> f ` F")
   772 apply (subgoal_tac "finite (f ` F)")
   773 apply (auto simp add: setsum_insert)
   774 apply (simp add: inj_on_def)
   775   done
   776 
   777 lemma setsum_reindex_id: "finite B ==> inj_on f B ==>
   778     setsum f B = setsum id (f ` B)"
   779 by (auto simp add: setsum_reindex id_o)
   780 
   781 lemma setsum_reindex_cong: "finite A ==> inj_on f A ==>
   782     B = f ` A ==> g = h \<circ> f ==> setsum h B = setsum g A"
   783   by (frule setsum_reindex, assumption, simp)
   784 
   785 lemma setsum_cong:
   786   "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"
   787   apply (case_tac "finite B")
   788    prefer 2 apply (simp add: setsum_def, simp)
   789   apply (subgoal_tac "ALL C. C <= B --> (ALL x:C. f x = g x) --> setsum f C = setsum g C")
   790    apply simp
   791   apply (erule finite_induct, simp)
   792   apply (simp add: subset_insert_iff, clarify)
   793   apply (subgoal_tac "finite C")
   794    prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
   795   apply (subgoal_tac "C = insert x (C - {x})")
   796    prefer 2 apply blast
   797   apply (erule ssubst)
   798   apply (drule spec)
   799   apply (erule (1) notE impE)
   800   apply (simp add: Ball_def del:insert_Diff_single)
   801   done
   802 
   803 lemma setsum_0: "setsum (%i. 0) A = 0"
   804   apply (case_tac "finite A")
   805    prefer 2 apply (simp add: setsum_def)
   806   apply (erule finite_induct, auto)
   807   done
   808 
   809 lemma setsum_0': "ALL a:F. f a = 0 ==> setsum f F = 0"
   810   apply (subgoal_tac "setsum f F = setsum (%x. 0) F")
   811   apply (erule ssubst, rule setsum_0)
   812   apply (rule setsum_cong, auto)
   813   done
   814 
   815 lemma card_eq_setsum: "finite A ==> card A = setsum (%x. 1) A"
   816   -- {* Could allow many @{text "card"} proofs to be simplified. *}
   817   by (induct set: Finites) auto
   818 
   819 lemma setsum_Un_Int: "finite A ==> finite B
   820     ==> setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
   821   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
   822   apply (induct set: Finites, simp)
   823   apply (simp add: add_ac Int_insert_left insert_absorb)
   824   done
   825 
   826 lemma setsum_Un_disjoint: "finite A ==> finite B
   827   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
   828   apply (subst setsum_Un_Int [symmetric], auto)
   829   done
   830 
   831 lemma setsum_UN_disjoint:
   832     "finite I ==> (ALL i:I. finite (A i)) ==>
   833         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
   834       setsum f (UNION I A) = setsum (%i. setsum f (A i)) I"
   835   apply (induct set: Finites, simp, atomize)
   836   apply (subgoal_tac "ALL i:F. x \<noteq> i")
   837    prefer 2 apply blast
   838   apply (subgoal_tac "A x Int UNION F A = {}")
   839    prefer 2 apply blast
   840   apply (simp add: setsum_Un_disjoint)
   841   done
   842 
   843 lemma setsum_Union_disjoint:
   844   "finite C ==> (ALL A:C. finite A) ==>
   845         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
   846       setsum f (Union C) = setsum (setsum f) C"
   847   apply (frule setsum_UN_disjoint [of C id f])
   848   apply (unfold Union_def id_def, assumption+)
   849   done
   850 
   851 lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
   852     (\<Sum>x:A. (\<Sum>y:B x. f x y)) =
   853     (\<Sum>z:(SIGMA x:A. B x). f (fst z) (snd z))"
   854   apply (subst Sigma_def)
   855   apply (subst setsum_UN_disjoint)
   856   apply assumption
   857   apply (rule ballI)
   858   apply (drule_tac x = i in bspec, assumption)
   859   apply (subgoal_tac "(UN y:(B i). {(i, y)}) <= (%y. (i, y)) ` (B i)")
   860   apply (rule finite_surj)
   861   apply auto
   862   apply (rule setsum_cong, rule refl)
   863   apply (subst setsum_UN_disjoint)
   864   apply (erule bspec, assumption)
   865   apply auto
   866   done
   867 
   868 lemma setsum_cartesian_product: "finite A ==> finite B ==>
   869     (\<Sum>x:A. (\<Sum>y:B. f x y)) =
   870     (\<Sum>z:A <*> B. f (fst z) (snd z))"
