src/Tools/isac/Knowledge/RootEq.thy
author wenzelm
Sat, 12 Jun 2021 18:06:27 +0200
changeset 60297 73e7175a7d3f
parent 60294 6623f5cdcb19
child 60298 09106b85d3b4
permissions -rw-r--r--
use more antiquotations;
     1 (*.(c) by Richard Lang, 2003 .*)
     2 (* collecting all knowledge for Root Equations
     3    created by: rlang 
     4          date: 02.08
     5    changed by: rlang
     6    last change by: rlang
     7              date: 02.11.14
     8 *)
     9 
    10 theory RootEq imports Root Equation begin
    11 
    12 text \<open>univariate equations containing real square roots:
    13   This type of equations has been used to bootstrap Lucas-Interpretation.
    14   In 2003 this type has been extended and integrated into ISAC's equation solver
    15   by Richard Lang in 2003.
    16   The assumptions (all containing "<") didn't pass the xml-parsers at the 
    17   interface between math-engine and front-end.
    18   The migration Isabelle2002 --> 2011 dropped this type of equation, see
    19   test/../rooteq.sml, rootrateq.sml.
    20 \<close>
    21 
    22 subsection \<open>consts definition for predicates\<close>
    23 consts
    24   is_rootTerm_in     :: "[real, real] => bool" ("_ is'_rootTerm'_in _")
    25   is_sqrtTerm_in     :: "[real, real] => bool" ("_ is'_sqrtTerm'_in _") 
    26   is_normSqrtTerm_in :: "[real, real] => bool" ("_ is'_normSqrtTerm'_in _") 
    27  
    28 subsection \<open>theorems not yet adopted from Isabelle\<close>
    29 axiomatization where
    30 (* normalise *)
    31   makex1_x:            "a \<up> 1  = a"   and
    32   real_assoc_1:        "a+(b+c) = a+b+c" and
    33   real_assoc_2:        "a*(b*c) = a*b*c" and
    34 
    35   (* simplification of root*)
    36   sqrt_square_1:       "[|0 <= a|] ==>  (sqrt a) \<up> 2 = a" and
    37   sqrt_square_2:       "sqrt (a  \<up>  2) = a" and
    38   sqrt_times_root_1:   "sqrt a * sqrt b = sqrt(a*b)" and
    39   sqrt_times_root_2:   "a * sqrt b * sqrt c = a * sqrt(b*c)" and
    40 
    41   (* isolate one root on the LEFT or RIGHT hand side of the equation *)
    42   sqrt_isolate_l_add1: "[|bdv occurs_in c|] ==> 
    43    (a + b*sqrt(c) = d) = (b * sqrt(c) = d+ (-1) * a)" and
    44   sqrt_isolate_l_add2: "[|bdv occurs_in c|] ==>
    45    (a + sqrt(c) = d) = ((sqrt(c) = d+ (-1) * a))" and
    46   sqrt_isolate_l_add3: "[|bdv occurs_in c|] ==>
    47    (a + b*(e/sqrt(c)) = d) = (b * (e/sqrt(c)) = d + (-1) * a)" and
    48   sqrt_isolate_l_add4: "[|bdv occurs_in c|] ==>
    49    (a + b/(f*sqrt(c)) = d) = (b / (f*sqrt(c)) = d + (-1) * a)" and
    50   sqrt_isolate_l_add5: "[|bdv occurs_in c|] ==>
    51    (a + b*(e/(f*sqrt(c))) = d) = (b * (e/(f*sqrt(c))) = d+ (-1) * a)" and
    52   sqrt_isolate_l_add6: "[|bdv occurs_in c|] ==>
    53    (a + b/sqrt(c) = d) = (b / sqrt(c) = d+ (-1) * a)" and
    54   sqrt_isolate_r_add1: "[|bdv occurs_in f|] ==>
    55    (a = d + e*sqrt(f)) = (a + (-1) * d = e*sqrt(f))" and
    56   sqrt_isolate_r_add2: "[|bdv occurs_in f|] ==>
    57    (a = d + sqrt(f)) = (a + (-1) * d = sqrt(f))" and
    58  (* small hack: thm 3,5,6 are not needed if rootnormalise is well done*)
    59   sqrt_isolate_r_add3: "[|bdv occurs_in f|] ==>
    60    (a = d + e*(g/sqrt(f))) = (a + (-1) * d = e*(g/sqrt(f)))" and
    61   sqrt_isolate_r_add4: "[|bdv occurs_in f|] ==>
    62    (a = d + g/sqrt(f)) = (a + (-1) * d = g/sqrt(f))" and
    63   sqrt_isolate_r_add5: "[|bdv occurs_in f|] ==>
    64    (a = d + e*(g/(h*sqrt(f)))) = (a + (-1) * d = e*(g/(h*sqrt(f))))" and
    65   sqrt_isolate_r_add6: "[|bdv occurs_in f|] ==>
    66    (a = d + g/(h*sqrt(f))) = (a + (-1) * d = g/(h*sqrt(f)))" and
    67  
    68   (* eliminate isolates sqrt *)
    69   sqrt_square_equation_both_1: "[|bdv occurs_in b; bdv occurs_in d|] ==> 
    70    ( (sqrt a + sqrt b         = sqrt c + sqrt d) = 
    71      (a+2*sqrt(a)*sqrt(b)+b  = c+2*sqrt(c)*sqrt(d)+d))" and
    72   sqrt_square_equation_both_2: "[|bdv occurs_in b; bdv occurs_in d|] ==> 
    73    ( (sqrt a - sqrt b           = sqrt c + sqrt d) = 
    74      (a - 2*sqrt(a)*sqrt(b)+b  = c+2*sqrt(c)*sqrt(d)+d))" and
    75   sqrt_square_equation_both_3: "[|bdv occurs_in b; bdv occurs_in d|] ==> 
    76    ( (sqrt a + sqrt b           = sqrt c - sqrt d) = 
