src/Tools/isac/Knowledge/Poly.thy
author Walther Neuper <neuper@ist.tugraz.at>
Wed, 01 Sep 2010 15:17:43 +0200
branchisac-update-Isa09-2
changeset 37969 81922154e742
parent 37967 bd4f7a35e892
child 37971 62ad72be5632
permissions -rw-r--r--
fixed all @{thm } in src+test
     1 (* WN.020812: theorems in the Reals,
     2    necessary for special rule sets, in addition to Isabelle2002.
     3    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     4    !!! THIS IS THE _least_ NUMBER OF ADDITIONAL THEOREMS !!!
     5    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     6    xxxI contain ^^^ instead of ^ in the respective theorem xxx in 2002
     7    changed by: Richard Lang 020912
     8 *)
     9 
    10 theory Poly imports Simplify begin
    11 
    12 consts
    13 
    14   is'_expanded'_in :: "[real, real] => bool" ("_ is'_expanded'_in _") 
    15   is'_poly'_in     :: "[real, real] => bool" ("_ is'_poly'_in _")   (*RL DA *)
    16   has'_degree'_in  :: "[real, real] => real" ("_ has'_degree'_in _")(*RL DA *)
    17   is'_polyrat'_in  :: "[real, real] => bool" ("_ is'_polyrat'_in _")(*RL030626*)
    18 
    19   is'_multUnordered:: "real => bool" ("_ is'_multUnordered") 
    20   is'_addUnordered :: "real => bool" ("_ is'_addUnordered") (*WN030618*)
    21   is'_polyexp      :: "real => bool" ("_ is'_polyexp") 
    22 
    23   Expand'_binoms
    24              :: "['y, 
    25 		    'y] => 'y"
    26                ("((Script Expand'_binoms (_ =))// 
    27                     (_))" 9)
    28 
    29 (*-------------------- rules------------------------------------------------*)
    30 axioms (*.not contained in Isabelle2002,
    31          stated as axioms, TODO: prove as theorems;
    32          theorem-IDs 'xxxI' with ^^^ instead of ^ in 'xxx' in Isabelle2002.*)
    33 
    34   realpow_pow             "(a ^^^ b) ^^^ c = a ^^^ (b * c)"
    35   realpow_addI            "r ^^^ (n + m) = r ^^^ n * r ^^^ m"
    36   realpow_addI_assoc_l    "r ^^^ n * (r ^^^ m * s) = r ^^^ (n + m) * s"
    37   realpow_addI_assoc_r    "s * r ^^^ n * r ^^^ m = s * r ^^^ (n + m)"
    38 		  
    39   realpow_oneI            "r ^^^ 1 = r"
    40   realpow_zeroI            "r ^^^ 0 = 1"
    41   realpow_eq_oneI         "1 ^^^ n = 1"
    42   realpow_multI           "(r * s) ^^^ n = r ^^^ n * s ^^^ n" 
    43   realpow_multI_poly      "[| r is_polyexp; s is_polyexp |] ==>
    44 			      (r * s) ^^^ n = r ^^^ n * s ^^^ n" 
    45   realpow_minus_oneI      "-1 ^^^ (2 * n) = 1"  
    46 
    47   realpow_twoI            "r ^^^ 2 = r * r"
    48   realpow_twoI_assoc_l	  "r * (r * s) = r ^^^ 2 * s"
    49   realpow_twoI_assoc_r	  "s * r * r = s * r ^^^ 2"
    50   realpow_two_atom        "r is_atom ==> r * r = r ^^^ 2"
    51   realpow_plus_1          "r * r ^^^ n = r ^^^ (n + 1)"         
    52   realpow_plus_1_assoc_l  "r * (r ^^^ m * s) = r ^^^ (1 + m) * s" 
    53   realpow_plus_1_assoc_l2 "r ^^^ m * (r * s) = r ^^^ (1 + m) * s" 
    54   realpow_plus_1_assoc_r  "s * r * r ^^^ m = s * r ^^^ (1 + m)"
    55   realpow_plus_1_atom     "r is_atom ==> r * r ^^^ n = r ^^^ (1 + n)"
    56   realpow_def_atom        "[| Not (r is_atom); 1 < n |]
    57 			   ==> r ^^^ n = r * r ^^^ (n + -1)"
    58   realpow_addI_atom       "r is_atom ==> r ^^^ n * r ^^^ m = r ^^^ (n + m)"
    59 
    60 
    61   realpow_minus_even	  "n is_even ==> (- r) ^^^ n = r ^^^ n"
    62   realpow_minus_odd       "Not (n is_even) ==> (- r) ^^^ n = -1 * r ^^^ n"
    63 
    64 
    65 (* RL 020914 *)
    66   real_pp_binom_times     "(a + b)*(c + d) = a*c + a*d + b*c + b*d"
    67   real_pm_binom_times     "(a + b)*(c - d) = a*c - a*d + b*c - b*d"
    68   real_mp_binom_times     "(a - b)*(c + d) = a*c + a*d - b*c - b*d"
    69   real_mm_binom_times     "(a - b)*(c - d) = a*c - a*d - b*c + b*d"
    70   real_plus_binom_pow3    "(a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3"
    71   real_plus_binom_pow3_poly "[| a is_polyexp; b is_polyexp |] ==> 
    72 			    (a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3"
    73   real_minus_binom_pow3   "(a - b)^^^3 = a^^^3 - 3*a^^^2*b + 3*a*b^^^2 - b^^^3"
    74   real_minus_binom_pow3_p "(a + -1 * b)^^^3 = a^^^3 + -3*a^^^2*b + 3*a*b^^^2 +
    75                            -1*b^^^3"
    76 (* real_plus_binom_pow        "[| n is_const;  3 < n |] ==>
    77 			       (a + b)^^^n = (a + b) * (a + b)^^^(n - 1)" *)
    78   real_plus_binom_pow4    "(a + b)^^^4 = (a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3)
    79                            *(a + b)"
    80   real_plus_binom_pow4_poly "[| a is_polyexp; b is_polyexp |] ==> 
    81 			   (a + b)^^^4 = (a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3)
    82                            *(a + b)"
    83   real_plus_binom_pow5    "(a + b)^^^5 = (a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3)
    84                            *(a^^^2 + 2*a*b + b^^^2)"
    85   real_plus_binom_pow5_poly "[| a is_polyexp; b is_polyexp |] ==> 
    86 			        (a + b)^^^5 = (a^^^3 + 3*a^^^2*b + 3*a*b^^^2 
    87                                 + b^^^3)*(a^^^2 + 2*a*b + b^^^2)"
    88   real_diff_plus          "a - b = a + -b" (*17.3.03: do_NOT_use*)
    89   real_diff_minus         "a - b = a + -1 * b"
    90   real_plus_binom_times   "(a + b)*(a + b) = a^^^2 + 2*a*b + b^^^2"
    91   real_minus_binom_times  "(a - b)*(a - b) = a^^^2 - 2*a*b + b^^^2"
    92   (*WN071229 changed for Schaerding -----vvv*)
    93   (*real_plus_binom_pow2  "(a + b)^^^2 = a^^^2 + 2*a*b + b^^^2"*)
    94   real_plus_binom_pow2    "(a + b)^^^2 = (a + b) * (a + b)"
    95   (*WN071229 changed for Schaerding -----^^^*)
    96   real_plus_binom_pow2_poly "[| a is_polyexp; b is_polyexp |] ==>
    97 			       (a + b)^^^2 = a^^^2 + 2*a*b + b^^^2"
    98   real_minus_binom_pow2      "(a - b)^^^2 = a^^^2 - 2*a*b + b^^^2"
    99   real_minus_binom_pow2_p    "(a - b)^^^2 = a^^^2 + -2*a*b + b^^^2"
   100   real_plus_minus_binom1     "(a + b)*(a - b) = a^^^2 - b^^^2"
   101   real_plus_minus_binom1_p   "(a + b)*(a - b) = a^^^2 + -1*b^^^2"
   102   real_plus_minus_binom1_p_p "(a + b)*(a + -1 * b) = a^^^2 + -1*b^^^2"
   103   real_plus_minus_binom2     "(a - b)*(a + b) = a^^^2 - b^^^2"
   104   real_plus_minus_binom2_p   "(a - b)*(a + b) = a^^^2 + -1*b^^^2"
   105   real_plus_minus_binom2_p_p "(a + -1 * b)*(a + b) = a^^^2 + -1*b^^^2"
   106   real_plus_binom_times1     "(a +  1*b)*(a + -1*b) = a^^^2 + -1*b^^^2"
   107   real_plus_binom_times2     "(a + -1*b)*(a +  1*b) = a^^^2 + -1*b^^^2"
   108 
   109   real_num_collect           "[| l is_const; m is_const |] ==>
   110 			      l * n + m * n = (l + m) * n"
   111 (* FIXME.MG.0401: replace 'real_num_collect_assoc' 
   112 	by 'real_num_collect_assoc_l' ... are equal, introduced by MG ! *)
   113   real_num_collect_assoc     "[| l is_const; m is_const |] ==> 
   114 			      l * n + (m * n + k) = (l + m) * n + k"
   115   real_num_collect_assoc_l   "[| l is_const; m is_const |] ==>
   116 			      l * n + (m * n + k) = (l + m)
   117 				* n + k"
   118   real_num_collect_assoc_r   "[| l is_const; m is_const |] ==>
   119 			      (k + m * n) + l * n = k + (l + m) * n"
   120   real_one_collect           "m is_const ==> n + m * n = (1 + m) * n"
   121 (* FIXME.MG.0401: replace 'real_one_collect_assoc' 
   122 	by 'real_one_collect_assoc_l' ... are equal, introduced by MG ! *)
   123   real_one_collect_assoc     "m is_const ==> n + (m * n + k) = (1 + m)* n + k"
   124 
   125   real_one_collect_assoc_l   "m is_const ==> n + (m * n + k) = (1 + m) * n + k"
   126   real_one_collect_assoc_r   "m is_const ==> (k + n) +  m * n = k + (1 + m) * n"
   127 
   128 (* FIXME.MG.0401: replace 'real_mult_2_assoc' 
   129 	by 'real_mult_2_assoc_l' ... are equal, introduced by MG ! *)
   130   real_mult_2_assoc          "z1 + (z1 + k) = 2 * z1 + k"
   131   real_mult_2_assoc_l        "z1 + (z1 + k) = 2 * z1 + k"
   132   real_mult_2_assoc_r        "(k + z1) + z1 = k + 2 * z1"
   133 
   134   real_add_mult_distrib_poly "w is_polyexp ==> (z1 + z2) * w = z1 * w + z2 * w"
   135   real_add_mult_distrib2_poly "w is_polyexp ==> w * (z1 + z2) = w * z1 + w * z2"
   136 
   137 text {* remark on 'polynomials'
   138         WN020919
   139 *** there are 5 kinds of expanded normalforms ***
   140 
   141 [1] 'complete polynomial' (Komplettes Polynom), univariate
   142    a_0 + a_1.x^1 +...+ a_n.x^n   not (a_n = 0)
   143 	        not (a_n = 0), some a_i may be zero (DON'T disappear),
   144                 variables in monomials lexicographically ordered and complete,
   145                 x written as 1*x^1, ...