   871   by (erule setsum_Sigma, auto);
   872 
   873 lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
   874   apply (case_tac "finite A")
   875    prefer 2 apply (simp add: setsum_def)
   876   apply (erule finite_induct, auto)
   877   apply (simp add: add_ac)
   878   done
   879 
   880 subsubsection {* Properties in more restricted classes of structures *}
   881 
   882 lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
   883   apply (case_tac "finite A")
   884    prefer 2 apply (simp add: setsum_def)
   885   apply (erule rev_mp)
   886   apply (erule finite_induct, auto)
   887   done
   888 
   889 lemma setsum_eq_0_iff [simp]:
   890     "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
   891   by (induct set: Finites) auto
   892 
   893 lemma setsum_constant_nat [simp]:
   894     "finite A ==> (\<Sum>x: A. y) = (card A) * y"
   895   -- {* Later generalized to any comm_semiring_1_cancel. *}
   896   by (erule finite_induct, auto)
   897 
   898 lemma setsum_Un: "finite A ==> finite B ==>
   899     (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
   900   -- {* For the natural numbers, we have subtraction. *}
   901   by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
   902 
   903 lemma setsum_Un_ring: "finite A ==> finite B ==>
   904     (setsum f (A Un B) :: 'a :: comm_ring_1) =
   905       setsum f A + setsum f B - setsum f (A Int B)"
   906   by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
   907 
   908 lemma setsum_diff1: "(setsum f (A - {a}) :: nat) =
   909     (if a:A then setsum f A - f a else setsum f A)"
   910   apply (case_tac "finite A")
   911    prefer 2 apply (simp add: setsum_def)
   912   apply (erule finite_induct)
   913    apply (auto simp add: insert_Diff_if)
   914   apply (drule_tac a = a in mk_disjoint_insert, auto)
   915   done
   916 
   917 lemma setsum_negf: "finite A ==> setsum (%x. - (f x)::'a::comm_ring_1) A =
   918   - setsum f A"
   919   by (induct set: Finites, auto)
   920 
   921 lemma setsum_subtractf: "finite A ==> setsum (%x. ((f x)::'a::comm_ring_1) - g x) A =
   922   setsum f A - setsum g A"
   923   by (simp add: diff_minus setsum_addf setsum_negf)
   924 
   925 lemma setsum_nonneg: "[| finite A;
   926     \<forall>x \<in> A. (0::'a::ordered_semidom) \<le> f x |] ==>
   927     0 \<le>  setsum f A";
   928   apply (induct set: Finites, auto)
   929   apply (subgoal_tac "0 + 0 \<le> f x + setsum f F", simp)
   930   apply (blast intro: add_mono)
   931   done
   932 
   933 subsubsection {* Cardinality of unions and Sigma sets *}
   934 
   935 lemma card_UN_disjoint:
   936     "finite I ==> (ALL i:I. finite (A i)) ==>
   937         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
   938       card (UNION I A) = setsum (%i. card (A i)) I"
   939   apply (subst card_eq_setsum)
   940   apply (subst finite_UN, assumption+)
   941   apply (subgoal_tac "setsum (%i. card (A i)) I =
   942       setsum (%i. (setsum (%x. 1) (A i))) I")
   943   apply (erule ssubst)
   944   apply (erule setsum_UN_disjoint, assumption+)
   945   apply (rule setsum_cong)
   946   apply simp+
   947   done
   948 
   949 lemma card_Union_disjoint:
   950   "finite C ==> (ALL A:C. finite A) ==>
   951         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
   952       card (Union C) = setsum card C"
   953   apply (frule card_UN_disjoint [of C id])
   954   apply (unfold Union_def id_def, assumption+)
   955   done
   956 
   957 lemma SigmaI_insert: "y \<notin> A ==>
   958   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
   959   by auto
   960 
   961 lemma card_cartesian_product_singleton: "finite A ==>
   962     card({x} <*> A) = card(A)"
   963   apply (subgoal_tac "inj_on (%y .(x,y)) A")
   964   apply (frule card_image, assumption)
   965   apply (subgoal_tac "(Pair x ` A) = {x} <*> A")
   966   apply (auto simp add: inj_on_def)
   967   done
   968 
   969 lemma card_SigmaI [rule_format,simp]: "finite A ==>
   970   (ALL a:A. finite (B a)) -->
