src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Mon, 06 Jun 2011 20:36:35 +0200
changeset 44051 7384b771805d
parent 44048 cb8b9786ffe3
child 44054 e1fdd27e0c98
permissions -rw-r--r--
made "explicit_apply"'s smart mode (more) complete
     1 (*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   type name = string * string
    19 
    20   datatype type_literal =
    21     TyLitVar of name * name |
    22     TyLitFree of name * name
    23 
    24   datatype arity_literal =
    25     TConsLit of name * name * name list |
    26     TVarLit of name * name
    27 
    28   type arity_clause =
    29     {name: string,
    30      prem_lits: arity_literal list,
    31      concl_lits: arity_literal}
    32 
    33   type class_rel_clause =
    34     {name: string,
    35      subclass: name,
    36      superclass: name}
    37 
    38   datatype combterm =
    39     CombConst of name * typ * typ list |
    40     CombVar of name * typ |
    41     CombApp of combterm * combterm
    42 
    43   datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
    44 
    45   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    46   datatype type_level =
    47     All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
    48   datatype type_heaviness = Heavyweight | Lightweight
    49 
    50   datatype type_sys =
    51     Simple_Types of type_level |
    52     Preds of polymorphism * type_level * type_heaviness |
    53     Tags of polymorphism * type_level * type_heaviness
    54 
    55   type translated_formula
    56 
    57   val bound_var_prefix : string
    58   val schematic_var_prefix: string
    59   val fixed_var_prefix: string
    60   val tvar_prefix: string
    61   val tfree_prefix: string
    62   val const_prefix: string
    63   val type_const_prefix: string
    64   val class_prefix: string
    65   val skolem_const_prefix : string
    66   val old_skolem_const_prefix : string
    67   val new_skolem_const_prefix : string
    68   val type_decl_prefix : string
    69   val sym_decl_prefix : string
    70   val preds_sym_formula_prefix : string
    71   val lightweight_tags_sym_formula_prefix : string
    72   val fact_prefix : string
    73   val conjecture_prefix : string
    74   val helper_prefix : string
    75   val class_rel_clause_prefix : string
    76   val arity_clause_prefix : string
    77   val tfree_clause_prefix : string
    78   val typed_helper_suffix : string
    79   val untyped_helper_suffix : string
    80   val type_tag_idempotence_helper_name : string
    81   val predicator_name : string
    82   val app_op_name : string
    83   val type_tag_name : string
    84   val type_pred_name : string
    85   val simple_type_prefix : string
    86   val prefixed_predicator_name : string
    87   val prefixed_app_op_name : string
    88   val prefixed_type_tag_name : string
    89   val ascii_of: string -> string
    90   val unascii_of: string -> string
    91   val strip_prefix_and_unascii : string -> string -> string option
    92   val proxy_table : (string * (string * (thm * (string * string)))) list
    93   val proxify_const : string -> (string * string) option
    94   val invert_const: string -> string
    95   val unproxify_const: string -> string
    96   val make_bound_var : string -> string
    97   val make_schematic_var : string * int -> string
    98   val make_fixed_var : string -> string
    99   val make_schematic_type_var : string * int -> string
   100   val make_fixed_type_var : string -> string
   101   val make_fixed_const : string -> string
   102   val make_fixed_type_const : string -> string
   103   val make_type_class : string -> string
   104   val new_skolem_var_name_from_const : string -> string
   105   val num_type_args : theory -> string -> int
   106   val make_arity_clauses :
   107     theory -> string list -> class list -> class list * arity_clause list
   108   val make_class_rel_clauses :
   109     theory -> class list -> class list -> class_rel_clause list
   110   val combtyp_of : combterm -> typ
   111   val strip_combterm_comb : combterm -> combterm * combterm list
   112   val atyps_of : typ -> typ list
   113   val combterm_from_term :
   114     theory -> (string * typ) list -> term -> combterm * typ list
   115   val is_locality_global : locality -> bool
   116   val type_sys_from_string : string -> type_sys
   117   val polymorphism_of_type_sys : type_sys -> polymorphism
   118   val level_of_type_sys : type_sys -> type_level
   119   val is_type_sys_virtually_sound : type_sys -> bool
   120   val is_type_sys_fairly_sound : type_sys -> bool
   121   val choose_format : format list -> type_sys -> format * type_sys
   122   val raw_type_literals_for_types : typ list -> type_literal list
   123   val mk_aconns :
   124     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
   125   val unmangled_const_name : string -> string
   126   val unmangled_const : string -> string * string fo_term list
   127   val translate_atp_fact :
   128     Proof.context -> format -> type_sys -> bool -> (string * locality) * thm
   129     -> translated_formula option * ((string * locality) * thm)
   130   val helper_table : ((string * bool) * thm list) list
   131   val should_specialize_helper : type_sys -> term -> bool
   132   val tfree_classes_of_terms : term list -> string list
   133   val tvar_classes_of_terms : term list -> string list
   134   val type_constrs_of_terms : theory -> term list -> string list
   135   val prepare_atp_problem :
   136     Proof.context -> format -> formula_kind -> formula_kind -> type_sys
   137     -> bool option -> bool -> bool -> term list -> term
   138     -> (translated_formula option * ((string * 'a) * thm)) list
   139     -> string problem * string Symtab.table * int * int
   140        * (string * 'a) list vector * int list * int Symtab.table
   141   val atp_problem_weights : string problem -> (string * real) list
   142 end;
   143 
   144 structure ATP_Translate : ATP_TRANSLATE =
   145 struct
   146 
   147 open ATP_Util
   148 open ATP_Problem
   149 
   150 type name = string * string
   151 
   152 (* FIXME: avoid *)
   153 fun union_all xss = fold (union (op =)) xss []
   154 
   155 (* experimental *)
   156 val generate_useful_info = false
   157 
   158 fun useful_isabelle_info s =
   159   if generate_useful_info then
   160     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   161   else
   162     NONE
   163 
   164 val intro_info = useful_isabelle_info "intro"
   165 val elim_info = useful_isabelle_info "elim"
   166 val simp_info = useful_isabelle_info "simp"
   167 
   168 val bound_var_prefix = "B_"
   169 val schematic_var_prefix = "V_"
   170 val fixed_var_prefix = "v_"
   171 
   172 val tvar_prefix = "T_"
   173 val tfree_prefix = "t_"
   174 
   175 val const_prefix = "c_"
   176 val type_const_prefix = "tc_"
   177 val class_prefix = "cl_"
   178 
   179 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   180 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   181 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   182 
   183 val type_decl_prefix = "ty_"
   184 val sym_decl_prefix = "sy_"
   185 val preds_sym_formula_prefix = "psy_"
   186 val lightweight_tags_sym_formula_prefix = "tsy_"
   187 val fact_prefix = "fact_"
   188 val conjecture_prefix = "conj_"
   189 val helper_prefix = "help_"
   190 val class_rel_clause_prefix = "clar_"
   191 val arity_clause_prefix = "arity_"
   192 val tfree_clause_prefix = "tfree_"
   193 
   194 val typed_helper_suffix = "_T"
   195 val untyped_helper_suffix = "_U"
   196 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   197 
   198 val predicator_name = "hBOOL"
   199 val app_op_name = "hAPP"
   200 val type_tag_name = "ti"
   201 val type_pred_name = "is"
   202 val simple_type_prefix = "ty_"
   203 
   204 val prefixed_predicator_name = const_prefix ^ predicator_name
   205 val prefixed_app_op_name = const_prefix ^ app_op_name
   206 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   207 
   208 (* Freshness almost guaranteed! *)
   209 val sledgehammer_weak_prefix = "Sledgehammer:"
   210 
   211 (*Escaping of special characters.