    77      (a + 2*sqrt(a)*sqrt(b)+b  = c - 2*sqrt(c)*sqrt(d)+d))" and
    78   sqrt_square_equation_both_4: "[|bdv occurs_in b; bdv occurs_in d|] ==> 
    79    ( (sqrt a - sqrt b           = sqrt c - sqrt d) = 
    80      (a - 2*sqrt(a)*sqrt(b)+b  = c - 2*sqrt(c)*sqrt(d)+d))" and
    81   sqrt_square_equation_left_1: "[|bdv occurs_in a; 0 <= a; 0 <= b|] ==>
    82    ( (sqrt (a) = b) = (a = (b \<up> 2)))" and
    83   sqrt_square_equation_left_2: "[|bdv occurs_in a; 0 <= a; 0 <= b*c|] ==> 
    84    ( (c*sqrt(a) = b) = (c \<up> 2*a = b \<up> 2))" and
    85   sqrt_square_equation_left_3: "[|bdv occurs_in a; 0 <= a; 0 <= b*c|] ==> 
    86    ( c/sqrt(a) = b) = (c \<up> 2 / a = b \<up> 2)" and
    87   (* small hack: thm 4-6 are not needed if rootnormalise is well done*)
    88   sqrt_square_equation_left_4: "[|bdv occurs_in a; 0 <= a; 0 <= b*c*d|] ==> 
    89    ( (c*(d/sqrt (a)) = b) = (c \<up> 2*(d \<up> 2/a) = b \<up> 2))" and
    90   sqrt_square_equation_left_5: "[|bdv occurs_in a; 0 <= a; 0 <= b*c*d|] ==> 
    91    ( c/(d*sqrt(a)) = b) = (c \<up> 2 / (d \<up> 2*a) = b \<up> 2)" and
    92   sqrt_square_equation_left_6: "[|bdv occurs_in a; 0 <= a; 0 <= b*c*d*e|] ==> 
    93    ( (c*(d/(e*sqrt (a))) = b) = (c \<up> 2*(d \<up> 2/(e \<up> 2*a)) = b \<up> 2))" and
    94   sqrt_square_equation_right_1:  "[|bdv occurs_in b; 0 <= a; 0 <= b|] ==> 
    95    ( (a = sqrt (b)) = (a \<up> 2 = b))" and
    96   sqrt_square_equation_right_2: "[|bdv occurs_in b; 0 <= a*c; 0 <= b|] ==> 
    97    ( (a = c*sqrt (b)) = ((a \<up> 2) = c \<up> 2*b))" and
    98   sqrt_square_equation_right_3: "[|bdv occurs_in b; 0 <= a*c; 0 <= b|] ==> 
    99    ( (a = c/sqrt (b)) = (a \<up> 2 = c \<up> 2/b))" and
   100  (* small hack: thm 4-6 are not needed if rootnormalise is well done*)
   101   sqrt_square_equation_right_4: "[|bdv occurs_in b; 0 <= a*c*d; 0 <= b|] ==> 
   102    ( (a = c*(d/sqrt (b))) = ((a \<up> 2) = c \<up> 2*(d \<up> 2/b)))" and
   103   sqrt_square_equation_right_5: "[|bdv occurs_in b; 0 <= a*c*d; 0 <= b|] ==> 
   104    ( (a = c/(d*sqrt (b))) = (a \<up> 2 = c \<up> 2/(d \<up> 2*b)))" and
   105   sqrt_square_equation_right_6: "[|bdv occurs_in b; 0 <= a*c*d*e; 0 <= b|] ==> 
   106    ( (a = c*(d/(e*sqrt (b)))) = ((a \<up> 2) = c \<up> 2*(d \<up> 2/(e \<up> 2*b))))"
   107 
   108 subsection \<open>predicates\<close>
   109 ML \<open>
   110 (* true if bdv is under sqrt of a Equation*)
   111 fun is_rootTerm_in t v = 
   112   let 
   113    	fun findroot (t as (_ $ _ $ _ $ _)) _ = raise TERM ( "is_rootTerm_in", [t])
   114 	  (* at the moment there is no term like this, but ....*)
   115 	  | findroot (Const ("Root.nroot",_) $ _ $ t3) v = Prog_Expr.occurs_in v t3
   116 	  | findroot (_ $ t2 $ t3) v = findroot t2 v orelse findroot t3 v
   117 	  | findroot (Const ("NthRoot.sqrt", _) $ t2) v = Prog_Expr.occurs_in v t2
   118 	  | findroot (_ $ t2) v = findroot t2 v
   119 	  | findroot _ _ = false;
   120   in
   121 	  findroot t v
   122   end;
   123 
   124 fun is_sqrtTerm_in t v = 
   125   let 
   126     fun findsqrt (t as (_ $ _ $ _ $ _)) _ = raise TERM ("is_sqrteqation_in", [t])
   127     (* at the moment there is no term like this, but ....*)
   128     | findsqrt (_ $ t1 $ t2) v = (findsqrt t1 v) orelse (findsqrt t2 v)
   129     | findsqrt (Const ("NthRoot.sqrt", _) $ a) v = Prog_Expr.occurs_in v a
   130     | findsqrt (_ $ t1) v = findsqrt t1 v
   131     | findsqrt _ _ = false;
   132   in
   133    findsqrt t v
   134   end;
   135 
   136 (* RL: 030518: Is in the rightest subterm of a term a sqrt with bdv,
   137 and the subterm ist connected with + or * --> is normalised*)
   138 fun is_normSqrtTerm_in t v =
   139   let
   140      fun isnorm (t as (_ $ _ $ _ $ _)) _ = raise TERM ("is_normSqrtTerm_in", [t])
   141          (* at the moment there is no term like this, but ....*)
   142        | isnorm (Const ("Groups.plus_class.plus",_) $ _ $ t2) v = is_sqrtTerm_in t2 v
   143        | isnorm (Const ("Groups.times_class.times",_) $ _ $ t2) v = is_sqrtTerm_in t2 v
   144        | isnorm (Const ("Groups.minus_class.minus",_) $ _ $ _) _ = false
   145        | isnorm (Const ("Rings.divide_class.divide",_) $ t1 $ t2) v =