   971   card (SIGMA x: A. B x) = (\<Sum>a: A. card (B a))"
   972   apply (erule finite_induct, auto)
   973   apply (subst SigmaI_insert, assumption)
   974   apply (subst card_Un_disjoint)
   975   apply (auto intro: finite_SigmaI simp add: card_cartesian_product_singleton)
   976   done
   977 
   978 lemma card_cartesian_product: "[| finite A; finite B |] ==>
   979   card (A <*> B) = card(A) * card(B)"
   980   by simp
   981 
   982 
   983 subsection {* Generalized product over a set *}
   984 
   985 constdefs
   986   setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
   987   "setprod f A == if finite A then fold (op * o f) 1 A else 1"
   988 
   989 syntax
   990   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_:_. _)" [0, 51, 10] 10)
   991 
   992 syntax (xsymbols)
   993   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
   994 syntax (HTML output)
   995   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
   996 translations
   997   "\<Prod>i:A. b" == "setprod (%i. b) A"  -- {* Beware of argument permutation! *}
   998 
   999 lemma setprod_empty [simp]: "setprod f {} = 1"
  1000   by (auto simp add: setprod_def)
  1001 
  1002 lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==>
  1003     setprod f (insert a A) = f a * setprod f A"
  1004   by (auto simp add: setprod_def LC_def LC.fold_insert
  1005       mult_left_commute)
  1006 
  1007 lemma setprod_reindex [rule_format]: "finite B ==>
  1008                   inj_on f B --> setprod h (f ` B) = setprod (h \<circ> f) B"
  1009 apply (rule finite_induct, assumption, force)
  1010 apply (rule impI, auto)
  1011 apply (simp add: inj_on_def)
  1012 apply (subgoal_tac "f x \<notin> f ` F")
  1013 apply (subgoal_tac "finite (f ` F)")
  1014 apply (auto simp add: setprod_insert)
  1015 apply (simp add: inj_on_def)
  1016   done
  1017 
  1018 lemma setprod_reindex_id: "finite B ==> inj_on f B ==>
  1019     setprod f B = setprod id (f ` B)"
  1020 by (auto simp add: setprod_reindex id_o)
  1021 
  1022 lemma setprod_reindex_cong: "finite A ==> inj_on f A ==>
  1023     B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A"
  1024   by (frule setprod_reindex, assumption, simp)
  1025 
  1026 lemma setprod_cong:
  1027   "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"
  1028   apply (case_tac "finite B")
  1029    prefer 2 apply (simp add: setprod_def, simp)
  1030   apply (subgoal_tac "ALL C. C <= B --> (ALL x:C. f x = g x) --> setprod f C = setprod g C")
  1031    apply simp
  1032   apply (erule finite_induct, simp)
  1033   apply (simp add: subset_insert_iff, clarify)
  1034   apply (subgoal_tac "finite C")
  1035    prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
  1036   apply (subgoal_tac "C = insert x (C - {x})")
  1037    prefer 2 apply blast
  1038   apply (erule ssubst)
  1039   apply (drule spec)
  1040   apply (erule (1) notE impE)
  1041   apply (simp add: Ball_def del:insert_Diff_single)
  1042   done
  1043 
  1044 lemma setprod_1: "setprod (%i. 1) A = 1"
  1045   apply (case_tac "finite A")
  1046   apply (erule finite_induct, auto simp add: mult_ac)
  1047   apply (simp add: setprod_def)
  1048   done
  1049 
  1050 lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1"
  1051   apply (subgoal_tac "setprod f F = setprod (%x. 1) F")
  1052   apply (erule ssubst, rule setprod_1)
  1053   apply (rule setprod_cong, auto)
  1054   done
  1055 
  1056 lemma setprod_Un_Int: "finite A ==> finite B
  1057     ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
  1058   apply (induct set: Finites, simp)
  1059   apply (simp add: mult_ac insert_absorb)
  1060   apply (simp add: mult_ac Int_insert_left insert_absorb)
  1061   done
  1062 
  1063 lemma setprod_Un_disjoint: "finite A ==> finite B
  1064   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
  1065   apply (subst setprod_Un_Int [symmetric], auto simp add: mult_ac)
  1066   done
  1067 
  1068 lemma setprod_UN_disjoint:
  1069     "finite I ==> (ALL i:I. finite (A i)) ==>
  1070         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