   212   Alphanumeric characters are left unchanged.
   213   The character _ goes to __
   214   Characters in the range ASCII space to / go to _A to _P, respectively.
   215   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   216 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   217 
   218 fun stringN_of_int 0 _ = ""
   219   | stringN_of_int k n =
   220     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   221 
   222 fun ascii_of_char c =
   223   if Char.isAlphaNum c then
   224     String.str c
   225   else if c = #"_" then
   226     "__"
   227   else if #" " <= c andalso c <= #"/" then
   228     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   229   else
   230     (* fixed width, in case more digits follow *)
   231     "_" ^ stringN_of_int 3 (Char.ord c)
   232 
   233 val ascii_of = String.translate ascii_of_char
   234 
   235 (** Remove ASCII armoring from names in proof files **)
   236 
   237 (* We don't raise error exceptions because this code can run inside a worker
   238    thread. Also, the errors are impossible. *)
   239 val unascii_of =
   240   let
   241     fun un rcs [] = String.implode(rev rcs)
   242       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   243         (* Three types of _ escapes: __, _A to _P, _nnn *)
   244       | un rcs (#"_" :: #"_" :: cs) = un (#"_"::rcs) cs
   245       | un rcs (#"_" :: c :: cs) =
   246         if #"A" <= c andalso c<= #"P" then
   247           (* translation of #" " to #"/" *)
   248           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   249         else
   250           let val digits = List.take (c::cs, 3) handle Subscript => [] in
   251             case Int.fromString (String.implode digits) of
   252               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   253             | NONE => un (c:: #"_"::rcs) cs (* ERROR *)
   254           end
   255       | un rcs (c :: cs) = un (c :: rcs) cs
   256   in un [] o String.explode end
   257 
   258 (* If string s has the prefix s1, return the result of deleting it,
   259    un-ASCII'd. *)
   260 fun strip_prefix_and_unascii s1 s =
   261   if String.isPrefix s1 s then
   262     SOME (unascii_of (String.extract (s, size s1, NONE)))
   263   else
   264     NONE
   265 
   266 val proxy_table =
   267   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   268        ("fFalse", @{const_name ATP.fFalse})))),
   269    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   270        ("fTrue", @{const_name ATP.fTrue})))),
   271    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   272        ("fNot", @{const_name ATP.fNot})))),
   273    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   274        ("fconj", @{const_name ATP.fconj})))),
   275    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   276        ("fdisj", @{const_name ATP.fdisj})))),
   277    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   278        ("fimplies", @{const_name ATP.fimplies})))),
   279    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   280        ("fequal", @{const_name ATP.fequal}))))]
   281 
   282 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   283 
   284 (* Readable names for the more common symbolic functions. Do not mess with the
   285    table unless you know what you are doing. *)
   286 val const_trans_table =
   287   [(@{type_name Product_Type.prod}, "prod"),
   288    (@{type_name Sum_Type.sum}, "sum"),
   289    (@{const_name False}, "False"),
   290    (@{const_name True}, "True"),
   291    (@{const_name Not}, "Not"),
   292    (@{const_name conj}, "conj"),
   293    (@{const_name disj}, "disj"),
   294    (@{const_name implies}, "implies"),
   295    (@{const_name HOL.eq}, "equal"),
   296    (@{const_name If}, "If"),
   297    (@{const_name Set.member}, "member"),
   298    (@{const_name Meson.COMBI}, "COMBI"),
   299    (@{const_name Meson.COMBK}, "COMBK"),
   300    (@{const_name Meson.COMBB}, "COMBB"),
   301    (@{const_name Meson.COMBC}, "COMBC"),
   302    (@{const_name Meson.COMBS}, "COMBS")]
   303   |> Symtab.make
   304   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   305 
   306 (* Invert the table of translations between Isabelle and ATPs. *)
   307 val const_trans_table_inv =
   308   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   309 val const_trans_table_unprox =
   310   Symtab.empty
   311   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   312 
   313 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   314 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   315 
   316 fun lookup_const c =
   317   case Symtab.lookup const_trans_table c of
   318     SOME c' => c'
   319   | NONE => ascii_of c
   320 
   321 (*Remove the initial ' character from a type variable, if it is present*)
   322 fun trim_type_var s =
   323   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
   324   else raise Fail ("trim_type: Malformed type variable encountered: " ^ s)
   325 
   326 fun ascii_of_indexname (v,0) = ascii_of v
   327   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ string_of_int i
   328 
   329 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   330 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   331 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   332 
   333 fun make_schematic_type_var (x,i) =
   334       tvar_prefix ^ (ascii_of_indexname (trim_type_var x, i))
   335 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x))
   336 
   337 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
   338 fun make_fixed_const @{const_name HOL.eq} = "equal"
   339   | make_fixed_const c = const_prefix ^ lookup_const c
   340 
   341 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   342 
   343 fun make_type_class clas = class_prefix ^ ascii_of clas
   344 
   345 fun new_skolem_var_name_from_const s =
   346   let val ss = s |> space_explode Long_Name.separator in
   347     nth ss (length ss - 2)
   348   end
   349 
   350 (* The number of type arguments of a constant, zero if it's monomorphic. For
   351    (instances of) Skolem pseudoconstants, this information is encoded in the
   352    constant name. *)
   353 fun num_type_args thy s =
   354   if String.isPrefix skolem_const_prefix s then
   355     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   356   else
   357     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   358 
   359 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   360 
   361 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   362 datatype type_literal =
   363   TyLitVar of name * name |
   364   TyLitFree of name * name
   365 
   366 
   367 (** Isabelle arities **)
   368 
   369 datatype arity_literal =
   370   TConsLit of name * name * name list |
   371   TVarLit of name * name
   372 
   373 fun gen_TVars 0 = []
   374   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   375 
   376 fun pack_sort (_,[])  = []
   377   | pack_sort (tvar, "HOL.type" :: srt) =
   378     pack_sort (tvar, srt) (* IGNORE sort "type" *)
   379   | pack_sort (tvar, cls :: srt) =
   380     (`make_type_class cls, `I tvar) :: pack_sort (tvar, srt)
   381 
   382 type arity_clause =
   383   {name: string,
   384    prem_lits: arity_literal list,
   385    concl_lits: arity_literal}
   386 
   387 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   388 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   389   let
   390     val tvars = gen_TVars (length args)
   391     val tvars_srts = ListPair.zip (tvars, args)
   392   in
   393     {name = name,
   394      prem_lits = map TVarLit (union_all (map pack_sort tvars_srts)),
   395      concl_lits = TConsLit (`make_type_class cls,
   396                             `make_fixed_type_const tcons,
   397                             tvars ~~ tvars)}
   398   end
   399 
   400 fun arity_clause _ _ (_, []) = []
   401   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
   402       arity_clause seen n (tcons,ars)
   403   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
   404       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
   405           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ string_of_int n, ar) ::
   406           arity_clause seen (n+1) (tcons,ars)
   407       else
   408           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
   409           arity_clause (class::seen) n (tcons,ars)
   410 
   411 fun multi_arity_clause [] = []
   412   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   413       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   414 
   415 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
   416   provided its arguments have the corresponding sorts.*)
   417 fun type_class_pairs thy tycons classes =
   418   let
   419     val alg = Sign.classes_of thy
   420     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   421     fun add_class tycon class =
   422       cons (class, domain_sorts tycon class)
   423       handle Sorts.CLASS_ERROR _ => I
   424     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   425   in map try_classes tycons end
   426 
   427 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   428 fun iter_type_class_pairs _ _ [] = ([], [])
   429   | iter_type_class_pairs thy tycons classes =
   430       let val cpairs = type_class_pairs thy tycons classes
   431           val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
   432             |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
   433           val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   434       in (union (op =) classes' classes, union (op =) cpairs' cpairs) end
   435 
   436 fun make_arity_clauses thy tycons =
   437   iter_type_class_pairs thy tycons ##> multi_arity_clause
   438 
   439 
   440 (** Isabelle class relations **)
   441 
   442 type class_rel_clause =
   443   {name: string,
   444    subclass: name,
   445    superclass: name}
   446 
   447 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
   448 fun class_pairs _ [] _ = []
   449   | class_pairs thy subs supers =
   450       let
   451         val class_less = Sorts.class_less (Sign.classes_of thy)
   452         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   453         fun add_supers sub = fold (add_super sub) supers
   454       in fold add_supers subs [] end
   455 
   456 fun make_class_rel_clause (sub,super) =
   457   {name = sub ^ "_" ^ super,
   458    subclass = `make_type_class sub,
   459    superclass = `make_type_class super}
   460 
   461 fun make_class_rel_clauses thy subs supers =
   462   map make_class_rel_clause (class_pairs thy subs supers)
   463 
   464 datatype combterm =
   465   CombConst of name * typ * typ list |
   466   CombVar of name * typ |
   467   CombApp of combterm * combterm
   468 
   469 fun combtyp_of (CombConst (_, T, _)) = T
   470   | combtyp_of (CombVar (_, T)) = T
   471   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   472 
   473 (*gets the head of a combinator application, along with the list of arguments*)