   146          is_sqrtTerm_in t1 v orelse is_sqrtTerm_in t2 v
   147        | isnorm (Const ("NthRoot.sqrt", _) $ t1) v = Prog_Expr.occurs_in v t1
   148 	     | isnorm (_ $ t1) v = is_sqrtTerm_in t1 v
   149        | isnorm _ _ = false;
   150    in
   151      isnorm t v
   152    end;
   153 
   154 fun eval_is_rootTerm_in _ _ (p as (Const ("RootEq.is_rootTerm_in",_) $ t $ v)) _ =
   155     if is_rootTerm_in t v
   156     then SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   157     else SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   158   | eval_is_rootTerm_in _ _ _ _ = ((*tracing"### nichts matcht";*) NONE);
   159 
   160 fun eval_is_sqrtTerm_in _ _ (p as (Const ("RootEq.is_sqrtTerm_in",_) $ t $ v)) _ =
   161     if is_sqrtTerm_in t v
   162     then SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   163     else SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   164   | eval_is_sqrtTerm_in _ _ _ _ = ((*tracing"### nichts matcht";*) NONE);
   165 
   166 fun eval_is_normSqrtTerm_in _ _ (p as (Const ("RootEq.is_normSqrtTerm_in",_) $ t $ v)) _ =
   167     if is_normSqrtTerm_in t v
   168     then SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   169     else SOME ((UnparseC.term p) ^ " = True", HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   170   | eval_is_normSqrtTerm_in _ _ _ _ = ((*tracing"### nichts matcht";*) NONE);
   171 \<close>
   172 setup \<open>KEStore_Elems.add_calcs
   173   [("is_rootTerm_in", ("RootEq.is_rootTerm_in", eval_is_rootTerm_in"")),
   174     ("is_sqrtTerm_in", ("RootEq.is_sqrtTerm_in", eval_is_sqrtTerm_in"")),
   175     ("is_normSqrtTerm_in", ("RootEq.is_normSqrtTerm_in", eval_is_normSqrtTerm_in""))]\<close>
   176 
   177 subsection \<open>rule-sets\<close>
   178 ML \<open>
   179 val RootEq_prls =(*15.10.02:just the following order due to subterm evaluation*)
   180   Rule_Set.append_rules "RootEq_prls" Rule_Set.empty 
   181 	     [\<^rule_eval>\<open>Prog_Expr.ident\<close> (Prog_Expr.eval_ident "#ident_"),
   182 	      \<^rule_eval>\<open>Prog_Expr.matches\<close> (Prog_Expr.eval_matches ""),
   183 	      \<^rule_eval>\<open>Prog_Expr.lhs\<close> (Prog_Expr.eval_lhs ""),
   184 	      \<^rule_eval>\<open>Prog_Expr.rhs\<close> (Prog_Expr.eval_rhs ""),
   185 	      \<^rule_eval>\<open>is_sqrtTerm_in\<close> (eval_is_sqrtTerm_in ""),
   186 	      \<^rule_eval>\<open>is_rootTerm_in\<close> (eval_is_rootTerm_in ""),
   187 	      \<^rule_eval>\<open>is_normSqrtTerm_in\<close> (eval_is_normSqrtTerm_in ""),
   188 	      \<^rule_eval>\<open>HOL.eq\<close> (Prog_Expr.eval_equal "#equal_"),
   189 	      \<^rule_thm>\<open>not_true\<close>,
   190 	      \<^rule_thm>\<open>not_false\<close>,
   191 	      \<^rule_thm>\<open>and_true\<close>,
   192 	      \<^rule_thm>\<open>and_false\<close>,
   193 	      \<^rule_thm>\<open>or_true\<close>,
   194 	      \<^rule_thm>\<open>or_false\<close>
   195 	      ];
   196 
   197 val RootEq_erls =
   198   Rule_Set.append_rules "RootEq_erls" Root_erls
   199     [\<^rule_thm>\<open>divide_divide_eq_left\<close>];
   200 
   201 val RootEq_crls = 
   202   Rule_Set.append_rules "RootEq_crls" Root_crls
   203     [\<^rule_thm>\<open>divide_divide_eq_left\<close>];
   204 
   205 val rooteq_srls = 
   206   Rule_Set.append_rules "rooteq_srls" Rule_Set.empty
   207     [\<^rule_eval>\<open>is_sqrtTerm_in\<close> (eval_is_sqrtTerm_in ""),
   208      \<^rule_eval>\<open>is_normSqrtTerm_in\<close> (eval_is_normSqrtTerm_in""),
   209      \<^rule_eval>\<open>is_rootTerm_in\<close> (eval_is_rootTerm_in "")];
   210 \<close>
   211 ML \<open>
   212 
   213 (*isolate the bound variable in an sqrt equation; 'bdv' is a meta-constant*)
   214  val sqrt_isolate = prep_rls'(
   215   Rule_Def.Repeat {id = "sqrt_isolate", preconds = [], rew_ord = ("termlessI",termlessI), 
   216        erls = RootEq_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   217        rules = [
   218        \<^rule_thm>\<open>sqrt_square_1\<close>,
   219                      (* (sqrt a) \<up> 2 -> a *)
   220        \<^rule_thm>\<open>sqrt_square_2\<close>,
   221                      (* sqrt (a \<up> 2) -> a *)
   222        \<^rule_thm>\<open>sqrt_times_root_1\<close>,