   146 [2] 'polynomial' (Polynom), univariate and multivariate
   147    a_0 + a_1.x +...+ a_n.x^n   not (a_n = 0)
   148    a_0 + a_1.x_1.x_2^n_12...x_m^n_1m +...+  a_n.x_1^n.x_2^n_n2...x_m^n_nm
   149 	        not (a_n = 0), some a_i may be zero (ie. monomials disappear),
   150                 exponents and coefficients equal 1 are not (WN060904.TODO in cancel_p_)shown,
   151                 and variables in monomials are lexicographically ordered  
   152    examples: [1]: "1 + (-10) * x ^^^ 1 + 25 * x ^^^ 2"
   153 	     [1]: "11 + 0 * x ^^^ 1 + 1 * x ^^^ 2"
   154 	     [2]: "x + (-50) * x ^^^ 3"
   155 	     [2]: "(-1) * x * y ^^^ 2 + 7 * x ^^^ 3"
   156 
   157 [3] 'expanded_term' (Ausmultiplizierter Term):
   158    pull out unary minus to binary minus, 
   159    as frequently exercised in schools; other conditions for [2] hold however
   160    examples: "a ^^^ 2 - 2 * a * b + b ^^^ 2"
   161 	     "4 * x ^^^ 2 - 9 * y ^^^ 2"
   162 [4] 'polynomial_in' (Polynom in): 
   163    polynomial in 1 variable with arbitrary coefficients
   164    examples: "2 * x + (-50) * x ^^^ 3"                     (poly in x)
   165 	     "(u + v) + (2 * u ^^^ 2) * a + (-u) * a ^^^ 2 (poly in a)
   166 [5] 'expanded_in' (Ausmultiplizierter Termin in): 
   167    analoguous to [3] with binary minus like [3]
   168    examples: "2 * x - 50 * x ^^^ 3"                     (expanded in x)
   169 	     "(u + v) + (2 * u ^^^ 2) * a - u * a ^^^ 2 (expanded in a)
   170 *}
   171 
   172 ML {*
   173 (* is_polyrat_in becomes true, if no bdv is in the denominator of a fraction*)
   174 fun is_polyrat_in t v = 
   175     let fun coeff_in c v = member op = (vars c) v;
   176    	fun finddivide (_ $ _ $ _ $ _) v = raise error("is_polyrat_in:")
   177 	    (* at the moment there is no term like this, but ....*)
   178 	  | finddivide (t as (Const ("HOL.divide",_) $ _ $ b)) v = 
   179             not(coeff_in b v)
   180 	  | finddivide (_ $ t1 $ t2) v = 
   181             (finddivide t1 v) orelse (finddivide t2 v)
   182 	  | finddivide (_ $ t1) v = (finddivide t1 v)
   183 	  | finddivide _ _ = false;
   184      in finddivide t v end;
   185     
   186 fun eval_is_polyrat_in _ _(p as (Const ("Poly.is'_polyrat'_in",_) $ t $ v)) _  =
   187     if is_polyrat_in t v 
   188     then SOME ((term2str p) ^ " = True",
   189 	        Trueprop $ (mk_equality (p, HOLogic.true_const)))
   190     else SOME ((term2str p) ^ " = True",
   191 	        Trueprop $ (mk_equality (p, HOLogic.false_const)))
   192   | eval_is_polyrat_in _ _ _ _ = ((*writeln"### no matches";*) NONE);
   193 
   194 local
   195     (*.a 'c is coefficient of v' if v does NOT occur in c.*)
   196     fun coeff_in c v = not (member op = (vars c) v);
   197     (* FIXME.WN100826 shift this into test--------------
   198      val v = (term_of o the o (parse thy)) "x";
   199      val t = (term_of o the o (parse thy)) "1";
   200      coeff_in t v;
   201      (*val it = true : bool*)
   202      val t = (term_of o the o (parse thy)) "a*b+c";
   203      coeff_in t v;
   204      (*val it = true : bool*)
   205      val t = (term_of o the o (parse thy)) "a*x+c";
   206      coeff_in t v;
   207      (*val it = false : bool*)
   208     ----------------------------------------------------*)
   209     (*. a 'monomial t in variable v' is a term t with
   210       either (1) v NOT existent in t, or (2) v contained in t,
   211       if (1) then degree 0
   212       if (2) then v is a factor on the very right, ev. with exponent.*)
   213     fun factor_right_deg (*case 2*)
   214     	    (t as Const ("op *",_) $ t1 $ 
   215     	       (Const ("Atools.pow",_) $ vv $ Free (d,_))) v =
   216     	if ((vv = v) andalso (coeff_in t1 v)) then SOME (int_of_str' d) else NONE
   217       | factor_right_deg (t as Const ("Atools.pow",_) $ vv $ Free (d,_)) v =
   218     	if (vv = v) then SOME (int_of_str' d) else NONE
   219       | factor_right_deg (t as Const ("op *",_) $ t1 $ vv) v = 
   220     	if ((vv = v) andalso (coeff_in t1 v))then SOME 1 else NONE
   221       | factor_right_deg vv v =
   222     	if (vv = v) then SOME 1 else NONE;    
   223     fun mono_deg_in m v =
   224     	if coeff_in m v then (*case 1*) SOME 0
   225     	else factor_right_deg m v;
   226     (* FIXME.WN100826 shift this into test-----------------------------
   227      val v = (term_of o the o (parse thy)) "x";
   228      val t = (term_of o the o (parse thy)) "(a*b+c)*x^^^7";
   229      mono_deg_in t v;
   230      (*val it = SOME 7*)
   231      val t = (term_of o the o (parse thy)) "x^^^7";
   232      mono_deg_in t v;
   233      (*val it = SOME 7*)
   234      val t = (term_of o the o (parse thy)) "(a*b+c)*x";
   235      mono_deg_in t v;
   236      (*val it = SOME 1*)
   237      val t = (term_of o the o (parse thy)) "(a*b+x)*x";
   238      mono_deg_in t v;
   239      (*val it = NONE*)
   240      val t = (term_of o the o (parse thy)) "x";
   241      mono_deg_in t v;
   242      (*val it = SOME 1*)
   243      val t = (term_of o the o (parse thy)) "(a*b+c)";
   244      mono_deg_in t v;
   245      (*val it = SOME 0*)
   246      val t = (term_of o the o (parse thy)) "ab - (a*b)*x";
   247      mono_deg_in t v;
   248      (*val it = NONE*)
   249     ------------------------------------------------------------------*)
   250     fun expand_deg_in t v =
   251     	let fun edi ~1 ~1 (Const ("op +",_) $ t1 $ t2) =
   252     		(case mono_deg_in t2 v of (* $ is left associative*)
   253     		     SOME d' => edi d' d' t1
   254 		   | NONE => NONE)
   255     	      | edi ~1 ~1 (Const ("op -",_) $ t1 $ t2) =
   256     		(case mono_deg_in t2 v of
   257     		     SOME d' => edi d' d' t1
   258 		   | NONE => NONE)
   259     	      | edi d dmax (Const ("op -",_) $ t1 $ t2) =
   260     		(case mono_deg_in t2 v of
   261 		(*RL  orelse ((d=0) andalso (d'=0)) need to handle 3+4-...4 +x*)
   262     		     SOME d' => if ((d > d') orelse ((d=0) andalso (d'=0))) 
   263                      then edi d' dmax t1 else NONE
   264 		   | NONE => NONE)
   265     	      | edi d dmax (Const ("op +",_) $ t1 $ t2) =
   266     		(case mono_deg_in t2 v of
   267 		(*RL  orelse ((d=0) andalso (d'=0)) need to handle 3+4-...4 +x*)
   268     		     SOME d' => if ((d > d') orelse ((d=0) andalso (d'=0))) 
   269                      then edi d' dmax t1 else NONE
   270 		   | NONE => NONE)
   271     	      | edi ~1 ~1 t = (case mono_deg_in t v of
   272     		     d as SOME _ => d
   273 		   | NONE => NONE)
   274     	      | edi d dmax t = (*basecase last*)
   275     		(case mono_deg_in t v of
   276     		     SOME d' => if ((d > d') orelse ((d=0) andalso (d'=0)))  
   277                      then SOME dmax else NONE
   278 		   | NONE => NONE)
   279     	in edi ~1 ~1 t end;
   280     (* FIXME.WN100826 shift this into test-----------------------------
   281      val v = (term_of o the o (parse thy)) "x";
   282      val t = (term_of o the o (parse thy)) "a+b";
   283      expand_deg_in t v;
   284      (*val it = SOME 0*)   
   285      val t = (term_of o the o (parse thy)) "(a+b)*x";
   286      expand_deg_in t v;
   287      (*SOME 1*)   
   288      val t = (term_of o the o (parse thy)) "a*b - (a+b)*x";
   289      expand_deg_in t v;
   290      (*SOME 1*)   
   291      val t = (term_of o the o (parse thy)) "a*b + (a-b)*x";
   292      expand_deg_in t v;
   293      (*SOME 1*)   
   294      val t = (term_of o the o (parse thy)) "a*b + (a+b)*x + x^^^2";
   295      expand_deg_in t v;
   296     -------------------------------------------------------------------*)   
   297     fun poly_deg_in t v =
   298     	let fun edi ~1 ~1 (Const ("op +",_) $ t1 $ t2) =
   299     		(case mono_deg_in t2 v of (* $ is left associative*)
   300     		     SOME d' => edi d' d' t1
   301 		   | NONE => NONE)
   302     	      | edi d dmax (Const ("op +",_) $ t1 $ t2) =
   303     		(case mono_deg_in t2 v of
   304  		(*RL  orelse ((d=0) andalso (d'=0)) need to handle 3+4-...4 +x*)
   305    		     SOME d' => if ((d > d') orelse ((d=0) andalso (d'=0))) 
   306                                 then edi d' dmax t1 else NONE
   307 		   | NONE => NONE)
   308     	      | edi ~1 ~1 t = (case mono_deg_in t v of
   309     		     d as SOME _ => d
   310 		   | NONE => NONE)
   311     	      | edi d dmax t = (*basecase last*)
   312     		(case mono_deg_in t v of
   313     		     SOME d' => if ((d > d') orelse ((d=0) andalso (d'=0))) 
   314                      then SOME dmax else NONE
   315 		   | NONE => NONE)
   316     	in edi ~1 ~1 t end;
   317 in
   318 
   319 fun is_expanded_in t v =
   320     case expand_deg_in t v of SOME _ => true | NONE => false;
   321 fun is_poly_in t v =
   322     case poly_deg_in t v of SOME _ => true | NONE => false;
   323 fun has_degree_in t v =
   324     case expand_deg_in t v of SOME d => d | NONE => ~1;
   325 end;
   326 (* FIXME.WN100826 shift this into test-----------------------------
   327  val v = (term_of o the o (parse thy)) "x";
   328  val t = (term_of o the o (parse thy)) "a*b - (a+b)*x + x^^^2";
   329  has_degree_in t v;
   330  (*val it = 2*)
   331  val t = (term_of o the o (parse thy)) "-8 - 2*x + x^^^2";
   332  has_degree_in t v;
   333  (*val it = 2*)
   334  val t = (term_of o the o (parse thy)) "6 + 13*x + 6*x^^^2";
   335  has_degree_in t v;
   336  (*val it = 2*)
   337 -------------------------------------------------------------------*)
   338 
   339 (*("is_expanded_in", ("Poly.is'_expanded'_in", eval_is_expanded_in ""))*)
   340 fun eval_is_expanded_in _ _ 