   474 fun strip_combterm_comb u =
   475     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
   476         |   stripc  x =  x
   477     in stripc(u,[]) end
   478 
   479 fun atyps_of T = fold_atyps (insert (op =)) T []
   480 
   481 fun new_skolem_const_name s num_T_args =
   482   [new_skolem_const_prefix, s, string_of_int num_T_args]
   483   |> space_implode Long_Name.separator
   484 
   485 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   486    infomation. *)
   487 fun combterm_from_term thy bs (P $ Q) =
   488     let
   489       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   490       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   491     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   492   | combterm_from_term thy _ (Const (c, T)) =
   493     let
   494       val tvar_list =
   495         (if String.isPrefix old_skolem_const_prefix c then
   496            [] |> Term.add_tvarsT T |> map TVar
   497          else
   498            (c, T) |> Sign.const_typargs thy)
   499       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   500     in (c', atyps_of T) end
   501   | combterm_from_term _ _ (Free (v, T)) =
   502     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   503   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   504     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   505        let
   506          val Ts = T |> strip_type |> swap |> op ::
   507          val s' = new_skolem_const_name s (length Ts)
   508        in CombConst (`make_fixed_const s', T, Ts) end
   509      else
   510        CombVar ((make_schematic_var v, s), T), atyps_of T)
   511   | combterm_from_term _ bs (Bound j) =
   512     nth bs j
   513     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   514   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   515 
   516 datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
   517 
   518 (* (quasi-)underapproximation of the truth *)
   519 fun is_locality_global Local = false
   520   | is_locality_global Assum = false
   521   | is_locality_global Chained = false
   522   | is_locality_global _ = true
   523 
   524 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   525 datatype type_level =
   526   All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
   527 datatype type_heaviness = Heavyweight | Lightweight
   528 
   529 datatype type_sys =
   530   Simple_Types of type_level |
   531   Preds of polymorphism * type_level * type_heaviness |
   532   Tags of polymorphism * type_level * type_heaviness
   533 
   534 fun try_unsuffixes ss s =
   535   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   536 
   537 fun type_sys_from_string s =
   538   (case try (unprefix "poly_") s of
   539      SOME s => (SOME Polymorphic, s)
   540    | NONE =>
   541      case try (unprefix "mono_") s of
   542        SOME s => (SOME Monomorphic, s)
   543      | NONE =>
   544        case try (unprefix "mangled_") s of
   545          SOME s => (SOME Mangled_Monomorphic, s)
   546        | NONE => (NONE, s))
   547   ||> (fn s =>
   548           (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
   549           case try_unsuffixes ["?", "_query"] s of
   550             SOME s => (Nonmonotonic_Types, s)
   551           | NONE =>
   552             case try_unsuffixes ["!", "_bang"] s of
   553               SOME s => (Finite_Types, s)
   554             | NONE => (All_Types, s))
   555   ||> apsnd (fn s =>
   556                 case try (unsuffix "_heavy") s of
   557                   SOME s => (Heavyweight, s)
   558                 | NONE => (Lightweight, s))
   559   |> (fn (poly, (level, (heaviness, core))) =>
   560          case (core, (poly, level, heaviness)) of
   561            ("simple", (NONE, _, Lightweight)) => Simple_Types level
   562          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   563          | ("tags", (SOME Polymorphic, All_Types, _)) =>
   564            Tags (Polymorphic, All_Types, heaviness)
   565          | ("tags", (SOME Polymorphic, _, _)) =>
   566            (* The actual light encoding is very unsound. *)
   567            Tags (Polymorphic, level, Heavyweight)
   568          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   569          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   570            Preds (poly, Const_Arg_Types, Lightweight)
   571          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   572            Preds (Polymorphic, No_Types, Lightweight)
   573          | _ => raise Same.SAME)
   574   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   575 
   576 fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
   577   | polymorphism_of_type_sys (Preds (poly, _, _)) = poly
   578   | polymorphism_of_type_sys (Tags (poly, _, _)) = poly
   579 
   580 fun level_of_type_sys (Simple_Types level) = level
   581   | level_of_type_sys (Preds (_, level, _)) = level
   582   | level_of_type_sys (Tags (_, level, _)) = level
   583 
   584 fun heaviness_of_type_sys (Simple_Types _) = Heavyweight
   585   | heaviness_of_type_sys (Preds (_, _, heaviness)) = heaviness
   586   | heaviness_of_type_sys (Tags (_, _, heaviness)) = heaviness
   587 
   588 fun is_type_level_virtually_sound level =
   589   level = All_Types orelse level = Nonmonotonic_Types
   590 val is_type_sys_virtually_sound =
   591   is_type_level_virtually_sound o level_of_type_sys
   592 
   593 fun is_type_level_fairly_sound level =
   594   is_type_level_virtually_sound level orelse level = Finite_Types
   595 val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
   596 
   597 fun is_setting_higher_order THF (Simple_Types _) = true
   598   | is_setting_higher_order _ _ = false
   599 
   600 fun choose_format formats (Simple_Types level) =
   601     if member (op =) formats THF then (THF, Simple_Types level)
   602     else if member (op =) formats TFF then (TFF, Simple_Types level)
   603     else choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   604   | choose_format formats type_sys =
   605     (case hd formats of
   606        CNF_UEQ =>
   607        (CNF_UEQ, case type_sys of
   608                    Preds stuff =>
   609                    (if is_type_sys_fairly_sound type_sys then Preds else Tags)
   610                        stuff
   611                  | _ => type_sys)
   612      | format => (format, type_sys))
   613 
   614 type translated_formula =
   615   {name: string,
   616    locality: locality,
   617    kind: formula_kind,
   618    combformula: (name, typ, combterm) formula,
   619    atomic_types: typ list}
   620 
   621 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   622                           : translated_formula) =
   623   {name = name, locality = locality, kind = kind, combformula = f combformula,
   624    atomic_types = atomic_types} : translated_formula
   625 
   626 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   627 
   628 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   629 
   630 fun insert_type ctxt get_T x xs =
   631   let val T = get_T x in
   632     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   633     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   634   end
   635 
   636 (* The Booleans indicate whether all type arguments should be kept. *)
   637 datatype type_arg_policy =
   638   Explicit_Type_Args of bool |
   639   Mangled_Type_Args of bool |
   640   No_Type_Args
   641 
   642 fun should_drop_arg_type_args (Simple_Types _) =
   643     false (* since TFF doesn't support overloading *)
   644   | should_drop_arg_type_args type_sys =
   645     level_of_type_sys type_sys = All_Types andalso
   646     heaviness_of_type_sys type_sys = Heavyweight
   647 
   648 fun general_type_arg_policy (Tags (_, All_Types, Heavyweight)) = No_Type_Args
   649   | general_type_arg_policy type_sys =
   650     if level_of_type_sys type_sys = No_Types then
   651       No_Type_Args
   652     else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
   653       Mangled_Type_Args (should_drop_arg_type_args type_sys)
   654     else
   655       Explicit_Type_Args (should_drop_arg_type_args type_sys)
   656 
   657 fun type_arg_policy type_sys s =
   658   if s = @{const_name HOL.eq} orelse
   659      (s = app_op_name andalso level_of_type_sys type_sys = Const_Arg_Types) then
   660     No_Type_Args
   661   else if s = type_tag_name then
   662     Explicit_Type_Args false
   663   else
   664     general_type_arg_policy type_sys
   665 
   666 (*Make literals for sorted type variables*)
   667 fun generic_sorts_on_type (_, []) = []
   668   | generic_sorts_on_type ((x, i), s :: ss) =
   669     generic_sorts_on_type ((x, i), ss)
   670     |> (if s = the_single @{sort HOL.type} then
   671           I
   672         else if i = ~1 then
   673           cons (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   674         else
   675           cons (TyLitVar (`make_type_class s,
   676                           (make_schematic_type_var (x, i), x))))
   677 fun sorts_on_tfree (TFree (s, S)) = generic_sorts_on_type ((s, ~1), S)
   678   | sorts_on_tfree _ = []
   679 fun sorts_on_tvar (TVar z) = generic_sorts_on_type z
   680   | sorts_on_tvar _ = []
   681 
   682 (* Given a list of sorted type variables, return a list of type literals. *)
   683 fun raw_type_literals_for_types Ts =
   684   union_all (map sorts_on_tfree Ts @ map sorts_on_tvar Ts)
   685 
   686 fun type_literals_for_types type_sys sorts_on_typ Ts =
   687   if level_of_type_sys type_sys = No_Types then []
   688   else union_all (map sorts_on_typ Ts)
   689 
   690 fun mk_aconns c phis =
   691   let val (phis', phi') = split_last phis in
   692     fold_rev (mk_aconn c) phis' phi'
   693   end
   694 fun mk_ahorn [] phi = phi
   695   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   696 fun mk_aquant _ [] phi = phi
   697   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   698     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   699   | mk_aquant q xs phi = AQuant (q, xs, phi)
   700 
   701 fun close_universally atom_vars phi =
   702   let
   703     fun formula_vars bounds (AQuant (_, xs, phi)) =
   704         formula_vars (map fst xs @ bounds) phi
   705       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   706       | formula_vars bounds (AAtom tm) =
   707         union (op =) (atom_vars tm []
   708                       |> filter_out (member (op =) bounds o fst))
   709   in mk_aquant AForall (formula_vars [] phi []) phi end
   710 
   711 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   712   | combterm_vars (CombConst _) = I
   713   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   714 fun close_combformula_universally phi = close_universally combterm_vars phi
   715 
   716 fun term_vars (ATerm (name as (s, _), tms)) =
   717   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   718 fun close_formula_universally phi = close_universally term_vars phi
   719 
   720 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   721 val homo_infinite_type = Type (homo_infinite_type_name, [])