  1071       setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"
  1072   apply (induct set: Finites, simp, atomize)
  1073   apply (subgoal_tac "ALL i:F. x \<noteq> i")
  1074    prefer 2 apply blast
  1075   apply (subgoal_tac "A x Int UNION F A = {}")
  1076    prefer 2 apply blast
  1077   apply (simp add: setprod_Un_disjoint)
  1078   done
  1079 
  1080 lemma setprod_Union_disjoint:
  1081   "finite C ==> (ALL A:C. finite A) ==>
  1082         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
  1083       setprod f (Union C) = setprod (setprod f) C"
  1084   apply (frule setprod_UN_disjoint [of C id f])
  1085   apply (unfold Union_def id_def, assumption+)
  1086   done
  1087 
  1088 lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
  1089     (\<Prod>x:A. (\<Prod>y: B x. f x y)) =
  1090     (\<Prod>z:(SIGMA x:A. B x). f (fst z) (snd z))"
  1091   apply (subst Sigma_def)
  1092   apply (subst setprod_UN_disjoint)
  1093   apply assumption
  1094   apply (rule ballI)
  1095   apply (drule_tac x = i in bspec, assumption)
  1096   apply (subgoal_tac "(UN y:(B i). {(i, y)}) <= (%y. (i, y)) ` (B i)")
  1097   apply (rule finite_surj)
  1098   apply auto
  1099   apply (rule setprod_cong, rule refl)
  1100   apply (subst setprod_UN_disjoint)
  1101   apply (erule bspec, assumption)
  1102   apply auto
  1103   done
  1104 
  1105 lemma setprod_cartesian_product: "finite A ==> finite B ==>
  1106     (\<Prod>x:A. (\<Prod>y: B. f x y)) =
  1107     (\<Prod>z:(A <*> B). f (fst z) (snd z))"
  1108   by (erule setprod_Sigma, auto)
  1109 
  1110 lemma setprod_timesf: "setprod (%x. f x * g x) A =
  1111     (setprod f A * setprod g A)"
  1112   apply (case_tac "finite A")
  1113    prefer 2 apply (simp add: setprod_def mult_ac)
  1114   apply (erule finite_induct, auto)
  1115   apply (simp add: mult_ac)
  1116   done
  1117 
  1118 subsubsection {* Properties in more restricted classes of structures *}
  1119 
  1120 lemma setprod_eq_1_iff [simp]:
  1121     "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"
  1122   by (induct set: Finites) auto
  1123 
  1124 lemma setprod_constant: "finite A ==> (\<Prod>x: A. (y::'a::ringpower)) =
  1125     y^(card A)"
  1126   apply (erule finite_induct)
  1127   apply (auto simp add: power_Suc)
  1128   done
  1129 
  1130 lemma setprod_zero: "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==>
  1131     setprod f A = 0"
  1132   apply (induct set: Finites, force, clarsimp)
  1133   apply (erule disjE, auto)
  1134   done
  1135 
  1136 lemma setprod_nonneg [rule_format]: "(ALL x: A. (0::'a::ordered_idom) \<le> f x)
  1137      --> 0 \<le> setprod f A"
  1138   apply (case_tac "finite A")
  1139   apply (induct set: Finites, force, clarsimp)
  1140   apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force)
  1141   apply (rule mult_mono, assumption+)
  1142   apply (auto simp add: setprod_def)
  1143   done
  1144 
  1145 lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x)
  1146      --> 0 < setprod f A"
  1147   apply (case_tac "finite A")
  1148   apply (induct set: Finites, force, clarsimp)
  1149   apply (subgoal_tac "0 * 0 < f x * setprod f F", force)
  1150   apply (rule mult_strict_mono, assumption+)
  1151   apply (auto simp add: setprod_def)
  1152   done
  1153 
  1154 lemma setprod_nonzero [rule_format]:
  1155     "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
  1156       finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0"
  1157   apply (erule finite_induct, auto)
  1158   done
  1159 
  1160 lemma setprod_zero_eq:
  1161     "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
  1162      finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)"
  1163   apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast)
  1164   done
  1165 
  1166 lemma setprod_nonzero_field:
  1167     "finite A ==> (ALL x: A. f x \<noteq> (0::'a::field)) ==> setprod f A \<noteq> 0"
  1168   apply (rule setprod_nonzero, auto)
  1169   done
  1170 