   223             (* sqrt a sqrt b -> sqrt(ab) *)
   224        \<^rule_thm>\<open>sqrt_times_root_2\<close>,
   225             (* a sqrt b sqrt c -> a sqrt(bc) *)
   226        Rule.Thm("sqrt_square_equation_both_1",
   227            ThmC.numerals_to_Free @{thm sqrt_square_equation_both_1}),
   228        (* (sqrt a + sqrt b  = sqrt c + sqrt d) -> 
   229             (a+2*sqrt(a)*sqrt(b)+b) = c+2*sqrt(c)*sqrt(d)+d) *)
   230        Rule.Thm("sqrt_square_equation_both_2",
   231             ThmC.numerals_to_Free @{thm sqrt_square_equation_both_2}),
   232        (* (sqrt a - sqrt b  = sqrt c + sqrt d) -> 
   233             (a-2*sqrt(a)*sqrt(b)+b) = c+2*sqrt(c)*sqrt(d)+d) *)
   234        Rule.Thm("sqrt_square_equation_both_3",
   235             ThmC.numerals_to_Free @{thm sqrt_square_equation_both_3}),
   236        (* (sqrt a + sqrt b  = sqrt c - sqrt d) -> 
   237             (a+2*sqrt(a)*sqrt(b)+b) = c-2*sqrt(c)*sqrt(d)+d) *)
   238        Rule.Thm("sqrt_square_equation_both_4",
   239             ThmC.numerals_to_Free @{thm sqrt_square_equation_both_4}),
   240        (* (sqrt a - sqrt b  = sqrt c - sqrt d) -> 
   241             (a-2*sqrt(a)*sqrt(b)+b) = c-2*sqrt(c)*sqrt(d)+d) *)
   242        Rule.Thm("sqrt_isolate_l_add1",
   243             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add1}), 
   244        (* a+b*sqrt(x)=d -> b*sqrt(x) = d-a *)
   245        Rule.Thm("sqrt_isolate_l_add2",
   246             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add2}), 
   247        (* a+  sqrt(x)=d ->   sqrt(x) = d-a *)
   248        Rule.Thm("sqrt_isolate_l_add3",
   249             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add3}), 
   250        (* a+b*c/sqrt(x)=d->b*c/sqrt(x)=d-a *)
   251        Rule.Thm("sqrt_isolate_l_add4",
   252             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add4}), 
   253        (* a+c/sqrt(x)=d -> c/sqrt(x) = d-a *)
   254        Rule.Thm("sqrt_isolate_l_add5",
   255             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add5}), 
   256        (* a+b*c/f*sqrt(x)=d->b*c/f*sqrt(x)=d-a *)
   257        Rule.Thm("sqrt_isolate_l_add6",
   258             ThmC.numerals_to_Free @{thm sqrt_isolate_l_add6}), 
   259        (* a+c/f*sqrt(x)=d -> c/f*sqrt(x) = d-a *)
   260        (*\<^rule_thm>\<open>sqrt_isolate_l_div\<close>,*)
   261          (* b*sqrt(x) = d sqrt(x) d/b *)
   262        Rule.Thm("sqrt_isolate_r_add1",
   263             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add1}),
   264        (* a= d+e*sqrt(x) -> a-d=e*sqrt(x) *)
   265        Rule.Thm("sqrt_isolate_r_add2",
   266             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add2}),
   267        (* a= d+  sqrt(x) -> a-d=  sqrt(x) *)
   268        Rule.Thm("sqrt_isolate_r_add3",
   269             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add3}),
   270        (* a=d+e*g/sqrt(x)->a-d=e*g/sqrt(x)*)
   271        Rule.Thm("sqrt_isolate_r_add4",
   272             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add4}),
   273        (* a= d+g/sqrt(x) -> a-d=g/sqrt(x) *)
   274        Rule.Thm("sqrt_isolate_r_add5",
   275             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add5}),
   276        (* a=d+e*g/h*sqrt(x)->a-d=e*g/h*sqrt(x)*)
   277        Rule.Thm("sqrt_isolate_r_add6",
   278             ThmC.numerals_to_Free @{thm sqrt_isolate_r_add6}),
   279        (* a= d+g/h*sqrt(x) -> a-d=g/h*sqrt(x) *)
   280        (*\<^rule_thm>\<open>sqrt_isolate_r_div\<close>,*)
   281          (* a=e*sqrt(x) -> a/e = sqrt(x) *)
   282        Rule.Thm("sqrt_square_equation_left_1",
   283             ThmC.numerals_to_Free @{thm sqrt_square_equation_left_1}),   
   284        (* sqrt(x)=b -> x=b^2 *)
   285        Rule.Thm("sqrt_square_equation_left_2",
   286             ThmC.numerals_to_Free @{thm sqrt_square_equation_left_2}),   
   287        (* c*sqrt(x)=b -> c^2*x=b^2 *)
   288        \<^rule_thm>\<open>sqrt_square_equation_left_3\<close>,  
   289 	      (* c/sqrt(x)=b -> c^2/x=b^2 *)
   290        \<^rule_thm>\<open>sqrt_square_equation_left_4\<close>,
   291 	      (* c*d/sqrt(x)=b -> c^2*d^2/x=b^2 *)
   292        \<^rule_thm>\<open>sqrt_square_equation_left_5\<close>,
   293 	      (* c/d*sqrt(x)=b -> c^2/d^2x=b^2 *)