   722 
   723 fun fo_term_from_typ format type_sys =
   724   let
   725     fun term (Type (s, Ts)) =
   726       ATerm (case (is_setting_higher_order format type_sys, s) of
   727                (true, @{type_name bool}) => `I tptp_bool_type
   728              | (true, @{type_name fun}) => `I tptp_fun_type
   729              | _ => if s = homo_infinite_type_name andalso
   730                        (format = TFF orelse format = THF) then
   731                       `I tptp_individual_type
   732                     else
   733                       `make_fixed_type_const s,
   734              map term Ts)
   735     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   736     | term (TVar ((x as (s, _)), _)) =
   737       ATerm ((make_schematic_type_var x, s), [])
   738   in term end
   739 
   740 (* This shouldn't clash with anything else. *)
   741 val mangled_type_sep = "\000"
   742 
   743 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   744   | generic_mangled_type_name f (ATerm (name, tys)) =
   745     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   746     ^ ")"
   747 
   748 val bool_atype = AType (`I tptp_bool_type)
   749 
   750 fun make_simple_type s =
   751   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   752      s = tptp_individual_type then
   753     s
   754   else
   755     simple_type_prefix ^ ascii_of s
   756 
   757 fun ho_type_from_fo_term format type_sys pred_sym ary =
   758   let
   759     fun to_atype ty =
   760       AType ((make_simple_type (generic_mangled_type_name fst ty),
   761               generic_mangled_type_name snd ty))
   762     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   763     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   764       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   765     fun to_ho (ty as ATerm ((s, _), tys)) =
   766       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   767   in if is_setting_higher_order format type_sys then to_ho else to_fo ary end
   768 
   769 fun mangled_type format type_sys pred_sym ary =
   770   ho_type_from_fo_term format type_sys pred_sym ary
   771   o fo_term_from_typ format type_sys
   772 
   773 fun mangled_const_name format type_sys T_args (s, s') =
   774   let
   775     val ty_args = map (fo_term_from_typ format type_sys) T_args
   776     fun type_suffix f g =
   777       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   778                 o generic_mangled_type_name f) ty_args ""
   779   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   780 
   781 val parse_mangled_ident =
   782   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   783 
   784 fun parse_mangled_type x =
   785   (parse_mangled_ident
   786    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   787                     [] >> ATerm) x
   788 and parse_mangled_types x =
   789   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   790 
   791 fun unmangled_type s =
   792   s |> suffix ")" |> raw_explode
   793     |> Scan.finite Symbol.stopper
   794            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   795                                                 quote s)) parse_mangled_type))
   796     |> fst
   797 
   798 val unmangled_const_name = space_explode mangled_type_sep #> hd
   799 fun unmangled_const s =
   800   let val ss = space_explode mangled_type_sep s in
   801     (hd ss, map unmangled_type (tl ss))
   802   end
   803 
   804 fun introduce_proxies format type_sys =
   805   let
   806     fun intro top_level (CombApp (tm1, tm2)) =
   807         CombApp (intro top_level tm1, intro false tm2)
   808       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   809         (case proxify_const s of
   810            SOME proxy_base =>
   811            if top_level orelse is_setting_higher_order format type_sys then
   812              case (top_level, s) of
   813                (_, "c_False") => (`I tptp_false, [])
   814              | (_, "c_True") => (`I tptp_true, [])
   815              | (false, "c_Not") => (`I tptp_not, [])
   816              | (false, "c_conj") => (`I tptp_and, [])
   817              | (false, "c_disj") => (`I tptp_or, [])
   818              | (false, "c_implies") => (`I tptp_implies, [])
   819              | (false, s) =>
   820                if is_tptp_equal s then (`I tptp_equal, [])
   821                else (proxy_base |>> prefix const_prefix, T_args)
   822              | _ => (name, [])
   823            else
   824              (proxy_base |>> prefix const_prefix, T_args)
   825           | NONE => (name, T_args))
   826         |> (fn (name, T_args) => CombConst (name, T, T_args))
   827       | intro _ tm = tm
   828   in intro true end
   829 
   830 fun combformula_from_prop thy format type_sys eq_as_iff =
   831   let
   832     fun do_term bs t atomic_types =
   833       combterm_from_term thy bs (Envir.eta_contract t)
   834       |>> (introduce_proxies format type_sys #> AAtom)
   835       ||> union (op =) atomic_types
   836     fun do_quant bs q s T t' =
   837       let val s = Name.variant (map fst bs) s in
   838         do_formula ((s, T) :: bs) t'
   839         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   840       end
   841     and do_conn bs c t1 t2 =
   842       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   843     and do_formula bs t =
   844       case t of
   845         @{const Trueprop} $ t1 => do_formula bs t1
   846       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   847       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   848         do_quant bs AForall s T t'
   849       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   850         do_quant bs AExists s T t'
   851       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   852       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   853       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   854       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   855         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   856       | _ => do_term bs t
   857   in do_formula [] end
   858 
   859 fun presimplify_term ctxt =
   860   Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   861   #> Meson.presimplify ctxt
   862   #> prop_of
   863 
   864 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   865 fun conceal_bounds Ts t =
   866   subst_bounds (map (Free o apfst concealed_bound_name)
   867                     (0 upto length Ts - 1 ~~ Ts), t)
   868 fun reveal_bounds Ts =
   869   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   870                     (0 upto length Ts - 1 ~~ Ts))
   871 
   872 fun extensionalize_term ctxt t =
   873   let val thy = Proof_Context.theory_of ctxt in
   874     t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   875       |> prop_of |> Logic.dest_equals |> snd
   876   end
   877 
   878 fun introduce_combinators_in_term ctxt kind t =
   879   let val thy = Proof_Context.theory_of ctxt in
   880     if Meson.is_fol_term thy t then
   881       t
   882     else
   883       let
   884         fun aux Ts t =
   885           case t of
   886             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   887           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   888             t0 $ Abs (s, T, aux (T :: Ts) t')
   889           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   890             aux Ts (t0 $ eta_expand Ts t1 1)
   891           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   892             t0 $ Abs (s, T, aux (T :: Ts) t')
   893           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   894             aux Ts (t0 $ eta_expand Ts t1 1)
   895           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   896           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   897           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   898           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   899               $ t1 $ t2 =>
   900             t0 $ aux Ts t1 $ aux Ts t2
   901           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   902                    t
   903                  else
   904                    t |> conceal_bounds Ts
   905                      |> Envir.eta_contract
   906                      |> cterm_of thy
   907                      |> Meson_Clausify.introduce_combinators_in_cterm
   908                      |> prop_of |> Logic.dest_equals |> snd
   909                      |> reveal_bounds Ts
   910         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   911       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   912       handle THM _ =>
   913              (* A type variable of sort "{}" will make abstraction fail. *)
   914              if kind = Conjecture then HOLogic.false_const
   915              else HOLogic.true_const
   916   end
   917 
   918 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   919    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   920 fun freeze_term t =
   921   let
   922     fun aux (t $ u) = aux t $ aux u
   923       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   924       | aux (Var ((s, i), T)) =
   925         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   926       | aux t = t
   927   in t |> exists_subterm is_Var t ? aux end
   928 
   929 fun preprocess_prop ctxt presimp kind t =
   930   let
   931     val thy = Proof_Context.theory_of ctxt
   932     val t = t |> Envir.beta_eta_contract
   933               |> transform_elim_prop
   934               |> Object_Logic.atomize_term thy
   935     val need_trueprop = (fastype_of t = @{typ bool})
   936   in
   937     t |> need_trueprop ? HOLogic.mk_Trueprop
   938       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   939       |> extensionalize_term ctxt
   940       |> presimp ? presimplify_term ctxt
   941       |> perhaps (try (HOLogic.dest_Trueprop))
   942       |> introduce_combinators_in_term ctxt kind
   943   end
   944 
   945 (* making fact and conjecture formulas *)
   946 fun make_formula thy format type_sys eq_as_iff name loc kind t =
   947   let
   948     val (combformula, atomic_types) =
   949       combformula_from_prop thy format type_sys eq_as_iff t []
   950   in
   951     {name = name, locality = loc, kind = kind, combformula = combformula,
   952      atomic_types = atomic_types}
   953   end
   954 
   955 fun make_fact ctxt format type_sys keep_trivial eq_as_iff preproc presimp
   956               ((name, loc), t) =
   957   let val thy = Proof_Context.theory_of ctxt in
   958     case (keep_trivial,
   959           t |> preproc ? preprocess_prop ctxt presimp Axiom
   960             |> make_formula thy format type_sys eq_as_iff name loc Axiom) of
   961       (false,
   962        formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...}) =>
   963       if s = tptp_true then NONE else SOME formula
   964     | (_, formula) => SOME formula
   965   end