   341        (p as (Const ("Poly.is'_expanded'_in",_) $ t $ v)) _ =
   342     if is_expanded_in t v
   343     then SOME ((term2str p) ^ " = True",
   344 	        Trueprop $ (mk_equality (p, HOLogic.true_const)))
   345     else SOME ((term2str p) ^ " = True",
   346 	        Trueprop $ (mk_equality (p, HOLogic.false_const)))
   347   | eval_is_expanded_in _ _ _ _ = NONE;
   348 (*
   349  val t = (term_of o the o (parse thy)) "(-8 - 2*x + x^^^2) is_expanded_in x";
   350  val SOME (id, t') = eval_is_expanded_in 0 0 t 0;
   351  (*val id = "Poly.is'_expanded'_in (-8 - 2 * x + x ^^^ 2) x = True"*)
   352  term2str t';
   353  (*val it = "Poly.is'_expanded'_in (-8 - 2 * x + x ^^^ 2) x = True"*)
   354 *)
   355 
   356 (*("is_poly_in", ("Poly.is'_poly'_in", eval_is_poly_in ""))*)
   357 fun eval_is_poly_in _ _ 
   358        (p as (Const ("Poly.is'_poly'_in",_) $ t $ v)) _ =
   359     if is_poly_in t v
   360     then SOME ((term2str p) ^ " = True",
   361 	        Trueprop $ (mk_equality (p, HOLogic.true_const)))
   362     else SOME ((term2str p) ^ " = True",
   363 	        Trueprop $ (mk_equality (p, HOLogic.false_const)))
   364   | eval_is_poly_in _ _ _ _ = NONE;
   365 (*
   366  val t = (term_of o the o (parse thy)) "(8 + 2*x + x^^^2) is_poly_in x";
   367  val SOME (id, t') = eval_is_poly_in 0 0 t 0;
   368  (*val id = "Poly.is'_poly'_in (8 + 2 * x + x ^^^ 2) x = True"*)
   369  term2str t';
   370  (*val it = "Poly.is'_poly'_in (8 + 2 * x + x ^^^ 2) x = True"*)
   371 *)
   372 
   373 (*("has_degree_in", ("Poly.has'_degree'_in", eval_has_degree_in ""))*)
   374 fun eval_has_degree_in _ _ 
   375 	     (p as (Const ("Poly.has'_degree'_in",_) $ t $ v)) _ =
   376     let val d = has_degree_in t v
   377 	val d' = term_of_num HOLogic.realT d
   378     in SOME ((term2str p) ^ " = " ^ (string_of_int d),
   379 	      Trueprop $ (mk_equality (p, d')))
   380     end
   381   | eval_has_degree_in _ _ _ _ = NONE;
   382 (*
   383 > val t = (term_of o the o (parse thy)) "(-8 - 2*x + x^^^2) has_degree_in x";
   384 > val SOME (id, t') = eval_has_degree_in 0 0 t 0;
   385 val id = "Poly.has'_degree'_in (-8 - 2 * x + x ^^^ 2) x = 2" : string
   386 > term2str t';
   387 val it = "Poly.has'_degree'_in (-8 - 2 * x + x ^^^ 2) x = 2" : string
   388 *)
   389 
   390 (*.for evaluation of conditions in rewrite rules.*)
   391 val Poly_erls = 
   392     append_rls "Poly_erls" Atools_erls
   393                [ Calc ("op =",eval_equal "#equal_"),
   394 		 Thm  ("real_unari_minus",num_str @{thm real_unari_minus}),
   395                  Calc ("op +",eval_binop "#add_"),
   396 		 Calc ("op -",eval_binop "#sub_"),
   397 		 Calc ("op *",eval_binop "#mult_"),
   398 		 Calc ("Atools.pow" ,eval_binop "#power_")
   399 		 ];
   400 
   401 val poly_crls = 
   402     append_rls "poly_crls" Atools_crls
   403                [ Calc ("op =",eval_equal "#equal_"),
   404 		 Thm  ("real_unari_minus",num_str @{thm real_unari_minus}),
   405                  Calc ("op +",eval_binop "#add_"),
   406 		 Calc ("op -",eval_binop "#sub_"),
   407 		 Calc ("op *",eval_binop "#mult_"),
   408 		 Calc ("Atools.pow" ,eval_binop "#power_")
   409 		 ];
   410 
   411 local (*. for make_polynomial .*)
   412 
   413 open Term;  (* for type order = EQUAL | LESS | GREATER *)
   414 
   415 fun pr_ord EQUAL = "EQUAL"
   416   | pr_ord LESS  = "LESS"
   417   | pr_ord GREATER = "GREATER";
   418 
   419 fun dest_hd' (Const (a, T)) =                          (* ~ term.ML *)
   420   (case a of
   421      "Atools.pow" => ((("|||||||||||||", 0), T), 0)    (*WN greatest string*)
   422    | _ => (((a, 0), T), 0))
   423   | dest_hd' (Free (a, T)) = (((a, 0), T), 1)
   424   | dest_hd' (Var v) = (v, 2)
   425   | dest_hd' (Bound i) = ((("", i), dummyT), 3)
   426   | dest_hd' (Abs (_, T, _)) = ((("", 0), T), 4);
   427 
   428 fun get_order_pow (t $ (Free(order,_))) = (* RL FIXXXME:geht zufaellig?WN*)
   429     	(case int_of_str (order) of
   430 	             SOME d => d
   431 		   | NONE   => 0)
   432   | get_order_pow _ = 0;
   433 
   434 fun size_of_term' (Const(str,_) $ t) =
   435   if "Atools.pow"= str then 1000 + size_of_term' t else 1+size_of_term' t(*WN*)
   436   | size_of_term' (Abs (_,_,body)) = 1 + size_of_term' body
   437   | size_of_term' (f$t) = size_of_term' f  +  size_of_term' t
   438   | size_of_term' _ = 1;
   439 
   440 fun term_ord' pr thy (Abs (_, T, t), Abs(_, U, u)) =       (* ~ term.ML *)
   441       (case term_ord' pr thy (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
   442   | term_ord' pr thy (t, u) =
   443       (if pr then 
   444 	 let
   445 	   val (f, ts) = strip_comb t and (g, us) = strip_comb u;
   446 	   val _=writeln("t= f@ts= \""^
   447 	      ((Syntax.string_of_term (thy2ctxt thy)) f)^"\" @ \"["^
   448 	      (commas(map(Syntax.string_of_term (thy2ctxt thy))ts))^"]\"");
   449 	   val _=writeln("u= g@us= \""^
   450 	      ((Syntax.string_of_term (thy2ctxt thy)) g)^"\" @ \"["^
   451 	      (commas(map(Syntax.string_of_term (thy2ctxt thy))us))^"]\"");
   452 	   val _=writeln("size_of_term(t,u)= ("^
   453 	      (string_of_int(size_of_term' t))^", "^
   454 	      (string_of_int(size_of_term' u))^")");
   455 	   val _=writeln("hd_ord(f,g)      = "^((pr_ord o hd_ord)(f,g)));
   456 	   val _=writeln("terms_ord(ts,us) = "^
   457 			   ((pr_ord o terms_ord str false)(ts,us)));
   458 	   val _=writeln("-------");
   459 	 in () end
   460        else ();
   461 	 case int_ord (size_of_term' t, size_of_term' u) of
   462 	   EQUAL =>
   463 	     let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
   464 	       (case hd_ord (f, g) of EQUAL => (terms_ord str pr) (ts, us) 
   465 	     | ord => ord)
   466 	     end
   467 	 | ord => ord)
   468 and hd_ord (f, g) =                                        (* ~ term.ML *)
   469   prod_ord (prod_ord indexname_ord typ_ord) int_ord (dest_hd' f, dest_hd' g)
   470 and terms_ord str pr (ts, us) = 
   471     list_ord (term_ord' pr (assoc_thy "Isac.thy"))(ts, us);
   472 in
   473 
   474 fun ord_make_polynomial (pr:bool) thy (_:subst) tu = 
   475     (term_ord' pr thy(***) tu = LESS );
   476 
   477 end;(*local*)
   478 
   479 
   480 rew_ord' := overwritel (!rew_ord',
   481 [("termlessI", termlessI),
   482  ("ord_make_polynomial", ord_make_polynomial false thy)
   483  ]);
   484 
   485 
   486 val expand =
   487   Rls{id = "expand", preconds = [], 
   488       rew_ord = ("dummy_ord", dummy_ord),
   489       erls = e_rls,srls = Erls,
   490       calc = [],
   491       (*asm_thm = [],*)
   492       rules = [Thm ("left_distrib" ,num_str @{thm left_distrib}),
   493 	       (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   494 	       Thm ("left_distrib2",num_str @{thm left_distrib2})
   495 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   496 	       ], scr = EmptyScr}:rls;
   497 
   498 (*----------------- Begin: rulesets for make_polynomial_ -----------------
   499   'rlsIDs' redefined by MG as 'rlsIDs_' 
   500                                     ^^^*)
   501 
   502 val discard_minus_ = 
   503   Rls{id = "discard_minus_", preconds = [], 
   504       rew_ord = ("dummy_ord", dummy_ord),
   505       erls = e_rls,srls = Erls,
   506       calc = [],
   507       (*asm_thm = [],*)
   508       rules = [Thm ("real_diff_minus",num_str @{thm real_diff_minus}),
   509 	       (*"a - b = a + -1 * b"*)
   510 	       Thm ("sym_real_mult_minus1",
   511                      num_str (@{thm sym_real_mult_minus1} RS @{thm sym}))
   512 	       (*- ?z = "-1 * ?z"*)
   513 	       ], scr = EmptyScr}:rls;
   514 val expand_poly_ = 
   515   Rls{id = "expand_poly_", preconds = [], 
   516       rew_ord = ("dummy_ord", dummy_ord),
   517       erls = e_rls,srls = Erls,
   518       calc = [],
   519       (*asm_thm = [],*)
   520       rules = [Thm ("real_plus_binom_pow4",num_str @{thm real_plus_binom_pow4}),
   521 	       (*"(a + b)^^^4 = ... "*)
   522 	       Thm ("real_plus_binom_pow5",num_str @{thm real_plus_binom_pow5}),
   523 	       (*"(a + b)^^^5 = ... "*)
   524 	       Thm ("real_plus_binom_pow3",num_str @{thm real_plus_binom_pow3}),
   525 	       (*"(a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3" *)
   526 	       (*WN071229 changed/removed for Schaerding -----vvv*)
   527 	       (*Thm ("real_plus_binom_pow2",num_str @{thm real_plus_binom_pow2}),*)
   528 	       (*"(a + b)^^^2 = a^^^2 + 2*a*b + b^^^2"*)
   529 	       Thm ("real_plus_binom_pow2",num_str @{thm real_plus_binom_pow2}),
   530 	       (*"(a + b)^^^2 = (a + b) * (a + b)"*)
   531 	       (*Thm ("real_plus_minus_binom1_p_p",
   532 		    num_str @{thm real_plus_minus_binom1_p_p}),*)
   533 	       (*"(a + b)*(a + -1 * b) = a^^^2 + -1*b^^^2"*)
   534 	       (*Thm ("real_plus_minus_binom2_p_p",
   535 		    num_str @{thm real_plus_minus_binom2_p_p}),*)
   536 	       (*"(a + -1 * b)*(a + b) = a^^^2 + -1*b^^^2"*)
   537 	       (*WN071229 changed/removed for Schaerding -----^^^*)
   538 	      
   539 	       Thm ("left_distrib" ,num_str @{thm left_distrib}),
   540 	       (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   541 	       Thm ("left_distrib2",num_str @{thm left_distrib}2),
   542 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   543 	       
   544 	       Thm ("realpow_multI", num_str @{thm realpow_multI}),
   545 	       (*"(r * s) ^^^ n = r ^^^ n * s ^^^ n"*)
   546 	       Thm ("realpow_pow",num_str @{thm realpow_pow})
   547 	       (*"(a ^^^ b) ^^^ c = a ^^^ (b * c)"*)
   548 	       ], scr = EmptyScr}:rls;
   549 
   550 (*.the expression contains + - * ^ only ?