  1171 lemma setprod_zero_eq_field:
  1172     "finite A ==> (setprod f A = (0::'a::field)) = (EX x: A. f x = 0)"
  1173   apply (rule setprod_zero_eq, auto)
  1174   done
  1175 
  1176 lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==>
  1177     (setprod f (A Un B) :: 'a ::{field})
  1178       = setprod f A * setprod f B / setprod f (A Int B)"
  1179   apply (subst setprod_Un_Int [symmetric], auto)
  1180   apply (subgoal_tac "finite (A Int B)")
  1181   apply (frule setprod_nonzero_field [of "A Int B" f], assumption)
  1182   apply (subst times_divide_eq_right [THEN sym], auto)
  1183   done
  1184 
  1185 lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==>
  1186     (setprod f (A - {a}) :: 'a :: {field}) =
  1187       (if a:A then setprod f A / f a else setprod f A)"
  1188   apply (erule finite_induct)
  1189    apply (auto simp add: insert_Diff_if)
  1190   apply (subgoal_tac "f a * setprod f F / f a = setprod f F * f a / f a")
  1191   apply (erule ssubst)
  1192   apply (subst times_divide_eq_right [THEN sym])
  1193   apply (auto simp add: mult_ac)
  1194   done
  1195 
  1196 lemma setprod_inversef: "finite A ==>
  1197     ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==>
  1198       setprod (inverse \<circ> f) A = inverse (setprod f A)"
  1199   apply (erule finite_induct)
  1200   apply (simp, simp)
  1201   done
  1202 
  1203 lemma setprod_dividef:
  1204      "[|finite A;
  1205         \<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|]
  1206       ==> setprod (%x. f x / g x) A = setprod f A / setprod g A"
  1207   apply (subgoal_tac
  1208          "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A")
  1209   apply (erule ssubst)
  1210   apply (subst divide_inverse)
  1211   apply (subst setprod_timesf)
  1212   apply (subst setprod_inversef, assumption+, rule refl)
  1213   apply (rule setprod_cong, rule refl)
  1214   apply (subst divide_inverse, auto)
  1215   done
  1216 
  1217 
  1218 subsection{* Min and Max of finite linearly ordered sets *}
  1219 
  1220 text{* Seemed easier to define directly than via fold. *}
  1221 
  1222 lemma ex_Max: fixes S :: "('a::linorder)set"
  1223   assumes fin: "finite S" shows "S \<noteq> {} ==> \<exists>m\<in>S. \<forall>s \<in> S. s \<le> m"
  1224 using fin
  1225 proof (induct)
  1226   case empty thus ?case by simp
  1227 next
  1228   case (insert S x)
  1229   show ?case
  1230   proof (cases)
  1231     assume "S = {}" thus ?thesis by simp
  1232   next
  1233     assume nonempty: "S \<noteq> {}"
  1234     then obtain m where m: "m\<in>S" "\<forall>s\<in>S. s \<le> m" using insert by blast
  1235     show ?thesis
  1236     proof (cases)
  1237       assume "x \<le> m" thus ?thesis using m by blast
  1238     next
  1239       assume "~ x \<le> m" thus ?thesis using m
  1240         by(simp add:linorder_not_le order_less_le)(blast intro: order_trans)
  1241     qed
  1242   qed
  1243 qed
  1244 
  1245 lemma ex_Min: fixes S :: "('a::linorder)set"
  1246   assumes fin: "finite S" shows "S \<noteq> {} ==> \<exists>m\<in>S. \<forall>s \<in> S. m \<le> s"
  1247 using fin
  1248 proof (induct)
  1249   case empty thus ?case by simp
  1250 next
  1251   case (insert S x)
  1252   show ?case
  1253   proof (cases)
  1254     assume "S = {}" thus ?thesis by simp
  1255   next
  1256     assume nonempty: "S \<noteq> {}"
  1257     then obtain m where m: "m\<in>S" "\<forall>s\<in>S. m \<le> s" using insert by blast
  1258     show ?thesis
  1259     proof (cases)
  1260       assume "m \<le> x" thus ?thesis using m by blast
  1261     next
  1262       assume "~ m \<le> x" thus ?thesis using m
  1263         by(simp add:linorder_not_le order_less_le)(blast intro: order_trans)
  1264     qed
  1265   qed
  1266 qed
  1267 
  1268 constdefs
  1269   Min :: "('a::linorder)set => 'a"
  1270   "Min S  ==  THE m. m \<in> S \<and> (\<forall>s \<in> S. m \<le> s)"
  1271 
  1272   Max :: "('a::linorder)set => 'a"
  1273   "Max S  ==  THE m. m \<in> S \<and> (\<forall>s \<in> S. s \<le> m)"
  1274 