   966 
   967 fun make_conjecture ctxt format prem_kind type_sys preproc ts =
   968   let
   969     val thy = Proof_Context.theory_of ctxt
   970     val last = length ts - 1
   971   in
   972     map2 (fn j => fn t =>
   973              let
   974                val (kind, maybe_negate) =
   975                  if j = last then
   976                    (Conjecture, I)
   977                  else
   978                    (prem_kind,
   979                     if prem_kind = Conjecture then update_combformula mk_anot
   980                     else I)
   981               in
   982                 t |> preproc ? (preprocess_prop ctxt true kind #> freeze_term)
   983                   |> make_formula thy format type_sys (format <> CNF)
   984                                   (string_of_int j) General kind
   985                   |> maybe_negate
   986               end)
   987          (0 upto last) ts
   988   end
   989 
   990 (** Finite and infinite type inference **)
   991 
   992 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
   993   | deep_freeze_atyp T = T
   994 val deep_freeze_type = map_atyps deep_freeze_atyp
   995 
   996 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
   997    dangerous because their "exhaust" properties can easily lead to unsound ATP
   998    proofs. On the other hand, all HOL infinite types can be given the same
   999    models in first-order logic (via Löwenheim-Skolem). *)
  1000 
  1001 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1002     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1003   | should_encode_type _ _ All_Types _ = true
  1004   | should_encode_type ctxt _ Finite_Types T = is_type_surely_finite ctxt T
  1005   | should_encode_type _ _ _ _ = false
  1006 
  1007 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1008                              should_predicate_on_var T =
  1009     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1010     should_encode_type ctxt nonmono_Ts level T
  1011   | should_predicate_on_type _ _ _ _ _ = false
  1012 
  1013 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1014     String.isPrefix bound_var_prefix s
  1015   | is_var_or_bound_var (CombVar _) = true
  1016   | is_var_or_bound_var _ = false
  1017 
  1018 datatype tag_site = Top_Level | Eq_Arg | Elsewhere
  1019 
  1020 fun should_tag_with_type _ _ _ Top_Level _ _ = false
  1021   | should_tag_with_type ctxt nonmono_Ts (Tags (_, level, heaviness)) site u T =
  1022     (case heaviness of
  1023        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1024      | Lightweight =>
  1025        case (site, is_var_or_bound_var u) of
  1026          (Eq_Arg, true) => should_encode_type ctxt nonmono_Ts level T
  1027        | _ => false)
  1028   | should_tag_with_type _ _ _ _ _ _ = false
  1029 
  1030 fun homogenized_type ctxt nonmono_Ts level =
  1031   let
  1032     val should_encode = should_encode_type ctxt nonmono_Ts level
  1033     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1034       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1035         homo 0 T1 --> homo (ary - 1) T2
  1036       | homo _ _ = raise Fail "expected function type"
  1037   in homo end
  1038 
  1039 (** "hBOOL" and "hAPP" **)
  1040 
  1041 type sym_info =
  1042   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1043 
  1044 fun add_combterm_syms_to_table ctxt explicit_apply =
  1045   let
  1046     fun consider_var_arity const_T var_T max_ary =
  1047       let
  1048         fun iter ary T =
  1049           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1050              type_instance ctxt (T, var_T) then
  1051             ary
  1052           else
  1053             iter (ary + 1) (range_type T)
  1054       in iter 0 const_T end
  1055     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1056       if explicit_apply = NONE andalso
  1057          (can dest_funT T orelse T = @{typ bool}) then
  1058         let
  1059           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1060           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1061             {pred_sym = pred_sym andalso not bool_vars',
  1062              min_ary =
  1063                fold (fn T' => consider_var_arity T' T) types min_ary,
  1064              max_ary = max_ary, types = types}
  1065           val fun_var_Ts' =
  1066             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1067         in
  1068           if bool_vars' = bool_vars andalso
  1069              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1070             accum
  1071           else
  1072             ((bool_vars', fun_var_Ts'),
  1073              Symtab.map (K repair_min_arity) sym_tab)
  1074         end
  1075       else
  1076         accum
  1077     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1078       let val (head, args) = strip_combterm_comb tm in
  1079         (case head of
  1080            CombConst ((s, _), T, _) =>
  1081            if String.isPrefix bound_var_prefix s then
  1082              add_var_or_bound_var T accum
  1083            else
  1084              let val ary = length args in
  1085                ((bool_vars, fun_var_Ts),
  1086                 case Symtab.lookup sym_tab s of
  1087                   SOME {pred_sym, min_ary, max_ary, types} =>
  1088                   let
  1089                     val pred_sym =
  1090                       pred_sym andalso top_level andalso not bool_vars
  1091                     val types' = types |> insert_type ctxt I T
  1092                     val min_ary =
  1093                       if is_some explicit_apply orelse
  1094                          pointer_eq (types', types) then
  1095                         min_ary
  1096                       else
  1097                         fold (consider_var_arity T) fun_var_Ts min_ary
  1098                   in
  1099                     Symtab.update (s, {pred_sym = pred_sym,
  1100                                        min_ary = Int.min (ary, min_ary),
  1101                                        max_ary = Int.max (ary, max_ary),
  1102                                        types = types'})
  1103                                   sym_tab
  1104                   end
  1105                 | NONE =>
  1106                   let
  1107                     val pred_sym = top_level andalso not bool_vars
  1108                     val min_ary =
  1109                       case explicit_apply of
  1110                         SOME true => 0
  1111                       | SOME false => ary
  1112                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1113                   in
  1114                     Symtab.update_new (s, {pred_sym = pred_sym,
  1115                                            min_ary = min_ary, max_ary = ary,
  1116                                            types = [T]})
  1117                                       sym_tab
  1118                   end)
  1119              end
  1120          | CombVar (_, T) => add_var_or_bound_var T accum
  1121          | _ => accum)
  1122         |> fold (add false) args
  1123       end
  1124   in add true end
  1125 fun add_fact_syms_to_table ctxt explicit_apply =
  1126   fact_lift (formula_fold NONE
  1127                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1128 
  1129 val default_sym_tab_entries : (string * sym_info) list =
  1130   (prefixed_predicator_name,
  1131    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1132   ([tptp_false, tptp_true]
  1133    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1134   ([tptp_equal, tptp_old_equal]
  1135    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1136 
  1137 fun sym_table_for_facts ctxt explicit_apply facts =
  1138   ((false, []), Symtab.empty)
  1139   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1140   |> fold Symtab.update default_sym_tab_entries
  1141 
  1142 fun min_arity_of sym_tab s =
  1143   case Symtab.lookup sym_tab s of
  1144     SOME ({min_ary, ...} : sym_info) => min_ary
  1145   | NONE =>
  1146     case strip_prefix_and_unascii const_prefix s of
  1147       SOME s =>
  1148       let val s = s |> unmangled_const_name |> invert_const in
  1149         if s = predicator_name then 1
  1150         else if s = app_op_name then 2
  1151         else if s = type_pred_name then 1
  1152         else 0
  1153       end
  1154     | NONE => 0
  1155 
  1156 (* True if the constant ever appears outside of the top-level position in
  1157    literals, or if it appears with different arities (e.g., because of different
  1158    type instantiations). If false, the constant always receives all of its
  1159    arguments and is used as a predicate. *)
  1160 fun is_pred_sym sym_tab s =
  1161   case Symtab.lookup sym_tab s of
  1162     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1163     pred_sym andalso min_ary = max_ary
  1164   | NONE => false
  1165 
  1166 val predicator_combconst =
  1167   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1168 fun predicator tm = CombApp (predicator_combconst, tm)
  1169 
  1170 fun introduce_predicators_in_combterm sym_tab tm =
  1171   case strip_combterm_comb tm of
  1172     (CombConst ((s, _), _, _), _) =>
  1173     if is_pred_sym sym_tab s then tm else predicator tm
  1174   | _ => predicator tm
  1175 
  1176 fun list_app head args = fold (curry (CombApp o swap)) args head
  1177 
  1178 val app_op = `make_fixed_const app_op_name
  1179 
  1180 fun explicit_app arg head =
  1181   let
  1182     val head_T = combtyp_of head
  1183     val (arg_T, res_T) = dest_funT head_T
  1184     val explicit_app =
  1185       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1186   in list_app explicit_app [head, arg] end
  1187 fun list_explicit_app head args = fold explicit_app args head
  1188 
  1189 fun introduce_explicit_apps_in_combterm sym_tab =
  1190   let
  1191     fun aux tm =
  1192       case strip_combterm_comb tm of
  1193         (head as CombConst ((s, _), _, _), args) =>
  1194         args |> map aux
  1195              |> chop (min_arity_of sym_tab s)
  1196              |>> list_app head
  1197              |-> list_explicit_app
  1198       | (head, args) => list_explicit_app head (map aux args)
  1199   in aux end
  1200 
  1201 fun chop_fun 0 T = ([], T)
  1202   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1203     chop_fun (n - 1) ran_T |>> cons dom_T
  1204   | chop_fun _ _ = raise Fail "unexpected non-function"
  1205 
  1206 fun filter_type_args _ _ _ [] = []
  1207   | filter_type_args thy s arity T_args =
  1208     let
  1209       (* will throw "TYPE" for pseudo-constants *)
  1210       val U = if s = app_op_name then
  1211                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1212               else
  1213                 s |> Sign.the_const_type thy
  1214     in
  1215       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1216         [] => []
  1217       | res_U_vars =>
  1218         let val U_args = (s, U) |> Sign.const_typargs thy in