   551    this is weaker than 'is_polynomial' !.*)
   552 fun is_polyexp (Free _) = true
   553   | is_polyexp (Const ("op +",_) $ Free _ $ Free _) = true
   554   | is_polyexp (Const ("op -",_) $ Free _ $ Free _) = true
   555   | is_polyexp (Const ("op *",_) $ Free _ $ Free _) = true
   556   | is_polyexp (Const ("Atools.pow",_) $ Free _ $ Free _) = true
   557   | is_polyexp (Const ("op +",_) $ t1 $ t2) = 
   558                ((is_polyexp t1) andalso (is_polyexp t2))
   559   | is_polyexp (Const ("op -",_) $ t1 $ t2) = 
   560                ((is_polyexp t1) andalso (is_polyexp t2))
   561   | is_polyexp (Const ("op *",_) $ t1 $ t2) = 
   562                ((is_polyexp t1) andalso (is_polyexp t2))
   563   | is_polyexp (Const ("Atools.pow",_) $ t1 $ t2) = 
   564                ((is_polyexp t1) andalso (is_polyexp t2))
   565   | is_polyexp _ = false;
   566 
   567 (*("is_polyexp", ("Poly.is'_polyexp", eval_is_polyexp ""))*)
   568 fun eval_is_polyexp (thmid:string) _ 
   569 		       (t as (Const("Poly.is'_polyexp", _) $ arg)) thy = 
   570     if is_polyexp arg
   571     then SOME (mk_thmid thmid "" 
   572 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   573 	       Trueprop $ (mk_equality (t, HOLogic.true_const)))
   574     else SOME (mk_thmid thmid "" 
   575 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   576 	       Trueprop $ (mk_equality (t, HOLogic.false_const)))
   577   | eval_is_polyexp _ _ _ _ = NONE; 
   578 
   579 val expand_poly_rat_ = 
   580   Rls{id = "expand_poly_rat_", preconds = [], 
   581       rew_ord = ("dummy_ord", dummy_ord),
   582       erls =  append_rls "e_rls-is_polyexp" e_rls
   583 	        [Calc ("Poly.is'_polyexp", eval_is_polyexp "")
   584 		 ],
   585       srls = Erls,
   586       calc = [],
   587       (*asm_thm = [],*)
   588       rules = 
   589         [Thm ("real_plus_binom_pow4_poly", num_str @{thm real_plus_binom_pow4_poly}),
   590 	     (*"[| a is_polyexp; b is_polyexp |] ==> (a + b)^^^4 = ... "*)
   591 	 Thm ("real_plus_binom_pow5_poly", num_str @{thm real_plus_binom_pow5_poly}),
   592 	     (*"[| a is_polyexp; b is_polyexp |] ==> (a + b)^^^5 = ... "*)
   593 	 Thm ("real_plus_binom_pow2_poly",num_str @{thm real_plus_binom_pow2_poly}),
   594 	     (*"[| a is_polyexp; b is_polyexp |] ==>
   595 		            (a + b)^^^2 = a^^^2 + 2*a*b + b^^^2"*)
   596 	 Thm ("real_plus_binom_pow3_poly",num_str @{thm real_plus_binom_pow3_poly}),
   597 	     (*"[| a is_polyexp; b is_polyexp |] ==> 
   598 			(a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3" *)
   599 	 Thm ("real_plus_minus_binom1_p_p",num_str @{thm real_plus_minus_binom1_p_p}),
   600 	     (*"(a + b)*(a + -1 * b) = a^^^2 + -1*b^^^2"*)
   601 	 Thm ("real_plus_minus_binom2_p_p",num_str @{thm real_plus_minus_binom2_p_p}),
   602 	     (*"(a + -1 * b)*(a + b) = a^^^2 + -1*b^^^2"*)
   603 	      
   604 	 Thm ("left_distrib_poly" ,num_str @{thm left_distrib_poly}),
   605 	       (*"w is_polyexp ==> (z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   606 	 Thm("left_distrib2_poly",num_str @{thm left_distrib2_poly}),
   607 	     (*"w is_polyexp ==> w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   608 	       
   609 	 Thm ("realpow_multI_poly", num_str @{thm realpow_multI_poly}),
   610 	     (*"[| r is_polyexp; s is_polyexp |] ==> 
   611 		            (r * s) ^^^ n = r ^^^ n * s ^^^ n"*)
   612 	  Thm ("realpow_pow",num_str @{thm realpow_pow})
   613 	      (*"(a ^^^ b) ^^^ c = a ^^^ (b * c)"*)
   614 	 ], scr = EmptyScr}:rls;
   615 
   616 val simplify_power_ = 
   617   Rls{id = "simplify_power_", preconds = [], 
   618       rew_ord = ("dummy_ord", dummy_ord),
   619       erls = e_rls, srls = Erls,
   620       calc = [],
   621       (*asm_thm = [],*)
   622       rules = [(*MG: Reihenfolge der folgenden 2 Thm muss so bleiben, wegen
   623 		a*(a*a) --> a*a^^^2 und nicht a*(a*a) --> a^^^2*a *)
   624 	       Thm ("sym_realpow_twoI",
   625                      num_str (@{thm realpow_twoI} RS @{thm sym})),	
   626 	       (*"r * r = r ^^^ 2"*)
   627 	       Thm ("realpow_twoI_assoc_l",num_str @{thm realpow_twoI_assoc_l}),
   628 	       (*"r * (r * s) = r ^^^ 2 * s"*)
   629 
   630 	       Thm ("realpow_plus_1",num_str @{thm realpow_plus_1}),		
   631 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
   632 	       Thm ("realpow_plus_1_assoc_l",
   633                      num_str @{thm realpow_plus_1_assoc_l}),
   634 	       (*"r * (r ^^^ m * s) = r ^^^ (1 + m) * s"*)
   635 	       (*MG 9.7.03: neues Thm wegen a*(a*(a*b)) --> a^^^2*(a*b) *)
   636 	       Thm ("realpow_plus_1_assoc_l2",
   637                      num_str @{thm realpow_plus_1_assoc_l2}),
   638 	       (*"r ^^^ m * (r * s) = r ^^^ (1 + m) * s"*)
   639 
   640 	       Thm ("sym_realpow_addI",
   641                num_str (@{thm realpow_addI} RS @{thm sym})),
   642 	       (*"r ^^^ n * r ^^^ m = r ^^^ (n + m)"*)
   643 	       Thm ("realpow_addI_assoc_l",num_str @{thm realpow_addI_assoc_l}),
   644 	       (*"r ^^^ n * (r ^^^ m * s) = r ^^^ (n + m) * s"*)
   645 	       
   646 	       (* ist in expand_poly - wird hier aber auch gebraucht, wegen: 
   647 		  "r * r = r ^^^ 2" wenn r=a^^^b*)
   648 	       Thm ("realpow_pow",num_str @{thm realpow_pow})
   649 	       (*"(a ^^^ b) ^^^ c = a ^^^ (b * c)"*)
   650 	       ], scr = EmptyScr}:rls;
   651 
   652 val calc_add_mult_pow_ = 
   653   Rls{id = "calc_add_mult_pow_", preconds = [], 
   654       rew_ord = ("dummy_ord", dummy_ord),
   655       erls = Atools_erls(*erls3.4.03*),srls = Erls,
   656       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
   657 	      ("TIMES" , ("op *", eval_binop "#mult_")),
   658 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
   659 	      ],
   660       (*asm_thm = [],*)
   661       rules = [Calc ("op +", eval_binop "#add_"),
   662 	       Calc ("op *", eval_binop "#mult_"),
   663 	       Calc ("Atools.pow", eval_binop "#power_")
   664 	       ], scr = EmptyScr}:rls;
   665 
   666 val reduce_012_mult_ = 
   667   Rls{id = "reduce_012_mult_", preconds = [], 
   668       rew_ord = ("dummy_ord", dummy_ord),
   669       erls = e_rls,srls = Erls,
   670       calc = [],
   671       (*asm_thm = [],*)
   672       rules = [(* MG: folgende Thm müssen hier stehen bleiben: *)
   673                Thm ("mult_1_right",num_str @{thm mult_1_right}),
   674 	       (*"z * 1 = z"*) (*wegen "a * b * b^^^(-1) + a"*) 
   675 	       Thm ("realpow_zeroI",num_str @{thm realpow_zeroI}),
   676 	       (*"r ^^^ 0 = 1"*) (*wegen "a*a^^^(-1)*c + b + c"*)
   677 	       Thm ("realpow_oneI",num_str @{thm realpow_oneI}),
   678 	       (*"r ^^^ 1 = r"*)
   679 	       Thm ("realpow_eq_oneI",num_str @{thm realpow_eq_oneI)
   680 	       (*"1 ^^^ n = 1"*)
   681 	       ], scr = EmptyScr}:rls;
   682 
   683 val collect_numerals_ = 
   684   Rls{id = "collect_numerals_", preconds = [], 
   685       rew_ord = ("dummy_ord", dummy_ord),
   686       erls = Atools_erls, srls = Erls,
   687       calc = [("PLUS"  , ("op +", eval_binop "#add_"))
   688 	      ],
   689       rules = 
   690         [Thm ("real_num_collect",num_str @{thm real_num_collect}), 
   691 	     (*"[| l is_const; m is_const |]==>l * n + m * n = (l + m) * n"*)
   692 	 Thm ("real_num_collect_assoc_r",num_str @{thm real_num_collect_assoc_r}),
   693 	     (*"[| l is_const; m is_const |] ==>  \
   694 					\(k + m * n) + l * n = k + (l + m)*n"*)
   695 	 Thm ("real_one_collect",num_str @{thm real_one_collect}),	
   696 	     (*"m is_const ==> n + m * n = (1 + m) * n"*)
   697 	 Thm ("real_one_collect_assoc_r",num_str @{thm real_one_collect_assoc_r}), 
   698 	     (*"m is_const ==> (k + n) + m * n = k + (m + 1) * n"*)
   699 
   700          Calc ("op +", eval_binop "#add_"),
   701 
   702 	 (*MG: Reihenfolge der folgenden 2 Thm muss so bleiben, wegen
   703 		     (a+a)+a --> a + 2*a --> 3*a and not (a+a)+a --> 2*a + a *)
   704          Thm ("real_mult_2_assoc_r",num_str @{thm real_mult_2_assoc_r}),
   705 	     (*"(k + z1) + z1 = k + 2 * z1"*)
   706 	 Thm ("sym_real_mult_2",num_str (@{thm real_mult_2} RS @{thm sym}))
   707 	     (*"z1 + z1 = 2 * z1"*)
   708 	], scr = EmptyScr}:rls;
   709 
   710 val reduce_012_ = 
   711   Rls{id = "reduce_012_", preconds = [], 
   712       rew_ord = ("dummy_ord", dummy_ord),
   713       erls = e_rls,srls = Erls,
   714       calc = [],
   715       (*asm_thm = [],*)
   716       rules = [Thm ("mult_1_left",num_str @{thm mult_1_left}),                 
   717 	       (*"1 * z = z"*)
   718 	       Thm ("mult_zero_left",num_str @{thm mult_zero_left}),        
   719 	       (*"0 * z = 0"*)
   720 	       Thm ("mult_zero_left_right",num_str @{thm mult_zero_left}_right),        
   721 	       (*"z * 0 = 0"*)
   722 	       Thm ("add_0_left",num_str @{thm add_0_left}),
   723 	       (*"0 + z = z"*)
   724 	       Thm ("add_0_right",num_str @{thm add_0_right}),
   725 	       (*"z + 0 = z"*) (*wegen a+b-b --> a+(1-1)*b --> a+0 --> a*)
   726 
   727 	       (*Thm ("realpow_oneI",num_str @{thm realpow_oneI})*)
   728 	       (*"?r ^^^ 1 = ?r"*)
   729 	       Thm ("divide_zero_left",num_str @{thm divide_zero_left})(*WN060914*)
   730 	       (*"0 / ?x = 0"*)
   731 	       ], scr = EmptyScr}:rls;
   732 
   733 (*ein Hilfs-'ruleset' (benutzt das leere 'ruleset')*)
   734 val discard_parentheses_ = 
   735     append_rls "discard_parentheses_" e_rls 
   736 	       [Thm ("sym_real_mult_assoc",
   737                       num_str (@{thm real_mult_assoc} RS @{thm sym}))
   738 		(*"?z1.1 * (?z2.1 * ?z3.1) = ?z1.1 * ?z2.1 * ?z3.1"*)
   739 		(*Thm ("sym_real_add_assoc",
   740                         num_str (@{thm real_add_assoc} RS @{thm sym}))*)
   741 		(*"?z1.1 + (?z2.1 + ?z3.1) = ?z1.1 + ?z2.1 + ?z3.1"*)
   742 		 ];
   743 
   744 (*----------------- End: rulesets for make_polynomial_ -----------------*)
   745 
   746 (*MG.0401 ev. for use in rls with ordered rewriting ?