   294        \<^rule_thm>\<open>sqrt_square_equation_left_6\<close>,
   295 	      (* c*d/g*sqrt(x)=b -> c^2*d^2/g^2x=b^2 *)
   296        \<^rule_thm>\<open>sqrt_square_equation_right_1\<close>,
   297 	      (* a=sqrt(x) ->a^2=x *)
   298        \<^rule_thm>\<open>sqrt_square_equation_right_2\<close>,
   299 	      (* a=c*sqrt(x) ->a^2=c^2*x *)
   300        \<^rule_thm>\<open>sqrt_square_equation_right_3\<close>,
   301 	      (* a=c/sqrt(x) ->a^2=c^2/x *)
   302        \<^rule_thm>\<open>sqrt_square_equation_right_4\<close>,
   303 	      (* a=c*d/sqrt(x) ->a^2=c^2*d^2/x *)
   304        \<^rule_thm>\<open>sqrt_square_equation_right_5\<close>,
   305 	      (* a=c/e*sqrt(x) ->a^2=c^2/e^2x *)
   306        \<^rule_thm>\<open>sqrt_square_equation_right_6\<close>
   307 	      (* a=c*d/g*sqrt(x) ->a^2=c^2*d^2/g^2*x *)
   308        ],scr = Rule.Empty_Prog
   309       });
   310 
   311 \<close> ML \<open>
   312 (*isolate the bound variable in an sqrt left equation; 'bdv' is a meta-constant*)
   313  val l_sqrt_isolate = prep_rls'(
   314      Rule_Def.Repeat {id = "l_sqrt_isolate", preconds = [], 
   315 	  rew_ord = ("termlessI",termlessI), 
   316           erls = RootEq_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   317      rules = [
   318      \<^rule_thm>\<open>sqrt_square_1\<close>,
   319                             (* (sqrt a) \<up> 2 -> a *)
   320      \<^rule_thm>\<open>sqrt_square_2\<close>,
   321                             (* sqrt (a \<up> 2) -> a *)
   322      \<^rule_thm>\<open>sqrt_times_root_1\<close>,
   323             (* sqrt a sqrt b -> sqrt(ab) *)
   324      \<^rule_thm>\<open>sqrt_times_root_2\<close>,
   325         (* a sqrt b sqrt c -> a sqrt(bc) *)
   326      \<^rule_thm>\<open>sqrt_isolate_l_add1\<close>,
   327         (* a+b*sqrt(x)=d -> b*sqrt(x) = d-a *)
   328      \<^rule_thm>\<open>sqrt_isolate_l_add2\<close>,
   329         (* a+  sqrt(x)=d ->   sqrt(x) = d-a *)
   330      \<^rule_thm>\<open>sqrt_isolate_l_add3\<close>,
   331         (* a+b*c/sqrt(x)=d->b*c/sqrt(x)=d-a *)
   332      \<^rule_thm>\<open>sqrt_isolate_l_add4\<close>,
   333         (* a+c/sqrt(x)=d -> c/sqrt(x) = d-a *)
   334      \<^rule_thm>\<open>sqrt_isolate_l_add5\<close>,
   335         (* a+b*c/f*sqrt(x)=d->b*c/f*sqrt(x)=d-a *)
   336      \<^rule_thm>\<open>sqrt_isolate_l_add6\<close>,
   337         (* a+c/f*sqrt(x)=d -> c/f*sqrt(x) = d-a *)
   338    (*\<^rule_thm>\<open>sqrt_isolate_l_div\<close>,*)
   339         (* b*sqrt(x) = d sqrt(x) d/b *)
   340      \<^rule_thm>\<open>sqrt_square_equation_left_1\<close>,
   341 	      (* sqrt(x)=b -> x=b^2 *)
   342      \<^rule_thm>\<open>sqrt_square_equation_left_2\<close>,
   343 	      (* a*sqrt(x)=b -> a^2*x=b^2*)
   344      \<^rule_thm>\<open>sqrt_square_equation_left_3\<close>,   
   345 	      (* c/sqrt(x)=b -> c^2/x=b^2 *)
   346      \<^rule_thm>\<open>sqrt_square_equation_left_4\<close>,   
   347 	      (* c*d/sqrt(x)=b -> c^2*d^2/x=b^2 *)
   348      \<^rule_thm>\<open>sqrt_square_equation_left_5\<close>,   
   349 	      (* c/d*sqrt(x)=b -> c^2/d^2x=b^2 *)
   350      \<^rule_thm>\<open>sqrt_square_equation_left_6\<close>  
   351 	      (* c*d/g*sqrt(x)=b -> c^2*d^2/g^2x=b^2 *)
   352     ],
   353     scr = Rule.Empty_Prog
   354    });
   355 
   356 \<close> ML \<open>
   357 (* -- right 28.8.02--*)
   358 (*isolate the bound variable in an sqrt right equation; 'bdv' is a meta-constant*)
   359  val r_sqrt_isolate = prep_rls'(
   360      Rule_Def.Repeat {id = "r_sqrt_isolate", preconds = [], 
   361 	  rew_ord = ("termlessI",termlessI), 
   362           erls = RootEq_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   363      rules = [
   364      \<^rule_thm>\<open>sqrt_square_1\<close>,
   365                            (* (sqrt a) \<up> 2 -> a *)
   366      \<^rule_thm>\<open>sqrt_square_2\<close>, 
   367                            (* sqrt (a \<up> 2) -> a *)
   368      \<^rule_thm>\<open>sqrt_times_root_1\<close>,
   369            (* sqrt a sqrt b -> sqrt(ab) *)
   370      \<^rule_thm>\<open>sqrt_times_root_2\<close>,
   371        (* a sqrt b sqrt c -> a sqrt(bc) *)
   372      \<^rule_thm>\<open>sqrt_isolate_r_add1\<close>,