  1219           U_args ~~ T_args
  1220           |> map_filter (fn (U, T) =>
  1221                             if member (op =) res_U_vars (dest_TVar U) then
  1222                               SOME T
  1223                             else
  1224                               NONE)
  1225         end
  1226     end
  1227     handle TYPE _ => T_args
  1228 
  1229 fun enforce_type_arg_policy_in_combterm ctxt format type_sys =
  1230   let
  1231     val thy = Proof_Context.theory_of ctxt
  1232     fun aux arity (CombApp (tm1, tm2)) =
  1233         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1234       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1235         (case strip_prefix_and_unascii const_prefix s of
  1236            NONE => (name, T_args)
  1237          | SOME s'' =>
  1238            let
  1239              val s'' = invert_const s''
  1240              fun filtered_T_args false = T_args
  1241                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1242            in
  1243              case type_arg_policy type_sys s'' of
  1244                Explicit_Type_Args drop_args =>
  1245                (name, filtered_T_args drop_args)
  1246              | Mangled_Type_Args drop_args =>
  1247                (mangled_const_name format type_sys (filtered_T_args drop_args)
  1248                                    name, [])
  1249              | No_Type_Args => (name, [])
  1250            end)
  1251         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1252       | aux _ tm = tm
  1253   in aux 0 end
  1254 
  1255 fun repair_combterm ctxt format type_sys sym_tab =
  1256   not (is_setting_higher_order format type_sys)
  1257   ? (introduce_explicit_apps_in_combterm sym_tab
  1258      #> introduce_predicators_in_combterm sym_tab)
  1259   #> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1260 fun repair_fact ctxt format type_sys sym_tab =
  1261   update_combformula (formula_map
  1262       (repair_combterm ctxt format type_sys sym_tab))
  1263 
  1264 (** Helper facts **)
  1265 
  1266 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1267 val helper_table =
  1268   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1269    (("COMBK", false), @{thms Meson.COMBK_def}),
  1270    (("COMBB", false), @{thms Meson.COMBB_def}),
  1271    (("COMBC", false), @{thms Meson.COMBC_def}),
  1272    (("COMBS", false), @{thms Meson.COMBS_def}),
  1273    (("fequal", true),
  1274     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1275        However, this is done so for backward compatibility: Including the
  1276        equality helpers by default in Metis breaks a few existing proofs. *)
  1277     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1278            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1279    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1280    (("fFalse", true), @{thms True_or_False}),
  1281    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1282    (("fTrue", true), @{thms True_or_False}),
  1283    (("fNot", false),
  1284     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1285            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1286    (("fconj", false),
  1287     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1288         by (unfold fconj_def) fast+}),
  1289    (("fdisj", false),
  1290     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1291         by (unfold fdisj_def) fast+}),
  1292    (("fimplies", false),
  1293     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1294         by (unfold fimplies_def) fast+}),
  1295    (("If", true), @{thms if_True if_False True_or_False})]
  1296   |> map (apsnd (map zero_var_indexes))
  1297 
  1298 val type_tag = `make_fixed_const type_tag_name
  1299 
  1300 fun type_tag_idempotence_fact () =
  1301   let
  1302     fun var s = ATerm (`I s, [])
  1303     fun tag tm = ATerm (type_tag, [var "T", tm])
  1304     val tagged_a = tag (var "A")
  1305   in
  1306     Formula (type_tag_idempotence_helper_name, Axiom,
  1307              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1308              |> close_formula_universally, simp_info, NONE)
  1309   end
  1310 
  1311 fun should_specialize_helper type_sys t =
  1312   case general_type_arg_policy type_sys of
  1313     Mangled_Type_Args _ => not (null (Term.hidden_polymorphism t))
  1314   | _ => false
  1315 
  1316 fun helper_facts_for_sym ctxt format type_sys (s, {types, ...} : sym_info) =
  1317   case strip_prefix_and_unascii const_prefix s of
  1318     SOME mangled_s =>
  1319     let
  1320       val thy = Proof_Context.theory_of ctxt
  1321       val unmangled_s = mangled_s |> unmangled_const_name
  1322       fun dub_and_inst needs_fairly_sound (th, j) =
  1323         ((unmangled_s ^ "_" ^ string_of_int j ^
  1324           (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1325           (if needs_fairly_sound then typed_helper_suffix
  1326            else untyped_helper_suffix),
  1327           General),
  1328          let val t = th |> prop_of in
  1329            t |> should_specialize_helper type_sys t
  1330                 ? (case types of
  1331                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1332                    | _ => I)
  1333          end)
  1334       val make_facts =
  1335         map_filter (make_fact ctxt format type_sys false false false false)
  1336       val fairly_sound = is_type_sys_fairly_sound type_sys
  1337     in
  1338       helper_table
  1339       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1340                   if helper_s <> unmangled_s orelse
  1341                      (needs_fairly_sound andalso not fairly_sound) then
  1342                     []
  1343                   else
  1344                     ths ~~ (1 upto length ths)
  1345                     |> map (dub_and_inst needs_fairly_sound)
  1346                     |> make_facts)
  1347     end
  1348   | NONE => []
  1349 fun helper_facts_for_sym_table ctxt format type_sys sym_tab =
  1350   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_sys) sym_tab
  1351                   []
  1352 
  1353 fun translate_atp_fact ctxt format type_sys keep_trivial =
  1354   `(make_fact ctxt format type_sys keep_trivial true true true o apsnd prop_of)
  1355 
  1356 (***************************************************************)
  1357 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1358 (***************************************************************)
  1359 
  1360 fun set_insert (x, s) = Symtab.update (x, ()) s
  1361 
  1362 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1363 
  1364 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1365 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1366 
  1367 fun classes_of_terms get_Ts =
  1368   map (map snd o get_Ts)
  1369   #> List.foldl add_classes Symtab.empty
  1370   #> delete_type #> Symtab.keys
  1371 
  1372 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1373 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1374 
  1375 (*fold type constructors*)
  1376 fun fold_type_constrs f (Type (a, Ts)) x =
  1377     fold (fold_type_constrs f) Ts (f (a,x))
  1378   | fold_type_constrs _ _ x = x
  1379 
  1380 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1381 fun add_type_constrs_in_term thy =
  1382   let
  1383     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1384       | add (t $ u) = add t #> add u
  1385       | add (Const (x as (s, _))) =
  1386         if String.isPrefix skolem_const_prefix s then I
  1387         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1388       | add (Abs (_, _, u)) = add u
  1389       | add _ = I
  1390   in add end
  1391 
  1392 fun type_constrs_of_terms thy ts =
  1393   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1394 
  1395 fun translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1396                        rich_facts =
  1397   let
  1398     val thy = Proof_Context.theory_of ctxt
  1399     val fact_ts = map (prop_of o snd o snd) rich_facts
  1400     val (facts, fact_names) =
  1401       rich_facts
  1402       |> map_filter (fn (NONE, _) => NONE
  1403                       | (SOME fact, (name, _)) => SOME (fact, name))
  1404       |> ListPair.unzip
  1405     (* Remove existing facts from the conjecture, as this can dramatically
  1406        boost an ATP's performance (for some reason). *)
  1407     val hyp_ts =
  1408       hyp_ts
  1409       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1410     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1411     val all_ts = goal_t :: fact_ts
  1412     val subs = tfree_classes_of_terms all_ts
  1413     val supers = tvar_classes_of_terms all_ts
  1414     val tycons = type_constrs_of_terms thy all_ts
  1415     val conjs =
  1416       hyp_ts @ [concl_t]
  1417       |> make_conjecture ctxt format prem_kind type_sys preproc
  1418     val (supers', arity_clauses) =
  1419       if level_of_type_sys type_sys = No_Types then ([], [])
  1420       else make_arity_clauses thy tycons supers
  1421     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1422   in
  1423     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1424   end
  1425 
  1426 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1427     (true, ATerm (class, [ATerm (name, [])]))
  1428   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1429     (true, ATerm (class, [ATerm (name, [])]))
  1430 
  1431 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1432 
  1433 val type_pred = `make_fixed_const type_pred_name
  1434 
  1435 fun type_pred_combterm ctxt format type_sys T tm =
  1436   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1437            |> enforce_type_arg_policy_in_combterm ctxt format type_sys, tm)
  1438 
  1439 fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
  1440   | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1441     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1442 fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
  1443   | is_var_nonmonotonic_in_formula pos phi _ name =
  1444     formula_fold pos (var_occurs_positively_naked_in_term name) phi false
  1445 
  1446 fun mk_const_aterm format type_sys x T_args args =
  1447   ATerm (x, map (fo_term_from_typ format type_sys) T_args @ args)
  1448 
  1449 fun tag_with_type ctxt format nonmono_Ts type_sys T tm =
  1450   CombConst (type_tag, T --> T, [T])
  1451   |> enforce_type_arg_policy_in_combterm ctxt format type_sys
  1452   |> term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1453   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1454 and term_from_combterm ctxt format nonmono_Ts type_sys =
  1455   let
  1456     fun aux site u =
  1457       let
  1458         val (head, args) = strip_combterm_comb u
  1459         val (x as (s, _), T_args) =
  1460           case head of
  1461             CombConst (name, _, T_args) => (name, T_args)
  1462           | CombVar (name, _) => (name, [])