   747 val collect_numerals_left = 
   748   Rls{id = "collect_numerals", preconds = [], 
   749       rew_ord = ("dummy_ord", dummy_ord),
   750       erls = Atools_erls(*erls3.4.03*),srls = Erls,
   751       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
   752 	      ("TIMES" , ("op *", eval_binop "#mult_")),
   753 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
   754 	      ],
   755       (*asm_thm = [],*)
   756       rules = [Thm ("real_num_collect",num_str @{thm real_num_collect}), 
   757 	       (*"[| l is_const; m is_const |]==>l * n + m * n = (l + m) * n"*)
   758 	       Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),
   759 	       (*"[| l is_const; m is_const |] ==>  
   760 				l * n + (m * n + k) =  (l + m) * n + k"*)
   761 	       Thm ("real_one_collect",num_str @{thm real_one_collect}),	
   762 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
   763 	       Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
   764 	       (*"m is_const ==> n + (m * n + k) = (1 + m) * n + k"*)
   765 	       
   766 	       Calc ("op +", eval_binop "#add_"),
   767 
   768 	       (*MG am 2.5.03: 2 Theoreme aus reduce_012 hierher verschoben*)
   769 	       Thm ("sym_real_mult_2",
   770                      num_str (@{thm real_mult_2} RS @{thm sym})),	
   771 	       (*"z1 + z1 = 2 * z1"*)
   772 	       Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc})
   773 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
   774 	       ], scr = EmptyScr}:rls;*)
   775 
   776 val expand_poly = 
   777   Rls{id = "expand_poly", preconds = [], 
   778       rew_ord = ("dummy_ord", dummy_ord),
   779       erls = e_rls,srls = Erls,
   780       calc = [],
   781       (*asm_thm = [],*)
   782       rules = [Thm ("left_distrib" ,num_str @{thm left_distrib}),
   783 	       (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   784 	       Thm ("left_distrib2",num_str @{thm left_distrib}2),
   785 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   786 	       (*Thm ("left_distrib1",num_str @{thm left_distrib}1),
   787 		....... 18.3.03 undefined???*)
   788 
   789 	       Thm ("real_plus_binom_pow2",num_str @{thm real_plus_binom_pow2}),
   790 	       (*"(a + b)^^^2 = a^^^2 + 2*a*b + b^^^2"*)
   791 	       Thm ("real_minus_binom_pow2_p",num_str @{thm real_minus_binom_pow2_p}),
   792 	       (*"(a - b)^^^2 = a^^^2 + -2*a*b + b^^^2"*)
   793 	       Thm ("real_plus_minus_binom1_p",
   794 		    num_str @{thm real_plus_minus_binom1_p}),
   795 	       (*"(a + b)*(a - b) = a^^^2 + -1*b^^^2"*)
   796 	       Thm ("real_plus_minus_binom2_p",
   797 		    num_str @{thm real_plus_minus_binom2_p}),
   798 	       (*"(a - b)*(a + b) = a^^^2 + -1*b^^^2"*)
   799 
   800 	       Thm ("minus_minus",num_str @{thm minus_minus}),
   801 	       (*"- (- ?z) = ?z"*)
   802 	       Thm ("real_diff_minus",num_str @{thm real_diff_minus}),
   803 	       (*"a - b = a + -1 * b"*)
   804 	       Thm ("sym_real_mult_minus1",
   805                      num_str (@{thm real_mult_minus1} RS @{thm sym}))
   806 	       (*- ?z = "-1 * ?z"*)
   807 
   808 	       (*Thm ("real_minus_add_distrib",
   809 		      num_str @{thm real_minus_add_distrib}),*)
   810 	       (*"- (?x + ?y) = - ?x + - ?y"*)
   811 	       (*Thm ("real_diff_plus",num_str @{thm real_diff_plus})*)
   812 	       (*"a - b = a + -b"*)
   813 	       ], scr = EmptyScr}:rls;
   814 
   815 val simplify_power = 
   816   Rls{id = "simplify_power", preconds = [], 
   817       rew_ord = ("dummy_ord", dummy_ord),
   818       erls = e_rls, srls = Erls,
   819       calc = [],
   820       (*asm_thm = [],*)
   821       rules = [Thm ("realpow_multI", num_str @{thm realpow_multI}),
   822 	       (*"(r * s) ^^^ n = r ^^^ n * s ^^^ n"*)
   823 	       
   824 	       Thm ("sym_realpow_twoI",
   825                      num_str( @{thm realpow_twoI} RS @{thm sym})),	
   826 	       (*"r1 * r1 = r1 ^^^ 2"*)
   827 	       Thm ("realpow_plus_1",num_str @{thm realpow_plus_1}),		
   828 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
   829 	       Thm ("realpow_pow",num_str @{thm realpow_pow}),
   830 	       (*"(a ^^^ b) ^^^ c = a ^^^ (b * c)"*)
   831 	       Thm ("sym_realpow_addI",
   832                      num_str (@{thm realpow_addI} RS @{thm sym})),
   833 	       (*"r ^^^ n * r ^^^ m = r ^^^ (n + m)"*)
   834 	       Thm ("realpow_oneI",num_str @{thm realpow_oneI}),
   835 	       (*"r ^^^ 1 = r"*)
   836 	       Thm ("realpow_eq_oneI",num_str @{thm realpow_eq_oneI})
   837 	       (*"1 ^^^ n = 1"*)
   838 	       ], scr = EmptyScr}:rls;
   839 (*MG.0401: termorders for multivariate polys dropped due to principal problems:
   840   (total-degree-)ordering of monoms NOT possible with size_of_term GIVEN*)
   841 val order_add_mult = 
   842   Rls{id = "order_add_mult", preconds = [], 
   843       rew_ord = ("ord_make_polynomial",ord_make_polynomial false (theory "Poly")),
   844       erls = e_rls,srls = Erls,
   845       calc = [],
   846       (*asm_thm = [],*)
   847       rules = [Thm ("real_mult_commute",num_str @{thm real_mult_commute}),
   848 	       (* z * w = w * z *)
   849 	       Thm ("real_mult_left_commute",num_str @{thm real_mult_left_commute}),
   850 	       (*z1.0 * (z2.0 * z3.0) = z2.0 * (z1.0 * z3.0)*)
   851 	       Thm ("real_mult_assoc",num_str @{thm real_mult_assoc}),		
   852 	       (*z1.0 * z2.0 * z3.0 = z1.0 * (z2.0 * z3.0)*)
   853 	       Thm ("add_commute",num_str @{thm add_commute}),	
   854 	       (*z + w = w + z*)
   855 	       Thm ("add_left_commute",num_str @{thm add_left_commute}),
   856 	       (*x + (y + z) = y + (x + z)*)
   857 	       Thm ("add_assoc",num_str @{thm add_assoc})	               
   858 	       (*z1.0 + z2.0 + z3.0 = z1.0 + (z2.0 + z3.0)*)
   859 	       ], scr = EmptyScr}:rls;
   860 (*MG.0401: termorders for multivariate polys dropped due to principal problems:
   861   (total-degree-)ordering of monoms NOT possible with size_of_term GIVEN*)
   862 val order_mult = 
   863   Rls{id = "order_mult", preconds = [], 
   864       rew_ord = ("ord_make_polynomial",ord_make_polynomial false (theory "Poly")),
   865       erls = e_rls,srls = Erls,
   866       calc = [],
   867       (*asm_thm = [],*)
   868       rules = [Thm ("real_mult_commute",num_str @{thm real_mult_commute}),
   869 	       (* z * w = w * z *)
   870 	       Thm ("real_mult_left_commute",num_str @{thm real_mult_left_commute}),
   871 	       (*z1.0 * (z2.0 * z3.0) = z2.0 * (z1.0 * z3.0)*)
   872 	       Thm ("real_mult_assoc",num_str @{thm real_mult_assoc})	
   873 	       (*z1.0 * z2.0 * z3.0 = z1.0 * (z2.0 * z3.0)*)
   874 	       ], scr = EmptyScr}:rls;
   875 val collect_numerals = 
   876   Rls{id = "collect_numerals", preconds = [], 
   877       rew_ord = ("dummy_ord", dummy_ord),
   878       erls = Atools_erls(*erls3.4.03*),srls = Erls,
   879       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
   880 	      ("TIMES" , ("op *", eval_binop "#mult_")),
   881 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
   882 	      ],
   883       (*asm_thm = [],*)
   884       rules = [Thm ("real_num_collect",num_str @{thm real_num_collect}), 
   885 	       (*"[| l is_const; m is_const |]==>l * n + m * n = (l + m) * n"*)
   886 	       Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),
   887 	       (*"[| l is_const; m is_const |] ==>  
   888 				l * n + (m * n + k) =  (l + m) * n + k"*)
   889 	       Thm ("real_one_collect",num_str @{thm real_one_collect}),	
   890 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
   891 	       Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
   892 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
   893 	       Calc ("op +", eval_binop "#add_"), 
   894 	       Calc ("op *", eval_binop "#mult_"),
   895 	       Calc ("Atools.pow", eval_binop "#power_")
   896 	       ], scr = EmptyScr}:rls;
   897 val reduce_012 = 
   898   Rls{id = "reduce_012", preconds = [], 
   899       rew_ord = ("dummy_ord", dummy_ord),
   900       erls = e_rls,srls = Erls,
   901       calc = [],
   902       (*asm_thm = [],*)
   903       rules = [Thm ("mult_1_left",num_str @{thm mult_1_left}),                 
   904 	       (*"1 * z = z"*)
   905 	       (*Thm ("real_mult_minus1",num_str @{thm real_mult_minus1}),14.3.03*)
   906 	       (*"-1 * z = - z"*)
   907 	       Thm ("minus_mult_left", 
   908 		    num_str (@{thm real_mult_minus_eq1} RS @{thm sym})),
   909 	       (*- (?x * ?y) = "- ?x * ?y"*)
   910 	       (*Thm ("real_minus_mult_cancel",
   911                        num_str @{thm real_minus_mult_cancel}),
   912 	       (*"- ?x * - ?y = ?x * ?y"*)---*)
   913 	       Thm ("mult_zero_left",num_str @{thm mult_zero_left}),        
   914 	       (*"0 * z = 0"*)
   915 	       Thm ("add_0_left",num_str @{thm add_0_left}),
   916 	       (*"0 + z = z"*)
   917 	       Thm ("right_minus",num_str @{thm right_minus}),
   918 	       (*"?z + - ?z = 0"*)
   919 	       Thm ("sym_real_mult_2",
   920                      num_str (@{thm real_mult_2} RS @{thm sym})),	
   921 	       (*"z1 + z1 = 2 * z1"*)
   922 	       Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc})
   923 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
   924 	       ], scr = EmptyScr}:rls;
   925 (*ein Hilfs-'ruleset' (benutzt das leere 'ruleset')*)
   926 val discard_parentheses = 
   927     append_rls "discard_parentheses" e_rls 
   928 	       [Thm ("sym_real_mult_assoc",
   929                       num_str (@{thm real_mult_assoc} RS @{thm sym})),
   930 		Thm ("sym_real_add_assoc",
   931                       num_str (@{thm real_add_assoc} RS @{thm sym}))];
   932 
   933 val scr_make_polynomial = 
   934 "Script Expand_binoms t_ =                                  " ^
   935 "(Repeat                                                    " ^
   936 "((Try (Repeat (Rewrite real_diff_minus         False))) @@ " ^ 
   937 
   938 " (Try (Repeat (Rewrite real_add_mult_distrib   False))) @@ " ^	 
   939 " (Try (Repeat (Rewrite real_add_mult_distrib2  False))) @@ " ^	
   940 " (Try (Repeat (Rewrite real_diff_mult_distrib  False))) @@ " ^	
   941 " (Try (Repeat (Rewrite real_diff_mult_distrib2 False))) @@ " ^	
   942 
   943 " (Try (Repeat (Rewrite real_mult_1             False))) @@ " ^		   
   944 " (Try (Repeat (Rewrite real_mult_0             False))) @@ " ^		   
   945 " (Try (Repeat (Rewrite real_add_zero_left      False))) @@ " ^	 
   946 
   947 " (Try (Repeat (Rewrite real_mult_commute       False))) @@ " ^		
   948 " (Try (Repeat (Rewrite real_mult_left_commute  False))) @@ " ^	
   949 " (Try (Repeat (Rewrite real_mult_assoc         False))) @@ " ^		
   950 " (Try (Repeat (Rewrite real_add_commute        False))) @@ " ^		
   951 " (Try (Repeat (Rewrite real_add_left_commute   False))) @@ " ^	 