   373        (* a= d+e*sqrt(x) -> a-d=e*sqrt(x) *)
   374      \<^rule_thm>\<open>sqrt_isolate_r_add2\<close>,
   375        (* a= d+  sqrt(x) -> a-d=  sqrt(x) *)
   376      \<^rule_thm>\<open>sqrt_isolate_r_add3\<close>,
   377        (* a=d+e*g/sqrt(x)->a-d=e*g/sqrt(x)*)
   378      \<^rule_thm>\<open>sqrt_isolate_r_add4\<close>,
   379        (* a= d+g/sqrt(x) -> a-d=g/sqrt(x) *)
   380      \<^rule_thm>\<open>sqrt_isolate_r_add5\<close>,
   381        (* a=d+e*g/h*sqrt(x)->a-d=e*g/h*sqrt(x)*)
   382      \<^rule_thm>\<open>sqrt_isolate_r_add6\<close>,
   383        (* a= d+g/h*sqrt(x) -> a-d=g/h*sqrt(x) *)
   384    (*\<^rule_thm>\<open>sqrt_isolate_r_div\<close>,*)
   385        (* a=e*sqrt(x) -> a/e = sqrt(x) *)
   386      \<^rule_thm>\<open>sqrt_square_equation_right_1\<close>,
   387 	      (* a=sqrt(x) ->a^2=x *)
   388      \<^rule_thm>\<open>sqrt_square_equation_right_2\<close>,
   389 	      (* a=c*sqrt(x) ->a^2=c^2*x *)
   390      \<^rule_thm>\<open>sqrt_square_equation_right_3\<close>,
   391 	      (* a=c/sqrt(x) ->a^2=c^2/x *)
   392      \<^rule_thm>\<open>sqrt_square_equation_right_4\<close>, 
   393 	      (* a=c*d/sqrt(x) ->a^2=c^2*d^2/x *)
   394      \<^rule_thm>\<open>sqrt_square_equation_right_5\<close>,
   395 	      (* a=c/e*sqrt(x) ->a^2=c^2/e^2x *)
   396      \<^rule_thm>\<open>sqrt_square_equation_right_6\<close>
   397 	      (* a=c*d/g*sqrt(x) ->a^2=c^2*d^2/g^2*x *)
   398     ],
   399     scr = Rule.Empty_Prog
   400    });
   401 
   402 \<close> ML \<open>
   403 val rooteq_simplify = prep_rls'(
   404   Rule_Def.Repeat {id = "rooteq_simplify", 
   405        preconds = [], rew_ord = ("termlessI",termlessI), 
   406        erls = RootEq_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   407        (*asm_thm = [("sqrt_square_1", "")],*)
   408        rules = [\<^rule_thm>\<open>real_assoc_1\<close>,
   409                              (* a+(b+c) = a+b+c *)
   410                 \<^rule_thm>\<open>real_assoc_2\<close>,
   411                              (* a*(b*c) = a*b*c *)
   412                 \<^rule_eval>\<open>plus\<close> (**)(eval_binop "#add_"),
   413                 \<^rule_eval>\<open>minus\<close> (**)(eval_binop "#sub_"),
   414                 \<^rule_eval>\<open>times\<close> (**)(eval_binop "#mult_"),
   415                 \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e"),
   416                 \<^rule_eval>\<open>sqrt\<close> (eval_sqrt "#sqrt_"),
   417                 \<^rule_eval>\<open>powr\<close> (**)(eval_binop "#power_"),
   418                 \<^rule_thm>\<open>real_plus_binom_pow2\<close>,
   419                 \<^rule_thm>\<open>real_minus_binom_pow2\<close>,
   420                 \<^rule_thm>\<open>realpow_mul\<close>,    
   421                      (* (a * b)^n = a^n * b^n*)
   422                 \<^rule_thm>\<open>sqrt_times_root_1\<close>, 
   423                      (* sqrt b * sqrt c = sqrt(b*c) *)
   424                 \<^rule_thm>\<open>sqrt_times_root_2\<close>,
   425                      (* a * sqrt a * sqrt b = a * sqrt(a*b) *)
   426                 \<^rule_thm>\<open>sqrt_square_2\<close>,
   427                             (* sqrt (a \<up> 2) = a *)
   428                 \<^rule_thm>\<open>sqrt_square_1\<close> 
   429                             (* sqrt a  \<up>  2 = a *)
   430                 ],
   431        scr = Rule.Empty_Prog
   432     });
   433 \<close>
   434 rule_set_knowledge
   435   RootEq_erls = RootEq_erls and
   436   rooteq_srls = rooteq_srls and
   437   sqrt_isolate = sqrt_isolate and
   438   l_sqrt_isolate = l_sqrt_isolate and
   439   r_sqrt_isolate = r_sqrt_isolate and
   440   rooteq_simplify = rooteq_simplify
   441 
   442 subsection \<open>problems\<close>
   443 (*Ambiguous input produces 5 parse trees -----------------------------------------------------\\*)
   444 setup \<open>KEStore_Elems.add_pbts
   445   (* ---------root----------- *)
   446   [(Problem.prep_input @{theory} "pbl_equ_univ_root" [] Problem.id_empty
   447       (["rootX", "univariate", "equation"],
   448         [("#Given" ,["equality e_e", "solveFor v_v"]),
   449           ("#Where" ,["(lhs e_e) is_rootTerm_in  (v_v::real) | " ^
   450 	          "(rhs e_e) is_rootTerm_in  (v_v::real)"]),