  1463           | CombApp _ => raise Fail "impossible \"CombApp\""
  1464         val arg_site = if site = Top_Level andalso is_tptp_equal s then Eq_Arg
  1465                        else Elsewhere
  1466         val t = mk_const_aterm format type_sys x T_args
  1467                     (map (aux arg_site) args)
  1468         val T = combtyp_of u
  1469       in
  1470         t |> (if should_tag_with_type ctxt nonmono_Ts type_sys site u T then
  1471                 tag_with_type ctxt format nonmono_Ts type_sys T
  1472               else
  1473                 I)
  1474       end
  1475   in aux end
  1476 and formula_from_combformula ctxt format nonmono_Ts type_sys
  1477                              should_predicate_on_var =
  1478   let
  1479     val do_term = term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1480     val do_bound_type =
  1481       case type_sys of
  1482         Simple_Types level =>
  1483         homogenized_type ctxt nonmono_Ts level 0
  1484         #> mangled_type format type_sys false 0 #> SOME
  1485       | _ => K NONE
  1486     fun do_out_of_bound_type pos phi universal (name, T) =
  1487       if should_predicate_on_type ctxt nonmono_Ts type_sys
  1488              (fn () => should_predicate_on_var pos phi universal name) T then
  1489         CombVar (name, T)
  1490         |> type_pred_combterm ctxt format type_sys T
  1491         |> do_term |> AAtom |> SOME
  1492       else
  1493         NONE
  1494     fun do_formula pos (AQuant (q, xs, phi)) =
  1495         let
  1496           val phi = phi |> do_formula pos
  1497           val universal = Option.map (q = AExists ? not) pos
  1498         in
  1499           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1500                                         | SOME T => do_bound_type T)),
  1501                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1502                       (map_filter
  1503                            (fn (_, NONE) => NONE
  1504                              | (s, SOME T) =>
  1505                                do_out_of_bound_type pos phi universal (s, T))
  1506                            xs)
  1507                       phi)
  1508         end
  1509       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1510       | do_formula _ (AAtom tm) = AAtom (do_term tm)
  1511   in do_formula o SOME end
  1512 
  1513 fun bound_tvars type_sys Ts =
  1514   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1515                 (type_literals_for_types type_sys sorts_on_tvar Ts))
  1516 
  1517 fun formula_for_fact ctxt format nonmono_Ts type_sys
  1518                      ({combformula, atomic_types, ...} : translated_formula) =
  1519   combformula
  1520   |> close_combformula_universally
  1521   |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1522                               is_var_nonmonotonic_in_formula true
  1523   |> bound_tvars type_sys atomic_types
  1524   |> close_formula_universally
  1525 
  1526 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1527    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1528    the remote provers might care. *)
  1529 fun formula_line_for_fact ctxt format prefix encode freshen nonmono_Ts type_sys
  1530                           (j, formula as {name, locality, kind, ...}) =
  1531   Formula (prefix ^
  1532            (if freshen andalso
  1533                polymorphism_of_type_sys type_sys <> Polymorphic then
  1534               string_of_int j ^ "_"
  1535             else
  1536               "") ^ encode name,
  1537            kind, formula_for_fact ctxt format nonmono_Ts type_sys formula, NONE,
  1538            case locality of
  1539              Intro => intro_info
  1540            | Elim => elim_info
  1541            | Simp => simp_info
  1542            | _ => NONE)
  1543 
  1544 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1545                                        : class_rel_clause) =
  1546   let val ty_arg = ATerm (`I "T", []) in
  1547     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1548              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1549                                AAtom (ATerm (superclass, [ty_arg]))])
  1550              |> close_formula_universally, intro_info, NONE)
  1551   end
  1552 
  1553 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1554     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1555   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1556     (false, ATerm (c, [ATerm (sort, [])]))
  1557 
  1558 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1559                                    : arity_clause) =
  1560   Formula (arity_clause_prefix ^ ascii_of name, Axiom,
  1561            mk_ahorn (map (formula_from_fo_literal o apfst not
  1562                           o fo_literal_from_arity_literal) prem_lits)
  1563                     (formula_from_fo_literal
  1564                          (fo_literal_from_arity_literal concl_lits))
  1565            |> close_formula_universally, intro_info, NONE)
  1566 
  1567 fun formula_line_for_conjecture ctxt format nonmono_Ts type_sys
  1568         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1569   Formula (conjecture_prefix ^ name, kind,
  1570            formula_from_combformula ctxt format nonmono_Ts type_sys
  1571                is_var_nonmonotonic_in_formula false
  1572                (close_combformula_universally combformula)
  1573            |> bound_tvars type_sys atomic_types
  1574            |> close_formula_universally, NONE, NONE)
  1575 
  1576 fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
  1577   atomic_types |> type_literals_for_types type_sys sorts_on_tfree
  1578                |> map fo_literal_from_type_literal
  1579 
  1580 fun formula_line_for_free_type j lit =
  1581   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1582            formula_from_fo_literal lit, NONE, NONE)
  1583 fun formula_lines_for_free_types type_sys facts =
  1584   let
  1585     val litss = map (free_type_literals type_sys) facts
  1586     val lits = fold (union (op =)) litss []
  1587   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1588 
  1589 (** Symbol declarations **)
  1590 
  1591 fun should_declare_sym type_sys pred_sym s =
  1592   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1593   (case type_sys of
  1594      Simple_Types _ => true
  1595    | Tags (_, _, Lightweight) => true
  1596    | _ => not pred_sym)
  1597 
  1598 fun sym_decl_table_for_facts ctxt type_sys repaired_sym_tab (conjs, facts) =
  1599   let
  1600     fun add_combterm in_conj tm =
  1601       let val (head, args) = strip_combterm_comb tm in
  1602         (case head of
  1603            CombConst ((s, s'), T, T_args) =>
  1604            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1605              if should_declare_sym type_sys pred_sym s then
  1606                Symtab.map_default (s, [])
  1607                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1608                                          in_conj))
  1609              else
  1610                I
  1611            end
  1612          | _ => I)
  1613         #> fold (add_combterm in_conj) args
  1614       end
  1615     fun add_fact in_conj =
  1616       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1617   in
  1618     Symtab.empty
  1619     |> is_type_sys_fairly_sound type_sys
  1620        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1621   end
  1622 
  1623 (* These types witness that the type classes they belong to allow infinite
  1624    models and hence that any types with these type classes is monotonic. *)
  1625 val known_infinite_types =
  1626   [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
  1627 
  1628 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1629    out with monotonicity" paper presented at CADE 2011. *)
  1630 fun add_combterm_nonmonotonic_types _ _ (SOME false) _ = I
  1631   | add_combterm_nonmonotonic_types ctxt level _
  1632         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1633                            tm2)) =
  1634     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1635      (case level of
  1636         Nonmonotonic_Types =>
  1637         not (is_type_surely_infinite ctxt known_infinite_types T)
  1638       | Finite_Types => is_type_surely_finite ctxt T
  1639       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1640   | add_combterm_nonmonotonic_types _ _ _ _ = I
  1641 fun add_fact_nonmonotonic_types ctxt level ({kind, combformula, ...}
  1642                                             : translated_formula) =
  1643   formula_fold (SOME (kind <> Conjecture))
  1644                (add_combterm_nonmonotonic_types ctxt level) combformula
  1645 fun nonmonotonic_types_for_facts ctxt type_sys facts =
  1646   let val level = level_of_type_sys type_sys in
  1647     if level = Nonmonotonic_Types orelse level = Finite_Types then
  1648       [] |> fold (add_fact_nonmonotonic_types ctxt level) facts
  1649          (* We must add "bool" in case the helper "True_or_False" is added
  1650             later. In addition, several places in the code rely on the list of
  1651             nonmonotonic types not being empty. *)
  1652          |> insert_type ctxt I @{typ bool}
  1653     else
  1654       []
  1655   end
  1656 
  1657 fun decl_line_for_sym ctxt format nonmono_Ts type_sys s
  1658                       (s', T_args, T, pred_sym, ary, _) =
  1659   let
  1660     val (T_arg_Ts, level) =
  1661       case type_sys of
  1662         Simple_Types level => ([], level)
  1663       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1664   in
  1665     Decl (sym_decl_prefix ^ s, (s, s'),
  1666           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1667           |> mangled_type format type_sys pred_sym (length T_arg_Ts + ary))
  1668   end
  1669 
  1670 fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
  1671 
  1672 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1673         type_sys n s j (s', T_args, T, _, ary, in_conj) =
  1674   let
  1675     val (kind, maybe_negate) =
  1676       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1677       else (Axiom, I)
  1678     val (arg_Ts, res_T) = chop_fun ary T
  1679     val bound_names =
  1680       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1681     val bounds =
  1682       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1683     val bound_Ts =
  1684       arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
  1685                              else NONE)
  1686   in
  1687     Formula (preds_sym_formula_prefix ^ s ^
  1688              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1689              CombConst ((s, s'), T, T_args)
  1690              |> fold (curry (CombApp o swap)) bounds
  1691              |> type_pred_combterm ctxt format type_sys res_T
  1692              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1693              |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1694                                          (K (K (K (K true)))) true