   952 " (Try (Repeat (Rewrite real_add_assoc          False))) @@ " ^	 
   953 
   954 " (Try (Repeat (Rewrite sym_realpow_twoI        False))) @@ " ^	 
   955 " (Try (Repeat (Rewrite realpow_plus_1          False))) @@ " ^	 
   956 " (Try (Repeat (Rewrite sym_real_mult_2         False))) @@ " ^		
   957 " (Try (Repeat (Rewrite real_mult_2_assoc       False))) @@ " ^		
   958 
   959 " (Try (Repeat (Rewrite real_num_collect        False))) @@ " ^		
   960 " (Try (Repeat (Rewrite real_num_collect_assoc  False))) @@ " ^	
   961 
   962 " (Try (Repeat (Rewrite real_one_collect        False))) @@ " ^		
   963 " (Try (Repeat (Rewrite real_one_collect_assoc  False))) @@ " ^   
   964 
   965 " (Try (Repeat (Calculate plus  ))) @@                      " ^
   966 " (Try (Repeat (Calculate times ))) @@                      " ^
   967 " (Try (Repeat (Calculate power_))))                        " ^  
   968 " t_)";
   969 
   970 (*version used by MG.02/03, overwritten by version AG in 04 below
   971 val make_polynomial = prep_rls(
   972   Seq{id = "make_polynomial", preconds = []:term list, 
   973       rew_ord = ("dummy_ord", dummy_ord),
   974       erls = Atools_erls, srls = Erls,
   975       calc = [],(*asm_thm = [],*)
   976       rules = [Rls_ expand_poly,
   977 	       Rls_ order_add_mult,
   978 	       Rls_ simplify_power,   (*realpow_eq_oneI, eg. x^1 --> x *)
   979 	       Rls_ collect_numerals, (*eg. x^(2+ -1) --> x^1          *)
   980 	       Rls_ reduce_012,
   981 	       Thm ("realpow_oneI",num_str @{thm realpow_oneI}),(*in --^*) 
   982 	       Rls_ discard_parentheses
   983 	       ],
   984       scr = EmptyScr
   985       }:rls);   *)
   986 
   987 val scr_expand_binoms =
   988 "Script Expand_binoms t_ =" ^
   989 "(Repeat                       " ^
   990 "((Try (Repeat (Rewrite real_plus_binom_pow2    False))) @@ " ^
   991 " (Try (Repeat (Rewrite real_plus_binom_times   False))) @@ " ^
   992 " (Try (Repeat (Rewrite real_minus_binom_pow2   False))) @@ " ^
   993 " (Try (Repeat (Rewrite real_minus_binom_times  False))) @@ " ^
   994 " (Try (Repeat (Rewrite real_plus_minus_binom1  False))) @@ " ^
   995 " (Try (Repeat (Rewrite real_plus_minus_binom2  False))) @@ " ^
   996 
   997 " (Try (Repeat (Rewrite real_mult_1             False))) @@ " ^
   998 " (Try (Repeat (Rewrite real_mult_0             False))) @@ " ^
   999 " (Try (Repeat (Rewrite real_add_zero_left      False))) @@ " ^
  1000 
  1001 " (Try (Repeat (Calculate plus  ))) @@ " ^
  1002 " (Try (Repeat (Calculate times ))) @@ " ^
  1003 " (Try (Repeat (Calculate power_))) @@ " ^
  1004 
  1005 " (Try (Repeat (Rewrite sym_realpow_twoI        False))) @@ " ^
  1006 " (Try (Repeat (Rewrite realpow_plus_1          False))) @@ " ^
  1007 " (Try (Repeat (Rewrite sym_real_mult_2         False))) @@ " ^
  1008 " (Try (Repeat (Rewrite real_mult_2_assoc       False))) @@ " ^
  1009 
  1010 " (Try (Repeat (Rewrite real_num_collect        False))) @@ " ^
  1011 " (Try (Repeat (Rewrite real_num_collect_assoc  False))) @@ " ^
  1012 
  1013 " (Try (Repeat (Rewrite real_one_collect        False))) @@ " ^
  1014 " (Try (Repeat (Rewrite real_one_collect_assoc  False))) @@ " ^ 
  1015 
  1016 " (Try (Repeat (Calculate plus  ))) @@ " ^
  1017 " (Try (Repeat (Calculate times ))) @@ " ^
  1018 " (Try (Repeat (Calculate power_)))) " ^  
  1019 " t_)";
  1020 
  1021 val expand_binoms = 
  1022   Rls{id = "expand_binoms", preconds = [], rew_ord = ("termlessI",termlessI),
  1023       erls = Atools_erls, srls = Erls,
  1024       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
  1025 	      ("TIMES" , ("op *", eval_binop "#mult_")),
  1026 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
  1027 	      ],
  1028       (*asm_thm = [],*)
  1029       rules = [Thm ("real_plus_binom_pow2"  ,num_str @{thm real_plus_binom_pow2}),     
  1030 	       (*"(a + b) ^^^ 2 = a ^^^ 2 + 2 * a * b + b ^^^ 2"*)
  1031 	       Thm ("real_plus_binom_times" ,num_str @{thm real_plus_binom_times}),    
  1032 	      (*"(a + b)*(a + b) = ...*)
  1033 	       Thm ("real_minus_binom_pow2" ,num_str @{thm real_minus_binom_pow2}),   
  1034 	       (*"(a - b) ^^^ 2 = a ^^^ 2 - 2 * a * b + b ^^^ 2"*)
  1035 	       Thm ("real_minus_binom_times",num_str @{thm real_minus_binom_times}),   
  1036 	       (*"(a - b)*(a - b) = ...*)
  1037 	       Thm ("real_plus_minus_binom1",num_str @{thm real_plus_minus_binom1}),   
  1038 		(*"(a + b) * (a - b) = a ^^^ 2 - b ^^^ 2"*)
  1039 	       Thm ("real_plus_minus_binom2",num_str @{thm real_plus_minus_binom2}),   
  1040 		(*"(a - b) * (a + b) = a ^^^ 2 - b ^^^ 2"*)
  1041 	       (*RL 020915*)
  1042 	       Thm ("real_pp_binom_times",num_str @{thm real_pp_binom_times}), 
  1043 		(*(a + b)*(c + d) = a*c + a*d + b*c + b*d*)
  1044                Thm ("real_pm_binom_times",num_str @{thm real_pm_binom_times}), 
  1045 		(*(a + b)*(c - d) = a*c - a*d + b*c - b*d*)
  1046                Thm ("real_mp_binom_times",num_str @{thm real_mp_binom_times}), 
  1047 		(*(a - b)*(c + d) = a*c + a*d - b*c - b*d*)
  1048                Thm ("real_mm_binom_times",num_str @{thm real_mm_binom_times}), 
  1049 		(*(a - b)*(c - d) = a*c - a*d - b*c + b*d*)
  1050 	       Thm ("realpow_multI",num_str @{thm realpow_multI}),                
  1051 		(*(a*b)^^^n = a^^^n * b^^^n*)
  1052 	       Thm ("real_plus_binom_pow3",num_str @{thm real_plus_binom_pow3}),
  1053 	        (* (a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3 *)
  1054 	       Thm ("real_minus_binom_pow3",num_str @{thm real_minus_binom_pow3}),
  1055 	        (* (a - b)^^^3 = a^^^3 - 3*a^^^2*b + 3*a*b^^^2 - b^^^3 *)
  1056 
  1057 
  1058              (*  Thm ("left_distrib" ,num_str @{thm left_distrib}),	
  1059 		(*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1060 	       Thm ("left_distrib2",num_str @{thm left_distrib2}),	
  1061 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1062 	       Thm ("left_diff_distrib" ,num_str @{thm left_diff_distrib}),	
  1063 	       (*"(z1.0 - z2.0) * w = z1.0 * w - z2.0 * w"*)
  1064 	       Thm ("left_diff_distrib2",num_str @{thm left_diff_distrib2}),	
  1065 	       (*"w * (z1.0 - z2.0) = w * z1.0 - w * z2.0"*)
  1066 	       *)
  1067 	       
  1068 	       Thm ("mult_1_left",num_str @{thm mult_1_left}),              (*"1 * z = z"*)
  1069 	       Thm ("mult_zero_left",num_str @{thm mult_zero_left}),              (*"0 * z = 0"*)
  1070 	       Thm ("add_0_left",num_str @{thm add_0_left}),(*"0 + z = z"*)
  1071 
  1072 	       Calc ("op +", eval_binop "#add_"), 
  1073 	       Calc ("op *", eval_binop "#mult_"),
  1074 	       Calc ("Atools.pow", eval_binop "#power_"),
  1075                (*	       
  1076 	        Thm ("real_mult_commute",num_str @{thm real_mult_commute}),		(*AC-rewriting*)
  1077 	       Thm ("real_mult_left_commute",num_str @{thm real_mult_left_commute}),	(**)
  1078 	       Thm ("real_mult_assoc",num_str @{thm real_mult_assoc}),			(**)
  1079 	       Thm ("add_commute",num_str @{thm add_commute}),		(**)
  1080 	       Thm ("add_left_commute",num_str @{thm add_left_commute}),	(**)
  1081 	       Thm ("add_assoc",num_str @{thm add_assoc}),	                (**)
  1082 	       *)
  1083 	       
  1084 	       Thm ("sym_realpow_twoI",
  1085                      num_str (@{thm realpow_twoI} RS @{thm sym})),
  1086 	       (*"r1 * r1 = r1 ^^^ 2"*)
  1087 	       Thm ("realpow_plus_1",num_str @{thm realpow_plus_1}),			
  1088 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
  1089 	       (*Thm ("sym_real_mult_2",num_str @{(real_mult_2 RS sym})),		
  1090 	       (*"z1 + z1 = 2 * z1"*)*)
  1091 	       Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc}),		
  1092 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1093 
  1094 	       Thm ("real_num_collect",num_str @{thm real_num_collect}), 
  1095 	       (*"[| l is_const; m is_const |] ==> l * n + m * n = (l + m) * n"*)
  1096 	       Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),	
  1097 	       (*"[| l is_const; m is_const |] ==>  l * n + (m * n + k) =  (l + m) * n + k"*)
  1098 	       Thm ("real_one_collect",num_str @{thm real_one_collect}),		
  1099 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
  1100 	       Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
  1101 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
  1102 
  1103 	       Calc ("op +", eval_binop "#add_"), 
  1104 	       Calc ("op *", eval_binop "#mult_"),
  1105 	       Calc ("Atools.pow", eval_binop "#power_")
  1106 	       ],
  1107       scr = Script ((term_of o the o (parse thy)) scr_expand_binoms)
  1108       }:rls;      
  1109 
  1110 
  1111 "******* Poly.ML end ******* ...RL";
  1112 
  1113 
  1114 (**. MG.03: make_polynomial_ ... uses SML-fun for ordering .**)
  1115 
  1116 (*FIXME.0401: make SML-order local to make_polynomial(_) *)
  1117 (*FIXME.0401: replace 'make_polynomial'(old) by 'make_polynomial_'(MG) *)
  1118 (* Polynom --> List von Monomen *) 
  1119 fun poly2list (Const ("op +",_) $ t1 $ t2) = 
  1120     (poly2list t1) @ (poly2list t2)
  1121   | poly2list t = [t];
  1122 
  1123 (* Monom --> Liste von Variablen *)
  1124 fun monom2list (Const ("op *",_) $ t1 $ t2) = 
  1125     (monom2list t1) @ (monom2list t2)
  1126   | monom2list t = [t];
  1127 
  1128 (* liefert Variablenname (String) einer Variablen und Basis bei Potenz *)
  1129 fun get_basStr (Const ("Atools.pow",_) $ Free (str, _) $ _) = str
  1130   | get_basStr (Free (str, _)) = str
  1131   | get_basStr t = "|||"; (* gross gewichtet; für Brüch ect. *)
  1132 (*| get_basStr t = 
  1133     raise error("get_basStr: called with t= "^(term2str t));*)
  1134 
  1135 (* liefert Hochzahl (String) einer Variablen bzw Gewichtstring (zum Sortieren) *)
  1136 fun get_potStr (Const ("Atools.pow",_) $ Free _ $ Free (str, _)) = str
  1137   | get_potStr (Const ("Atools.pow",_) $ Free _ $ _ ) = "|||" (* gross gewichtet *)
  1138   | get_potStr (Free (str, _)) = "---" (* keine Hochzahl --> kleinst gewichtet *)
  1139   | get_potStr t = "||||||"; (* gross gewichtet; für Brüch ect. *)
  1140 (*| get_potStr t = 
  1141     raise error("get_potStr: called with t= "^(term2str t));*)
  1142 
  1143 (* Umgekehrte string_ord *)
  1144 val string_ord_rev =  rev_order o string_ord;
  1145 		
  1146  (* Ordnung zum lexikographischen Vergleich zweier Variablen (oder Potenzen) 
  1147     innerhalb eines Monomes:
  1148     - zuerst lexikographisch nach Variablenname 
  1149     - wenn gleich: nach steigender Potenz *)
  1150 fun var_ord (a,b: term) = prod_ord string_ord string_ord 
  1151     ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b));
  1152 
  1153 (* Ordnung zum lexikographischen Vergleich zweier Variablen (oder Potenzen); 
  1154    verwendet zum Sortieren von Monomen mittels Gesamtgradordnung:
  1155    - zuerst lexikographisch nach Variablenname 