   451           ("#Find"  ,["solutions v_v'i'"])],
   452         RootEq_prls, SOME "solve (e_e::bool, v_v)", [])),
   453     (* ---------sqrt----------- *)
   454     (Problem.prep_input @{theory} "pbl_equ_univ_root_sq" [] Problem.id_empty
   455       (["sq", "rootX", "univariate", "equation"],
   456         [("#Given" ,["equality e_e", "solveFor v_v"]),
   457           ("#Where" ,["( ((lhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   458             "  ((lhs e_e) is_normSqrtTerm_in (v_v::real))   )  |" ^
   459 	          "( ((rhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   460             "  ((rhs e_e) is_normSqrtTerm_in (v_v::real))   )"]),
   461           ("#Find"  ,["solutions v_v'i'"])],
   462           RootEq_prls,  SOME "solve (e_e::bool, v_v)", [["RootEq", "solve_sq_root_equation"]])),
   463     (* ---------normalise----------- *)
   464     (Problem.prep_input @{theory} "pbl_equ_univ_root_norm" [] Problem.id_empty
   465       (["normalise", "rootX", "univariate", "equation"],
   466         [("#Given" ,["equality e_e", "solveFor v_v"]),
   467           ("#Where" ,["( ((lhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   468             "  Not((lhs e_e) is_normSqrtTerm_in (v_v::real)))  | " ^
   469 	          "( ((rhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   470             "  Not((rhs e_e) is_normSqrtTerm_in (v_v::real)))"]),
   471           ("#Find"  ,["solutions v_v'i'"])],
   472         RootEq_prls, SOME "solve (e_e::bool, v_v)", [["RootEq", "norm_sq_root_equation"]]))]\<close>
   473 (*Ambiguous input produces 5 parse trees -----------------------------------------------------//*)
   474 
   475 subsection \<open>methods\<close>
   476 setup \<open>KEStore_Elems.add_mets
   477     [MethodC.prep_input @{theory} "met_rooteq" [] MethodC.id_empty
   478       (["RootEq"], [],
   479         {rew_ord'="tless_true",rls'=Atools_erls,calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
   480           crls=RootEq_crls, errpats = [], nrls = norm_Poly}, @{thm refl})]
   481 \<close>
   482     (*-- normalise 20.10.02 --*)
   483 partial_function (tailrec) norm_sqrt_equ :: "bool \<Rightarrow> real \<Rightarrow> bool list"
   484   where
   485 "norm_sqrt_equ e_e v_v = (
   486   let
   487     e_e = (
   488       (Repeat(Try (Rewrite ''makex1_x''))) #>
   489       (Try (Repeat (Rewrite_Set ''expand_rootbinoms''))) #>
   490       (Try (Rewrite_Set ''rooteq_simplify'')) #>
   491       (Try (Repeat (Rewrite_Set ''make_rooteq''))) #>
   492       (Try (Rewrite_Set ''rooteq_simplify''))
   493       ) e_e
   494   in
   495     SubProblem (''RootEq'', [''univariate'', ''equation''], [''no_met''])
   496       [BOOL e_e, REAL v_v])"
   497 setup \<open>KEStore_Elems.add_mets
   498     [MethodC.prep_input @{theory} "met_rooteq_norm" [] MethodC.id_empty
   499       (["RootEq", "norm_sq_root_equation"],
   500         [("#Given" ,["equality e_e", "solveFor v_v"]),
   501           ("#Where" ,["( ((lhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   502               "  Not((lhs e_e) is_normSqrtTerm_in (v_v::real)))  | " ^
   503               "( ((rhs e_e) is_sqrtTerm_in (v_v::real)) &" ^
   504               "  Not((rhs e_e) is_normSqrtTerm_in (v_v::real)))"]),
   505           ("#Find"  ,["solutions v_v'i'"])],
   506         {rew_ord'="termlessI", rls'=RootEq_erls, srls=Rule_Set.empty, prls=RootEq_prls, calc=[],
   507           crls=RootEq_crls, errpats = [], nrls = norm_Poly},
   508         @{thm norm_sqrt_equ.simps})]
   509 \<close>
   510 
   511 partial_function (tailrec) solve_sqrt_equ :: "bool \<Rightarrow> real \<Rightarrow> bool list"
   512   where
   513 "solve_sqrt_equ e_e v_v =
   514   (let
   515     e_e = (
   516       (Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''sqrt_isolate'')) #> 
   517       (Try (Rewrite_Set         ''rooteq_simplify'')) #> 
   518       (Try (Repeat (Rewrite_Set ''expand_rootbinoms''))) #>
   519       (Try (Repeat (Rewrite_Set ''make_rooteq''))) #>
   520       (Try (Rewrite_Set ''rooteq_simplify'')) ) e_e;
   521     L_L =
   522      (if (((lhs e_e) is_sqrtTerm_in v_v) | ((rhs e_e) is_sqrtTerm_in v_v))               
   523       then