  1695              |> n > 1 ? bound_tvars type_sys (atyps_of T)
  1696              |> close_formula_universally
  1697              |> maybe_negate,
  1698              intro_info, NONE)
  1699   end
  1700 
  1701 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1702         nonmono_Ts type_sys n s (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1703   let
  1704     val ident_base =
  1705       lightweight_tags_sym_formula_prefix ^ s ^
  1706       (if n > 1 then "_" ^ string_of_int j else "")
  1707     val (kind, maybe_negate) =
  1708       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1709       else (Axiom, I)
  1710     val (arg_Ts, res_T) = chop_fun ary T
  1711     val bound_names =
  1712       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1713     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1714     val cst = mk_const_aterm format type_sys (s, s') T_args
  1715     val atomic_Ts = atyps_of T
  1716     fun eq tms =
  1717       (if pred_sym then AConn (AIff, map AAtom tms)
  1718        else AAtom (ATerm (`I tptp_equal, tms)))
  1719       |> bound_tvars type_sys atomic_Ts
  1720       |> close_formula_universally
  1721       |> maybe_negate
  1722     val should_encode = should_encode_type ctxt nonmono_Ts All_Types
  1723     val tag_with = tag_with_type ctxt format nonmono_Ts type_sys
  1724     val add_formula_for_res =
  1725       if should_encode res_T then
  1726         cons (Formula (ident_base ^ "_res", kind,
  1727                        eq [tag_with res_T (cst bounds), cst bounds],
  1728                        simp_info, NONE))
  1729       else
  1730         I
  1731     fun add_formula_for_arg k =
  1732       let val arg_T = nth arg_Ts k in
  1733         if should_encode arg_T then
  1734           case chop k bounds of
  1735             (bounds1, bound :: bounds2) =>
  1736             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1737                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1738                                cst bounds],
  1739                            simp_info, NONE))
  1740           | _ => raise Fail "expected nonempty tail"
  1741         else
  1742           I
  1743       end
  1744   in
  1745     [] |> not pred_sym ? add_formula_for_res
  1746        |> fold add_formula_for_arg (ary - 1 downto 0)
  1747   end
  1748 
  1749 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1750 
  1751 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts type_sys
  1752                                 (s, decls) =
  1753   case type_sys of
  1754     Simple_Types _ =>
  1755     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_sys s)
  1756   | Preds _ =>
  1757     let
  1758       val decls =
  1759         case decls of
  1760           decl :: (decls' as _ :: _) =>
  1761           let val T = result_type_of_decl decl in
  1762             if forall (curry (type_instance ctxt o swap) T
  1763                        o result_type_of_decl) decls' then
  1764               [decl]
  1765             else
  1766               decls
  1767           end
  1768         | _ => decls
  1769       val n = length decls
  1770       val decls =
  1771         decls
  1772         |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys (K true)
  1773                    o result_type_of_decl)
  1774     in
  1775       (0 upto length decls - 1, decls)
  1776       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1777                                                 nonmono_Ts type_sys n s)
  1778     end
  1779   | Tags (_, _, heaviness) =>
  1780     (case heaviness of
  1781        Heavyweight => []
  1782      | Lightweight =>
  1783        let val n = length decls in
  1784          (0 upto n - 1 ~~ decls)
  1785          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1786                       conj_sym_kind nonmono_Ts type_sys n s)
  1787        end)
  1788 
  1789 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1790                                      type_sys sym_decl_tab =
  1791   sym_decl_tab
  1792   |> Symtab.dest
  1793   |> sort_wrt fst
  1794   |> rpair []
  1795   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1796                                                      nonmono_Ts type_sys)
  1797 
  1798 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1799     poly <> Mangled_Monomorphic andalso
  1800     ((level = All_Types andalso heaviness = Lightweight) orelse
  1801      level = Nonmonotonic_Types orelse level = Finite_Types)
  1802   | needs_type_tag_idempotence _ = false
  1803 
  1804 fun offset_of_heading_in_problem _ [] j = j
  1805   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1806     if heading = needle then j
  1807     else offset_of_heading_in_problem needle problem (j + length lines)
  1808 
  1809 val implicit_declsN = "Should-be-implicit typings"
  1810 val explicit_declsN = "Explicit typings"
  1811 val factsN = "Relevant facts"
  1812 val class_relsN = "Class relationships"
  1813 val aritiesN = "Arities"
  1814 val helpersN = "Helper facts"
  1815 val conjsN = "Conjectures"
  1816 val free_typesN = "Type variables"
  1817 
  1818 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_sys
  1819                         explicit_apply readable_names preproc hyp_ts concl_t
  1820                         facts =
  1821   let
  1822     val (format, type_sys) = choose_format [format] type_sys
  1823     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1824       translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1825                          facts
  1826     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1827     val nonmono_Ts = conjs @ facts |> nonmonotonic_types_for_facts ctxt type_sys
  1828     val repair = repair_fact ctxt format type_sys sym_tab
  1829     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1830     val repaired_sym_tab =
  1831       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1832     val helpers =
  1833       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_sys
  1834                        |> map repair
  1835     val lavish_nonmono_Ts =
  1836       if null nonmono_Ts orelse
  1837          polymorphism_of_type_sys type_sys <> Polymorphic then
  1838         nonmono_Ts
  1839       else
  1840         [TVar (("'a", 0), HOLogic.typeS)]
  1841     val sym_decl_lines =
  1842       (conjs, helpers @ facts)
  1843       |> sym_decl_table_for_facts ctxt type_sys repaired_sym_tab
  1844       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind
  1845                                           lavish_nonmono_Ts type_sys
  1846     val helper_lines =
  1847       0 upto length helpers - 1 ~~ helpers
  1848       |> map (formula_line_for_fact ctxt format helper_prefix I false
  1849                                     lavish_nonmono_Ts type_sys)
  1850       |> (if needs_type_tag_idempotence type_sys then
  1851             cons (type_tag_idempotence_fact ())
  1852           else
  1853             I)
  1854     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1855        FLOTTER hack. *)
  1856     val problem =
  1857       [(explicit_declsN, sym_decl_lines),
  1858        (factsN,
  1859         map (formula_line_for_fact ctxt format fact_prefix ascii_of true
  1860                                    nonmono_Ts type_sys)
  1861             (0 upto length facts - 1 ~~ facts)),
  1862        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1863        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1864        (helpersN, helper_lines),
  1865        (conjsN,
  1866         map (formula_line_for_conjecture ctxt format nonmono_Ts type_sys)
  1867             conjs),
  1868        (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
  1869     val problem =
  1870       problem
  1871       |> (case format of
  1872             CNF => ensure_cnf_problem
  1873           | CNF_UEQ => filter_cnf_ueq_problem
  1874           | _ => I)
  1875       |> (if is_format_typed format then
  1876             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1877                                                    implicit_declsN
  1878           else
  1879             I)
  1880     val (problem, pool) = problem |> nice_atp_problem readable_names
  1881     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1882     val typed_helpers =
  1883       map_filter (fn (j, {name, ...}) =>
  1884                      if String.isSuffix typed_helper_suffix name then SOME j
  1885                      else NONE)
  1886                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1887                   ~~ helpers)
  1888     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1889       if min_ary > 0 then
  1890         case strip_prefix_and_unascii const_prefix s of
  1891           SOME s => Symtab.insert (op =) (s, min_ary)
  1892         | NONE => I
  1893       else
  1894         I
  1895   in
  1896     (problem,
  1897      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1898      offset_of_heading_in_problem conjsN problem 0,
  1899      offset_of_heading_in_problem factsN problem 0,
  1900      fact_names |> Vector.fromList,
  1901      typed_helpers,
  1902      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1903   end
  1904 
  1905 (* FUDGE *)
  1906 val conj_weight = 0.0
  1907 val hyp_weight = 0.1
  1908 val fact_min_weight = 0.2
  1909 val fact_max_weight = 1.0
  1910 val type_info_default_weight = 0.8
  1911 
  1912 fun add_term_weights weight (ATerm (s, tms)) =
  1913   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1914   #> fold (add_term_weights weight) tms
  1915 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1916     formula_fold NONE (K (add_term_weights weight)) phi
  1917   | add_problem_line_weights _ _ = I
  1918 
  1919 fun add_conjectures_weights [] = I
  1920   | add_conjectures_weights conjs =
  1921     let val (hyps, conj) = split_last conjs in
  1922       add_problem_line_weights conj_weight conj
  1923       #> fold (add_problem_line_weights hyp_weight) hyps
  1924     end
  1925 
  1926 fun add_facts_weights facts =
  1927   let
  1928     val num_facts = length facts
  1929     fun weight_of j =
  1930       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1931                         / Real.fromInt num_facts
  1932   in
  1933     map weight_of (0 upto num_facts - 1) ~~ facts
  1934     |> fold (uncurry add_problem_line_weights)
  1935   end
  1936 
  1937 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1938 fun atp_problem_weights problem =
  1939   let val get = these o AList.lookup (op =) problem in
  1940     Symtab.empty
  1941     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1942     |> add_facts_weights (get factsN)
  1943     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1944             [explicit_declsN, class_relsN, aritiesN]
  1945     |> Symtab.dest
  1946     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1947   end
  1948 
  1949 end;