  1156    - wenn gleich: nach sinkender Potenz*)
  1157 fun var_ord_revPow (a,b: term) = prod_ord string_ord string_ord_rev 
  1158     ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b));
  1159 
  1160 
  1161 (* Ordnet ein Liste von Variablen (und Potenzen) lexikographisch *)
  1162 val sort_varList = sort var_ord;
  1163 
  1164 (* Entfernet aeussersten Operator (Wurzel) aus einem Term und schreibt 
  1165    Argumente in eine Liste *)
  1166 fun args u : term list =
  1167     let fun stripc (f$t, ts) = stripc (f, t::ts)
  1168 	  | stripc (t as Free _, ts) = (t::ts)
  1169 	  | stripc (_, ts) = ts
  1170     in stripc (u, []) end;
  1171                                     
  1172 (* liefert True, falls der Term (Liste von Termen) nur Zahlen 
  1173    (keine Variablen) enthaelt *)
  1174 fun filter_num [] = true
  1175   | filter_num [Free x] = if (is_num (Free x)) then true
  1176 				else false
  1177   | filter_num ((Free _)::_) = false
  1178   | filter_num ts =
  1179     (filter_num o (filter_out is_num) o flat o (map args)) ts;
  1180 
  1181 (* liefert True, falls der Term nur Zahlen (keine Variablen) enthaelt 
  1182    dh. er ist ein numerischer Wert und entspricht einem Koeffizienten *)
  1183 fun is_nums t = filter_num [t];
  1184 
  1185 (* Berechnet den Gesamtgrad eines Monoms *)
  1186 local 
  1187     fun counter (n, []) = n
  1188       | counter (n, x :: xs) = 
  1189 	if (is_nums x) then
  1190 	    counter (n, xs) 
  1191 	else 
  1192 	    (case x of 
  1193 		 (Const ("Atools.pow", _) $ Free (str_b, _) $ Free (str_h, T)) => 
  1194 		     if (is_nums (Free (str_h, T))) then
  1195 			 counter (n + (the (int_of_str str_h)), xs)
  1196 		     else counter (n + 1000, xs) (*FIXME.MG?!*)
  1197 	       | (Const ("Atools.pow", _) $ Free (str_b, _) $ _ ) => 
  1198 		     counter (n + 1000, xs) (*FIXME.MG?!*)
  1199 	       | (Free (str, _)) => counter (n + 1, xs)
  1200 	     (*| _ => raise error("monom_degree: called with factor: "^(term2str x)))*)
  1201 	       | _ => counter (n + 10000, xs)) (*FIXME.MG?! ... Brüche ect.*)
  1202 in  
  1203     fun monom_degree l = counter (0, l) 
  1204 end;
  1205 
  1206 (* wie Ordnung dict_ord (lexicographische Ordnung zweier Listen, mit Vergleich 
  1207    der Listen-Elemente mit elem_ord) - Elemente die Bedingung cond erfuellen, 
  1208    werden jedoch dabei ignoriert (uebersprungen)  *)
  1209 fun dict_cond_ord _ _ ([], []) = EQUAL
  1210   | dict_cond_ord _ _ ([], _ :: _) = LESS
  1211   | dict_cond_ord _ _ (_ :: _, []) = GREATER
  1212   | dict_cond_ord elem_ord cond (x :: xs, y :: ys) =
  1213     (case (cond x, cond y) of 
  1214 	 (false, false) => (case elem_ord (x, y) of 
  1215 				EQUAL => dict_cond_ord elem_ord cond (xs, ys) 
  1216 			      | ord => ord)
  1217        | (false, true)  => dict_cond_ord elem_ord cond (x :: xs, ys)
  1218        | (true, false)  => dict_cond_ord elem_ord cond (xs, y :: ys)
  1219        | (true, true)  =>  dict_cond_ord elem_ord cond (xs, ys) );
  1220 
  1221 (* Gesamtgradordnung zum Vergleich von Monomen (Liste von Variablen/Potenzen):
  1222    zuerst nach Gesamtgrad, bei gleichem Gesamtgrad lexikographisch ordnen - 
  1223    dabei werden Koeffizienten ignoriert (2*3*a^^^2*4*b gilt wie a^^^2*b) *)
  1224 fun degree_ord (xs, ys) =
  1225 	    prod_ord int_ord (dict_cond_ord var_ord_revPow is_nums) 
  1226 	    ((monom_degree xs, xs), (monom_degree ys, ys));
  1227 
  1228 fun hd_str str = substring (str, 0, 1);
  1229 fun tl_str str = substring (str, 1, (size str) - 1);
  1230 
  1231 (* liefert nummerischen Koeffizienten eines Monoms oder NONE *)
  1232 fun get_koeff_of_mon [] =  raise error("get_koeff_of_mon: called with l = []")
  1233   | get_koeff_of_mon (l as x::xs) = if is_nums x then SOME x
  1234 				    else NONE;
  1235 
  1236 (* wandelt Koeffizient in (zum sortieren geeigneten) String um *)
  1237 fun koeff2ordStr (SOME x) = (case x of 
  1238 				 (Free (str, T)) => 
  1239 				     if (hd_str str) = "-" then (tl_str str)^"0" (* 3 < -3 *)
  1240 				     else str
  1241 			       | _ => "aaa") (* "num.Ausdruck" --> gross *)
  1242   | koeff2ordStr NONE = "---"; (* "kein Koeff" --> kleinste *)
  1243 
  1244 (* Order zum Vergleich von Koeffizienten (strings): 
  1245    "kein Koeff" < "0" < "1" < "-1" < "2" < "-2" < ... < "num.Ausdruck" *)
  1246 fun compare_koeff_ord (xs, ys) = 
  1247     string_ord ((koeff2ordStr o get_koeff_of_mon) xs,
  1248 		(koeff2ordStr o get_koeff_of_mon) ys);
  1249 
  1250 (* Gesamtgradordnung degree_ord + Ordnen nach Koeffizienten falls EQUAL *)
  1251 fun koeff_degree_ord (xs, ys) =
  1252 	    prod_ord degree_ord compare_koeff_ord ((xs, xs), (ys, ys));
  1253 
  1254 (* Ordnet ein Liste von Monomen (Monom = Liste von Variablen) mittels 
  1255    Gesamtgradordnung *)
  1256 val sort_monList = sort koeff_degree_ord;
  1257 
  1258 (* Alternativ zu degree_ord koennte auch die viel einfachere und 
  1259    kuerzere Ordnung simple_ord verwendet werden - ist aber nicht 
  1260    fuer unsere Zwecke geeignet!
  1261 
  1262 fun simple_ord (al,bl: term list) = dict_ord string_ord 
  1263 	 (map get_basStr al, map get_basStr bl); 
  1264 
  1265 val sort_monList = sort simple_ord; *)
  1266 
  1267 (* aus 2 Variablen wird eine Summe bzw ein Produkt erzeugt 
  1268    (mit gewuenschtem Typen T) *)
  1269 fun plus T = Const ("op +", [T,T] ---> T);
  1270 fun mult T = Const ("op *", [T,T] ---> T);
  1271 fun binop op_ t1 t2 = op_ $ t1 $ t2;
  1272 fun create_prod T (a,b) = binop (mult T) a b;
  1273 fun create_sum T (a,b) = binop (plus T) a b;
  1274 
  1275 (* löscht letztes Element einer Liste *)
  1276 fun drop_last l = take ((length l)-1,l);
  1277 
  1278 (* Liste von Variablen --> Monom *)
  1279 fun create_monom T vl = foldr (create_prod T) (drop_last vl, last_elem vl);
  1280 (* Bemerkung: 
  1281    foldr bewirkt rechtslastige Klammerung des Monoms - ist notwendig, damit zwei 
  1282    gleiche Monome zusammengefasst werden können (collect_numerals)! 
  1283    zB: 2*(x*(y*z)) + 3*(x*(y*z)) --> (2+3)*(x*(y*z))*)
  1284 
  1285 (* Liste von Monomen --> Polynom *)	
  1286 fun create_polynom T ml = foldl (create_sum T) (hd ml, tl ml);
  1287 (* Bemerkung: 
  1288    foldl bewirkt linkslastige Klammerung des Polynoms (der Summanten) - 
  1289    bessere Darstellung, da keine Klammern sichtbar! 
  1290    (und discard_parentheses in make_polynomial hat weniger zu tun) *)
  1291 
  1292 (* sorts the variables (faktors) of an expanded polynomial lexicographical *)
  1293 fun sort_variables t = 
  1294     let
  1295 	val ll =  map monom2list (poly2list t);
  1296 	val lls = map sort_varList ll; 
  1297 	val T = type_of t;
  1298 	val ls = map (create_monom T) lls;
  1299     in create_polynom T ls end;
  1300 
  1301 (* sorts the monoms of an expanded and variable-sorted polynomial 
  1302    by total_degree *)
  1303 fun sort_monoms t = 
  1304     let
  1305 	val ll =  map monom2list (poly2list t);
  1306 	val lls = sort_monList ll;
  1307 	val T = type_of t;
  1308 	val ls = map (create_monom T) lls;
  1309     in create_polynom T ls end;
  1310 
  1311 (* auch Klammerung muss übereinstimmen; 
  1312    sort_variables klammert Produkte rechtslastig*)
  1313 fun is_multUnordered t = ((is_polyexp t) andalso not (t = sort_variables t));
  1314 
  1315 fun eval_is_multUnordered (thmid:string) _ 
  1316 		       (t as (Const("Poly.is'_multUnordered", _) $ arg)) thy = 
  1317     if is_multUnordered arg
  1318     then SOME (mk_thmid thmid "" 
  1319 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
  1320 	       Trueprop $ (mk_equality (t, HOLogic.true_const)))
  1321     else SOME (mk_thmid thmid "" 
  1322 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
  1323 	       Trueprop $ (mk_equality (t, HOLogic.false_const)))
  1324   | eval_is_multUnordered _ _ _ _ = NONE; 
  1325 
  1326 
  1327 fun attach_form (_:rule list list) (_:term) (_:term) = (*still missing*)
  1328     []:(rule * (term * term list)) list;
  1329 fun init_state (_:term) = e_rrlsstate;
  1330 fun locate_rule (_:rule list list) (_:term) (_:rule) =
  1331     ([]:(rule * (term * term list)) list);
  1332 fun next_rule (_:rule list list) (_:term) = (NONE:rule option);
  1333 fun normal_form t = SOME (sort_variables t,[]:term list);
  1334 
  1335 val order_mult_ =
  1336     Rrls {id = "order_mult_", 
  1337 	  prepat = 
  1338 	  [([(term_of o the o (parse thy)) "p is_multUnordered"], 
  1339 	    (term_of o the o (parse thy)) "?p" )],
  1340 	  rew_ord = ("dummy_ord", dummy_ord),
  1341 	  erls = append_rls "e_rls-is_multUnordered" e_rls(*MG: poly_erls*)
  1342 			    [Calc ("Poly.is'_multUnordered", eval_is_multUnordered "")
  1343 			     ],
  1344 	  calc = [("PLUS"    ,("op +"        ,eval_binop "#add_")),
  1345 		  ("TIMES"   ,("op *"        ,eval_binop "#mult_")),
  1346 		  ("DIVIDE" ,("HOL.divide"  ,eval_cancel "#divide_")),
  1347 		  ("POWER"  ,("Atools.pow"  ,eval_binop "#power_"))],
  1348 	  (*asm_thm=[],*)
  1349 	  scr=Rfuns {init_state  = init_state,
  1350 		     normal_form = normal_form,
  1351 		     locate_rule = locate_rule,
  1352 		     next_rule   = next_rule,
  1353 		     attach_form = attach_form}};
  1354 
  1355 val order_mult_rls_ = 
  1356   Rls{id = "order_mult_rls_", preconds = [], 
  1357       rew_ord = ("dummy_ord", dummy_ord),
  1358       erls = e_rls,srls = Erls,
  1359       calc = [],
  1360       (*asm_thm = [],*)
  1361       rules = [Rls_ order_mult_
  1362 	       ], scr = EmptyScr}:rls;
  1363 
  1364 fun is_addUnordered t = ((is_polyexp t) andalso not (t = sort_monoms t));
  1365 
  1366 (*WN.18.6.03 *)
  1367 (*("is_addUnordered", ("Poly.is'_addUnordered", eval_is_addUnordered ""))*)
  1368 fun eval_is_addUnordered (thmid:string) _ 
  1369 		       (t as (Const("Poly.is'_addUnordered", _) $ arg)) thy = 
  1370     if is_addUnordered arg
  1371     then SOME (mk_thmid thmid "" 
  1372 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
  1373 	       Trueprop $ (mk_equality (t, HOLogic.true_const)))
  1374     else SOME (mk_thmid thmid "" 
  1375 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
  1376 	       Trueprop $ (mk_equality (t, HOLogic.false_const)))
  1377   | eval_is_addUnordered _ _ _ _ = NONE; 
  1378 
  1379 fun attach_form (_:rule list list) (_:term) (_:term) = (*still missing*)
  1380     []:(rule * (term * term list)) list;
  1381 fun init_state (_:term) = e_rrlsstate;
  1382 fun locate_rule (_:rule list list) (_:term) (_:rule) =
  1383     ([]:(rule * (term * term list)) list);
  1384 fun next_rule (_:rule list list) (_:term) = (NONE:rule option);
  1385 fun normal_form t = SOME (sort_monoms t,[]:term list);
  1386 
  1387 val order_add_ =
  1388     Rrls {id = "order_add_", 
  1389 	  prepat = (*WN.18.6.03 Preconditions und Pattern,
  1390 		    die beide passen muessen, damit das Rrls angewandt wird*)