   524         SubProblem (''RootEq'', [''normalise'', ''rootX'', ''univariate'', ''equation''], [''no_met''])
   525           [BOOL e_e, REAL v_v]
   526       else
   527         SubProblem (''RootEq'',[''univariate'',''equation''], [''no_met''])
   528           [BOOL e_e, REAL v_v])
   529   in Check_elementwise L_L {(v_v::real). Assumptions})"
   530 setup \<open>KEStore_Elems.add_mets
   531     [MethodC.prep_input @{theory} "met_rooteq_sq" [] MethodC.id_empty
   532       (["RootEq", "solve_sq_root_equation"],
   533         [("#Given" ,["equality e_e", "solveFor v_v"]),
   534           ("#Where" ,["(((lhs e_e) is_sqrtTerm_in (v_v::real))     & " ^
   535               " ((lhs e_e) is_normSqrtTerm_in (v_v::real))) |" ^
   536               "(((rhs e_e) is_sqrtTerm_in (v_v::real))     & " ^
   537               " ((rhs e_e) is_normSqrtTerm_in (v_v::real)))"]),
   538           ("#Find"  ,["solutions v_v'i'"])],
   539         {rew_ord'="termlessI", rls'=RootEq_erls, srls = rooteq_srls, prls = RootEq_prls, calc = [],
   540           crls=RootEq_crls, errpats = [], nrls = norm_Poly},
   541         @{thm solve_sqrt_equ.simps})]
   542 \<close>
   543     (*-- right 28.08.02 --*)
   544 partial_function (tailrec) solve_sqrt_equ_right :: "bool \<Rightarrow> real \<Rightarrow> bool list"
   545   where
   546 "solve_sqrt_equ_right e_e v_v =
   547   (let
   548     e_e = (
   549       (Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''r_sqrt_isolate'')) #>
   550       (Try (Rewrite_Set ''rooteq_simplify'')) #>
   551       (Try (Repeat (Rewrite_Set ''expand_rootbinoms''))) #>
   552       (Try (Repeat (Rewrite_Set ''make_rooteq''))) #>
   553       (Try (Rewrite_Set ''rooteq_simplify'')) ) e_e
   554   in
   555     if (rhs e_e) is_sqrtTerm_in v_v
   556     then
   557       SubProblem (''RootEq'',[''normalise'',''rootX'',''univariate'',''equation''], [''no_met''])
   558         [BOOL e_e, REAL v_v]
   559     else
   560       SubProblem (''RootEq'',[''univariate'', ''equation''], [''no_met''])
   561         [BOOL e_e, REAL v_v])"
   562 setup \<open>KEStore_Elems.add_mets
   563     [MethodC.prep_input @{theory} "met_rooteq_sq_right" [] MethodC.id_empty
   564       (["RootEq", "solve_right_sq_root_equation"],
   565         [("#Given" ,["equality e_e", "solveFor v_v"]),
   566           ("#Where" ,["(rhs e_e) is_sqrtTerm_in v_v"]),
   567           ("#Find"  ,["solutions v_v'i'"])],
   568         {rew_ord' = "termlessI", rls' = RootEq_erls, srls = Rule_Set.empty, prls = RootEq_prls, calc = [],
   569           crls = RootEq_crls, errpats = [], nrls = norm_Poly},
   570         @{thm solve_sqrt_equ_right.simps})]
   571 \<close>
   572     (*-- left 28.08.02 --*)
   573 partial_function (tailrec) solve_sqrt_equ_left :: "bool \<Rightarrow> real \<Rightarrow> bool list"
   574   where
   575 "solve_sqrt_equ_left e_e v_v =
   576   (let
   577     e_e = (
   578       (Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''l_sqrt_isolate'')) #> 
   579       (Try (Rewrite_Set ''rooteq_simplify'')) #>
   580       (Try (Repeat (Rewrite_Set ''expand_rootbinoms''))) #>
   581       (Try (Repeat (Rewrite_Set ''make_rooteq''))) #>
   582       (Try (Rewrite_Set ''rooteq_simplify'')) ) e_e
   583   in
   584     if (lhs e_e) is_sqrtTerm_in v_v
   585     then
   586       SubProblem (''RootEq'', [''normalise'',''rootX'',''univariate'',''equation''], [''no_met''])
   587         [BOOL e_e, REAL v_v]
   588     else
   589       SubProblem (''RootEq'',[''univariate'',''equation''], [''no_met''])
   590         [BOOL e_e, REAL v_v])"
   591 setup \<open>KEStore_Elems.add_mets
   592     [MethodC.prep_input @{theory} "met_rooteq_sq_left" [] MethodC.id_empty
   593       (["RootEq", "solve_left_sq_root_equation"],
   594         [("#Given" ,["equality e_e", "solveFor v_v"]),
   595           ("#Where" ,["(lhs e_e) is_sqrtTerm_in v_v"]),
   596           ("#Find"  ,["solutions v_v'i'"])],
   597         {rew_ord'="termlessI", rls'=RootEq_erls, srls=Rule_Set.empty, prls=RootEq_prls, calc=[],
   598           crls=RootEq_crls, errpats = [], nrls = norm_Poly},
   599         @{thm solve_sqrt_equ_left.simps})]
   600 \<close>
   601 ML \<open>
   602 \<close> ML \<open>
   603 \<close> 
   604 end