src/ZF/Induct/Binary_Trees.thy
author wenzelm
Tue, 13 Mar 2012 14:44:16 +0100
changeset 47772 73555abfa267
parent 47693 95f1e700b712
child 59180 85ec71012df8
permissions -rw-r--r--
tuned proofs;
     1 (*  Title:      ZF/Induct/Binary_Trees.thy
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Copyright   1992  University of Cambridge
     4 *)
     5 
     6 header {* Binary trees *}
     7 
     8 theory Binary_Trees imports Main begin
     9 
    10 subsection {* Datatype definition *}
    11 
    12 consts
    13   bt :: "i => i"
    14 
    15 datatype "bt(A)" =
    16   Lf | Br ("a \<in> A", "t1 \<in> bt(A)", "t2 \<in> bt(A)")
    17 
    18 declare bt.intros [simp]
    19 
    20 lemma Br_neq_left: "l \<in> bt(A) ==> Br(x, l, r) \<noteq> l"
    21   by (induct arbitrary: x r set: bt) auto
    22 
    23 lemma Br_iff: "Br(a, l, r) = Br(a', l', r') \<longleftrightarrow> a = a' & l = l' & r = r'"
    24   -- "Proving a freeness theorem."
    25   by (fast elim!: bt.free_elims)
    26 
    27 inductive_cases BrE: "Br(a, l, r) \<in> bt(A)"
    28   -- "An elimination rule, for type-checking."
    29 
    30 text {*
    31   \medskip Lemmas to justify using @{term bt} in other recursive type
    32   definitions.
    33 *}
    34 
    35 lemma bt_mono: "A \<subseteq> B ==> bt(A) \<subseteq> bt(B)"
    36   apply (unfold bt.defs)
    37   apply (rule lfp_mono)
    38     apply (rule bt.bnd_mono)+
    39   apply (rule univ_mono basic_monos | assumption)+
    40   done
    41 
    42 lemma bt_univ: "bt(univ(A)) \<subseteq> univ(A)"
    43   apply (unfold bt.defs bt.con_defs)
    44   apply (rule lfp_lowerbound)
    45    apply (rule_tac [2] A_subset_univ [THEN univ_mono])
    46   apply (fast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ)
    47   done
    48 
    49 lemma bt_subset_univ: "A \<subseteq> univ(B) ==> bt(A) \<subseteq> univ(B)"
    50   apply (rule subset_trans)
    51    apply (erule bt_mono)
    52   apply (rule bt_univ)
    53   done
    54 
    55 lemma bt_rec_type:
    56   "[| t \<in> bt(A);
    57     c \<in> C(Lf);
    58     !!x y z r s. [| x \<in> A;  y \<in> bt(A);  z \<in> bt(A);  r \<in> C(y);  s \<in> C(z) |] ==>
    59     h(x, y, z, r, s) \<in> C(Br(x, y, z))
    60   |] ==> bt_rec(c, h, t) \<in> C(t)"
    61   -- {* Type checking for recursor -- example only; not really needed. *}
    62   apply (induct_tac t)
    63    apply simp_all
    64   done
    65 
    66 
    67 subsection {* Number of nodes, with an example of tail-recursion *}
    68 
    69 consts  n_nodes :: "i => i"
    70 primrec
    71   "n_nodes(Lf) = 0"
    72   "n_nodes(Br(a, l, r)) = succ(n_nodes(l) #+ n_nodes(r))"
    73 
    74 lemma n_nodes_type [simp]: "t \<in> bt(A) ==> n_nodes(t) \<in> nat"
    75   by (induct set: bt) auto
    76 
    77 consts  n_nodes_aux :: "i => i"
    78 primrec
    79   "n_nodes_aux(Lf) = (\<lambda>k \<in> nat. k)"
    80   "n_nodes_aux(Br(a, l, r)) =
    81       (\<lambda>k \<in> nat. n_nodes_aux(r) `  (n_nodes_aux(l) ` succ(k)))"
    82 
    83 lemma n_nodes_aux_eq:
    84     "t \<in> bt(A) ==> k \<in> nat ==> n_nodes_aux(t)`k = n_nodes(t) #+ k"
    85   apply (induct arbitrary: k set: bt)
    86    apply simp
    87   apply (atomize, simp)
    88   done
    89 
    90 definition
    91   n_nodes_tail :: "i => i"  where
    92   "n_nodes_tail(t) == n_nodes_aux(t) ` 0"
    93 
    94 lemma "t \<in> bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
    95   by (simp add: n_nodes_tail_def n_nodes_aux_eq)
    96 
    97 
    98 subsection {* Number of leaves *}
    99 
   100 consts
   101   n_leaves :: "i => i"
   102 primrec
   103   "n_leaves(Lf) = 1"
   104   "n_leaves(Br(a, l, r)) = n_leaves(l) #+ n_leaves(r)"
   105 
   106 lemma n_leaves_type [simp]: "t \<in> bt(A) ==> n_leaves(t) \<in> nat"
   107   by (induct set: bt) auto
   108 
   109 
   110 subsection {* Reflecting trees *}
   111 
   112 consts
   113   bt_reflect :: "i => i"
   114 primrec
   115   "bt_reflect(Lf) = Lf"
   116   "bt_reflect(Br(a, l, r)) = Br(a, bt_reflect(r), bt_reflect(l))"
   117 
   118 lemma bt_reflect_type [simp]: "t \<in> bt(A) ==> bt_reflect(t) \<in> bt(A)"
   119   by (induct set: bt) auto
   120 
   121 text {*
   122   \medskip Theorems about @{term n_leaves}.
   123 *}
   124 
   125 lemma n_leaves_reflect: "t \<in> bt(A) ==> n_leaves(bt_reflect(t)) = n_leaves(t)"
   126   by (induct set: bt) (simp_all add: add_commute)
   127 
   128 lemma n_leaves_nodes: "t \<in> bt(A) ==> n_leaves(t) = succ(n_nodes(t))"
   129   by (induct set: bt) simp_all
   130 
   131 text {*
   132   Theorems about @{term bt_reflect}.
   133 *}
   134 
   135 lemma bt_reflect_bt_reflect_ident: "t \<in> bt(A) ==> bt_reflect(bt_reflect(t)) = t"
   136   by (induct set: bt) simp_all
   137 
   138 end