  1391 	  [([(term_of o the o (parse thy)) "p is_addUnordered"], 
  1392 	    (term_of o the o (parse thy)) "?p" 
  1393 	    (*WN.18.6.03 also KEIN pattern, dieses erzeugt nur das Environment 
  1394 	      fuer die Evaluation der Precondition "p is_addUnordered"*))],
  1395 	  rew_ord = ("dummy_ord", dummy_ord),
  1396 	  erls = append_rls "e_rls-is_addUnordered" e_rls(*MG: poly_erls*)
  1397 			    [Calc ("Poly.is'_addUnordered", eval_is_addUnordered "")
  1398 			     (*WN.18.6.03 definiert in (theory "Poly"),
  1399                                evaluiert prepat*)],
  1400 	  calc = [("PLUS"    ,("op +"        ,eval_binop "#add_")),
  1401 		  ("TIMES"   ,("op *"        ,eval_binop "#mult_")),
  1402 		  ("DIVIDE" ,("HOL.divide"  ,eval_cancel "#divide_")),
  1403 		  ("POWER"  ,("Atools.pow"  ,eval_binop "#power_"))],
  1404 	  (*asm_thm=[],*)
  1405 	  scr=Rfuns {init_state  = init_state,
  1406 		     normal_form = normal_form,
  1407 		     locate_rule = locate_rule,
  1408 		     next_rule   = next_rule,
  1409 		     attach_form = attach_form}};
  1410 
  1411 val order_add_rls_ = 
  1412   Rls{id = "order_add_rls_", preconds = [], 
  1413       rew_ord = ("dummy_ord", dummy_ord),
  1414       erls = e_rls,srls = Erls,
  1415       calc = [],
  1416       (*asm_thm = [],*)
  1417       rules = [Rls_ order_add_
  1418 	       ], scr = EmptyScr}:rls;
  1419 
  1420 (*. see MG-DA.p.52ff .*)
  1421 val make_polynomial(*MG.03, overwrites version from above, 
  1422     previously 'make_polynomial_'*) =
  1423   Seq {id = "make_polynomial", preconds = []:term list, 
  1424       rew_ord = ("dummy_ord", dummy_ord),
  1425       erls = Atools_erls, srls = Erls,calc = [],
  1426       rules = [Rls_ discard_minus_,
  1427 	       Rls_ expand_poly_,
  1428 	       Calc ("op *", eval_binop "#mult_"),
  1429 	       Rls_ order_mult_rls_,
  1430 	       Rls_ simplify_power_, 
  1431 	       Rls_ calc_add_mult_pow_, 
  1432 	       Rls_ reduce_012_mult_,
  1433 	       Rls_ order_add_rls_,
  1434 	       Rls_ collect_numerals_, 
  1435 	       Rls_ reduce_012_,
  1436 	       Rls_ discard_parentheses_
  1437 	       ],
  1438       scr = EmptyScr
  1439       }:rls;
  1440 val norm_Poly(*=make_polynomial*) = 
  1441   Seq {id = "norm_Poly", preconds = []:term list, 
  1442       rew_ord = ("dummy_ord", dummy_ord),
  1443       erls = Atools_erls, srls = Erls, calc = [],
  1444       rules = [Rls_ discard_minus_,
  1445 	       Rls_ expand_poly_,
  1446 	       Calc ("op *", eval_binop "#mult_"),
  1447 	       Rls_ order_mult_rls_,
  1448 	       Rls_ simplify_power_, 
  1449 	       Rls_ calc_add_mult_pow_, 
  1450 	       Rls_ reduce_012_mult_,
  1451 	       Rls_ order_add_rls_,
  1452 	       Rls_ collect_numerals_, 
  1453 	       Rls_ reduce_012_,
  1454 	       Rls_ discard_parentheses_
  1455 	       ],
  1456       scr = EmptyScr
  1457       }:rls;
  1458 
  1459 (* MG:03 Like make_polynomial_ but without Rls_ discard_parentheses_ 
  1460    and expand_poly_rat_ instead of expand_poly_, see MG-DA.p.56ff*)
  1461 (* MG necessary  for termination of norm_Rational(*_mg*) in Rational.ML*)
  1462 val make_rat_poly_with_parentheses =
  1463   Seq{id = "make_rat_poly_with_parentheses", preconds = []:term list, 
  1464       rew_ord = ("dummy_ord", dummy_ord),
  1465       erls = Atools_erls, srls = Erls, calc = [],
  1466       rules = [Rls_ discard_minus_,
  1467 	       Rls_ expand_poly_rat_,(*ignors rationals*)
  1468 	       Calc ("op *", eval_binop "#mult_"),
  1469 	       Rls_ order_mult_rls_,
  1470 	       Rls_ simplify_power_, 
  1471 	       Rls_ calc_add_mult_pow_, 
  1472 	       Rls_ reduce_012_mult_,
  1473 	       Rls_ order_add_rls_,
  1474 	       Rls_ collect_numerals_, 
  1475 	       Rls_ reduce_012_
  1476 	       (*Rls_ discard_parentheses_ *)
  1477 	       ],
  1478       scr = EmptyScr
  1479       }:rls;
  1480 
  1481 (*.a minimal ruleset for reverse rewriting of factions [2];
  1482    compare expand_binoms.*)
  1483 val rev_rew_p = 
  1484 Seq{id = "reverse_rewriting", preconds = [], rew_ord = ("termlessI",termlessI),
  1485     erls = Atools_erls, srls = Erls,
  1486     calc = [(*("PLUS"  , ("op +", eval_binop "#add_")), 
  1487 	    ("TIMES" , ("op *", eval_binop "#mult_")),
  1488 	    ("POWER", ("Atools.pow", eval_binop "#power_"))*)
  1489 	    ],
  1490     rules = [Thm ("real_plus_binom_times" ,num_str @{thm real_plus_binom_times}),
  1491 	     (*"(a + b)*(a + b) = a ^ 2 + 2 * a * b + b ^ 2*)
  1492 	     Thm ("real_plus_binom_times1" ,num_str @{thm real_plus_binom_times1}),
  1493 	     (*"(a +  1*b)*(a + -1*b) = a^^^2 + -1*b^^^2"*)
  1494 	     Thm ("real_plus_binom_times2" ,num_str @{thm real_plus_binom_times2}),
  1495 	     (*"(a + -1*b)*(a +  1*b) = a^^^2 + -1*b^^^2"*)
  1496 
  1497 	     Thm ("mult_1_left",num_str @{thm mult_1_left}),(*"1 * z = z"*)
  1498 
  1499              Thm ("left_distrib" ,num_str @{thm left_distrib}),
  1500 	     (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1501 	     Thm ("left_distrib2",num_str @{thm left_distrib2}),
  1502 	     (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1503 	       
  1504 	     Thm ("real_mult_assoc", num_str @{thm real_mult_assoc}),
  1505 	     (*"?z1.1 * ?z2.1 * ?z3. =1 ?z1.1 * (?z2.1 * ?z3.1)"*)
  1506 	     Rls_ order_mult_rls_,
  1507 	     (*Rls_ order_add_rls_,*)
  1508 
  1509 	     Calc ("op +", eval_binop "#add_"), 
  1510 	     Calc ("op *", eval_binop "#mult_"),
  1511 	     Calc ("Atools.pow", eval_binop "#power_"),
  1512 	     
  1513 	     Thm ("sym_realpow_twoI",
  1514                    num_str (@{thm realpow_twoI} RS @{thm sym})),
  1515 	     (*"r1 * r1 = r1 ^^^ 2"*)
  1516 	     Thm ("sym_real_mult_2",
  1517                    num_str (@{thm real_mult_2} RS @{thm sym})),
  1518 	     (*"z1 + z1 = 2 * z1"*)
  1519 	     Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc}),
  1520 	     (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1521 
  1522 	     Thm ("real_num_collect",num_str @{thm real_num_collect}), 
  1523 	     (*"[| l is_const; m is_const |]==>l * n + m * n = (l + m) * n"*)
  1524 	     Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),
  1525 	     (*"[| l is_const; m is_const |] ==>  
  1526                                      l * n + (m * n + k) =  (l + m) * n + k"*)
  1527 	     Thm ("real_one_collect",num_str @{thm real_one_collect}),
  1528 	     (*"m is_const ==> n + m * n = (1 + m) * n"*)
  1529 	     Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
  1530 	     (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
  1531 
  1532 	     Thm ("realpow_multI", num_str @{thm realpow_multI}),
  1533 	     (*"(r * s) ^^^ n = r ^^^ n * s ^^^ n"*)
  1534 
  1535 	     Calc ("op +", eval_binop "#add_"), 
  1536 	     Calc ("op *", eval_binop "#mult_"),
  1537 	     Calc ("Atools.pow", eval_binop "#power_"),
  1538 
  1539 	     Thm ("mult_1_left",num_str @{thm mult_1_left}),(*"1 * z = z"*)
  1540 	     Thm ("mult_zero_left",num_str @{thm mult_zero_left}),(*"0 * z = 0"*)
  1541 	     Thm ("add_0_left",num_str @{thm add_0_left})(*0 + z = z*)
  1542 
  1543 	     (*Rls_ order_add_rls_*)
  1544 	     ],
  1545 
  1546     scr = EmptyScr}:rls;      
  1547 
  1548 ruleset' := 
  1549 overwritelthy @{theory} (!ruleset',
  1550 		   [("norm_Poly", prep_rls norm_Poly),
  1551 		    ("Poly_erls",Poly_erls)(*FIXXXME:del with rls.rls'*),
  1552 		    ("expand", prep_rls expand),
  1553 		    ("expand_poly", prep_rls expand_poly),
  1554 		    ("simplify_power", prep_rls simplify_power),
  1555 		    ("order_add_mult", prep_rls order_add_mult),
  1556 		    ("collect_numerals", prep_rls collect_numerals),
  1557 		    ("collect_numerals_", prep_rls collect_numerals_),
  1558 		    ("reduce_012", prep_rls reduce_012),
  1559 		    ("discard_parentheses", prep_rls discard_parentheses),
  1560 		    ("make_polynomial", prep_rls make_polynomial),
  1561 		    ("expand_binoms", prep_rls expand_binoms),
  1562 		    ("rev_rew_p", prep_rls rev_rew_p),
  1563 		    ("discard_minus_", prep_rls discard_minus_),
  1564 		    ("expand_poly_", prep_rls expand_poly_),
  1565 		    ("expand_poly_rat_", prep_rls expand_poly_rat_),
  1566 		    ("simplify_power_", prep_rls simplify_power_),
  1567 		    ("calc_add_mult_pow_", prep_rls calc_add_mult_pow_),
  1568 		    ("reduce_012_mult_", prep_rls reduce_012_mult_),
  1569 		    ("reduce_012_", prep_rls reduce_012_),
  1570 		    ("discard_parentheses_",prep_rls discard_parentheses_),
  1571 		    ("order_mult_rls_", prep_rls order_mult_rls_),
  1572 		    ("order_add_rls_", prep_rls order_add_rls_),
  1573 		    ("make_rat_poly_with_parentheses", 
  1574 		     prep_rls make_rat_poly_with_parentheses)
  1575 		    (*("", prep_rls ),
  1576 		     ("", prep_rls ),
  1577 		     ("", prep_rls )
  1578 		     *)
  1579 		    ]);
  1580 
  1581 calclist':= overwritel (!calclist', 
  1582    [("is_polyrat_in", ("Poly.is'_polyrat'_in", 
  1583 		       eval_is_polyrat_in "#eval_is_polyrat_in")),
  1584     ("is_expanded_in", ("Poly.is'_expanded'_in", eval_is_expanded_in "")),
  1585     ("is_poly_in", ("Poly.is'_poly'_in", eval_is_poly_in "")),
  1586     ("has_degree_in", ("Poly.has'_degree'_in", eval_has_degree_in "")),
  1587     ("is_polyexp", ("Poly.is'_polyexp", eval_is_polyexp "")),
  1588     ("is_multUnordered", ("Poly.is'_multUnordered", eval_is_multUnordered"")),
  1589     ("is_addUnordered", ("Poly.is'_addUnordered", eval_is_addUnordered ""))
  1590     ]);
  1591 
  1592 
  1593 (** problems **)
  1594 
  1595 store_pbt
  1596  (prep_pbt (theory "Poly") "pbl_simp_poly" [] e_pblID
  1597  (["polynomial","simplification"],
  1598   [("#Given" ,["TERM t_"]),
  1599    ("#Where" ,["t_ is_polyexp"]),
  1600    ("#Find"  ,["normalform n_"])
  1601   ],
  1602   append_rls "e_rls" e_rls [(*for preds in where_*)
  1603 			    Calc ("Poly.is'_polyexp", eval_is_polyexp "")], 
  1604   SOME "Simplify t_", 
  1605   [["simplification","for_polynomials"]]));
  1606 
  1607 
  1608 (** methods **)
  1609 
  1610 store_met
  1611     (prep_met (theory "Poly") "met_simp_poly" [] e_metID
  1612 	      (["simplification","for_polynomials"],
  1613 	       [("#Given" ,["TERM t_"]),
  1614 		("#Where" ,["t_ is_polyexp"]),
  1615 		("#Find"  ,["normalform n_"])
  1616 		],
  1617 	       {rew_ord'="tless_true",
  1618 		rls' = e_rls,
  1619 		calc = [], 
  1620 		srls = e_rls, 
  1621 		prls = append_rls "simplification_for_polynomials_prls" e_rls 
  1622 				  [(*for preds in where_*)
  1623 				   Calc ("Poly.is'_polyexp",eval_is_polyexp"")],
  1624 		crls = e_rls, nrls = norm_Poly},
  1625 	       "Script SimplifyScript (t_::real) =                " ^
  1626 	       "  ((Rewrite_Set norm_Poly False) t_)"
  1627 	       ));
  1628 *}
  1629 
  1630 end