  1275 lemma Min [simp]:
  1276   assumes a: "finite S"  "S \<noteq> {}"
  1277   shows "Min S \<in> S \<and> (\<forall>s \<in> S. Min S \<le> s)" (is "?P(Min S)")
  1278 proof (unfold Min_def, rule theI')
  1279   show "\<exists>!m. ?P m"
  1280   proof (rule ex_ex1I)
  1281     show "\<exists>m. ?P m" using ex_Min[OF a] by blast
  1282   next
  1283     fix m1 m2 assume "?P m1" and "?P m2"
  1284     thus "m1 = m2" by (blast dest: order_antisym)
  1285   qed
  1286 qed
  1287 
  1288 lemma Max [simp]:
  1289   assumes a: "finite S"  "S \<noteq> {}"
  1290   shows "Max S \<in> S \<and> (\<forall>s \<in> S. s \<le> Max S)" (is "?P(Max S)")
  1291 proof (unfold Max_def, rule theI')
  1292   show "\<exists>!m. ?P m"
  1293   proof (rule ex_ex1I)
  1294     show "\<exists>m. ?P m" using ex_Max[OF a] by blast
  1295   next
  1296     fix m1 m2 assume "?P m1" "?P m2"
  1297     thus "m1 = m2" by (blast dest: order_antisym)
  1298   qed
  1299 qed
  1300 
  1301 
  1302 subsection {* Theorems about @{text "choose"} *}
  1303 
  1304 text {*
  1305   \medskip Basic theorem about @{text "choose"}.  By Florian
  1306   Kamm\"uller, tidied by LCP.
  1307 *}
  1308 
  1309 lemma card_s_0_eq_empty:
  1310     "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
  1311   apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
  1312   apply (simp cong add: rev_conj_cong)
  1313   done
  1314 
  1315 lemma choose_deconstruct: "finite M ==> x \<notin> M
  1316   ==> {s. s <= insert x M & card(s) = Suc k}
  1317        = {s. s <= M & card(s) = Suc k} Un
  1318          {s. EX t. t <= M & card(t) = k & s = insert x t}"
  1319   apply safe
  1320    apply (auto intro: finite_subset [THEN card_insert_disjoint])
  1321   apply (drule_tac x = "xa - {x}" in spec)
  1322   apply (subgoal_tac "x \<notin> xa", auto)
  1323   apply (erule rev_mp, subst card_Diff_singleton)
  1324   apply (auto intro: finite_subset)
  1325   done
  1326 
  1327 lemma card_inj_on_le:
  1328     "[|inj_on f A; f ` A \<subseteq> B; finite A; finite B |] ==> card A <= card B"
  1329   by (auto intro: card_mono simp add: card_image [symmetric])
  1330 
  1331 lemma card_bij_eq:
  1332     "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
  1333        finite A; finite B |] ==> card A = card B"
  1334   by (auto intro: le_anti_sym card_inj_on_le)
  1335 
  1336 text{*There are as many subsets of @{term A} having cardinality @{term k}
  1337  as there are sets obtained from the former by inserting a fixed element
  1338  @{term x} into each.*}
  1339 lemma constr_bij:
  1340    "[|finite A; x \<notin> A|] ==>
  1341     card {B. EX C. C <= A & card(C) = k & B = insert x C} =
  1342     card {B. B <= A & card(B) = k}"
  1343   apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
  1344        apply (auto elim!: equalityE simp add: inj_on_def)
  1345     apply (subst Diff_insert0, auto)
  1346    txt {* finiteness of the two sets *}
  1347    apply (rule_tac [2] B = "Pow (A)" in finite_subset)
  1348    apply (rule_tac B = "Pow (insert x A)" in finite_subset)
  1349    apply fast+
  1350   done
  1351 
  1352 text {*
  1353   Main theorem: combinatorial statement about number of subsets of a set.
  1354 *}
  1355 
  1356 lemma n_sub_lemma:
  1357   "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
  1358   apply (induct k)
  1359    apply (simp add: card_s_0_eq_empty, atomize)
  1360   apply (rotate_tac -1, erule finite_induct)
  1361    apply (simp_all (no_asm_simp) cong add: conj_cong
  1362      add: card_s_0_eq_empty choose_deconstruct)
  1363   apply (subst card_Un_disjoint)
  1364      prefer 4 apply (force simp add: constr_bij)
  1365     prefer 3 apply force
  1366    prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
  1367      finite_subset [of _ "Pow (insert x F)", standard])
  1368   apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
  1369   done
  1370 
  1371 theorem n_subsets:
  1372     "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
  1373   by (simp add: n_sub_lemma)
  1374 
  1375 end