src/HOLCF/Library/List_Cpo.thy
author nipkow
Tue, 07 Sep 2010 12:04:18 +0200
changeset 39429 720112792ba0
parent 39377 d80990d8b909
child 39442 3989b2b44dba
permissions -rw-r--r--
renamed expand_*_eq in HOLCF as well
     1 (*  Title:      HOLCF/Library/List_Cpo.thy
     2     Author:     Brian Huffman
     3 *)
     4 
     5 header {* Lists as a complete partial order *}
     6 
     7 theory List_Cpo
     8 imports HOLCF
     9 begin
    10 
    11 subsection {* Lists are a partial order *}
    12 
    13 instantiation list :: (po) po
    14 begin
    15 
    16 definition
    17   "xs \<sqsubseteq> ys \<longleftrightarrow> list_all2 (op \<sqsubseteq>) xs ys"
    18 
    19 instance proof
    20   fix xs :: "'a list"
    21   from below_refl show "xs \<sqsubseteq> xs"
    22     unfolding below_list_def
    23     by (rule list_all2_refl)
    24 next
    25   fix xs ys zs :: "'a list"
    26   assume "xs \<sqsubseteq> ys" and "ys \<sqsubseteq> zs"
    27   with below_trans show "xs \<sqsubseteq> zs"
    28     unfolding below_list_def
    29     by (rule list_all2_trans)
    30 next
    31   fix xs ys zs :: "'a list"
    32   assume "xs \<sqsubseteq> ys" and "ys \<sqsubseteq> xs"
    33   with below_antisym show "xs = ys"
    34     unfolding below_list_def
    35     by (rule list_all2_antisym)
    36 qed
    37 
    38 end
    39 
    40 lemma below_list_simps [simp]:
    41   "[] \<sqsubseteq> []"
    42   "x # xs \<sqsubseteq> y # ys \<longleftrightarrow> x \<sqsubseteq> y \<and> xs \<sqsubseteq> ys"
    43   "\<not> [] \<sqsubseteq> y # ys"
    44   "\<not> x # xs \<sqsubseteq> []"
    45 by (simp_all add: below_list_def)
    46 
    47 lemma Nil_below_iff [simp]: "[] \<sqsubseteq> xs \<longleftrightarrow> xs = []"
    48 by (cases xs, simp_all)
    49 
    50 lemma below_Nil_iff [simp]: "xs \<sqsubseteq> [] \<longleftrightarrow> xs = []"
    51 by (cases xs, simp_all)
    52 
    53 text "Thanks to Joachim Breitner"
    54 
    55 lemma list_Cons_below:
    56   assumes "a # as \<sqsubseteq> xs"
    57   obtains b and bs where "a \<sqsubseteq> b" and "as \<sqsubseteq> bs" and "xs = b # bs"
    58   using assms by (cases xs, auto)
    59 
    60 lemma list_below_Cons:
    61   assumes "xs \<sqsubseteq> b # bs"
    62   obtains a and as where "a \<sqsubseteq> b" and "as \<sqsubseteq> bs" and "xs = a # as"
    63   using assms by (cases xs, auto)
    64 
    65 lemma hd_mono: "xs \<sqsubseteq> ys \<Longrightarrow> hd xs \<sqsubseteq> hd ys"
    66 by (cases xs, simp, cases ys, simp, simp)
    67 
    68 lemma tl_mono: "xs \<sqsubseteq> ys \<Longrightarrow> tl xs \<sqsubseteq> tl ys"
    69 by (cases xs, simp, cases ys, simp, simp)
    70 
    71 lemma ch2ch_hd [simp]: "chain (\<lambda>i. S i) \<Longrightarrow> chain (\<lambda>i. hd (S i))"
    72 by (rule chainI, rule hd_mono, erule chainE)
    73 
    74 lemma ch2ch_tl [simp]: "chain (\<lambda>i. S i) \<Longrightarrow> chain (\<lambda>i. tl (S i))"
    75 by (rule chainI, rule tl_mono, erule chainE)
    76 
    77 lemma below_same_length: "xs \<sqsubseteq> ys \<Longrightarrow> length xs = length ys"
    78 unfolding below_list_def by (rule list_all2_lengthD)
    79 
    80 lemma list_chain_cases:
    81   assumes S: "chain S"
    82   obtains "\<forall>i. S i = []" |
    83     A B where "chain A" and "chain B" and "\<forall>i. S i = A i # B i"
    84 proof (cases "S 0")
    85   case Nil
    86   have "\<forall>i. S 0 \<sqsubseteq> S i" by (simp add: chain_mono [OF S])
    87   with Nil have "\<forall>i. S i = []" by simp
    88   thus ?thesis ..
    89 next
    90   case (Cons x xs)
    91   have "\<forall>i. S 0 \<sqsubseteq> S i" by (simp add: chain_mono [OF S])
    92   hence *: "\<forall>i. S i \<noteq> []" by (rule all_forward) (auto simp add: Cons)
    93   let ?A = "\<lambda>i. hd (S i)"
    94   let ?B = "\<lambda>i. tl (S i)"
    95   from S have "chain ?A" and "chain ?B" by simp_all
    96   moreover have "\<forall>i. S i = ?A i # ?B i" by (simp add: *)
    97   ultimately show ?thesis ..
    98 qed
    99 
   100 subsection {* Lists are a complete partial order *}
   101 
   102 lemma is_lub_Cons:
   103   assumes A: "range A <<| x"
   104   assumes B: "range B <<| xs"
   105   shows "range (\<lambda>i. A i # B i) <<| x # xs"
   106 using assms
   107 unfolding is_lub_def is_ub_def Ball_def [symmetric]
   108 by (clarsimp, case_tac u, simp_all)
   109 
   110 lemma list_cpo_lemma:
   111   fixes S :: "nat \<Rightarrow> 'a::cpo list"
   112   assumes "chain S" and "\<forall>i. length (S i) = n"
   113   shows "\<exists>x. range S <<| x"
   114 using assms
   115  apply (induct n arbitrary: S)
   116   apply (subgoal_tac "S = (\<lambda>i. [])")
   117   apply (fast intro: lub_const)
   118   apply (simp add: ext_iff)
   119  apply (drule_tac x="\<lambda>i. tl (S i)" in meta_spec, clarsimp)
   120  apply (rule_tac x="(\<Squnion>i. hd (S i)) # x" in exI)
   121  apply (subgoal_tac "range (\<lambda>i. hd (S i) # tl (S i)) = range S")
   122   apply (erule subst)
   123   apply (rule is_lub_Cons)
   124    apply (rule thelubE [OF _ refl])
   125    apply (erule ch2ch_hd)
   126   apply assumption
   127  apply (rule_tac f="\<lambda>S. range S" in arg_cong)
   128  apply (rule ext)
   129  apply (rule hd_Cons_tl)
   130  apply (drule_tac x=i in spec, auto)
   131 done
   132 
   133 instance list :: (cpo) cpo
   134 proof
   135   fix S :: "nat \<Rightarrow> 'a list"
   136   assume "chain S"
   137   hence "\<forall>i. S 0 \<sqsubseteq> S i" by (simp add: chain_mono)
   138   hence "\<forall>i. length (S i) = length (S 0)"
   139     by (fast intro: below_same_length [symmetric])
   140   with `chain S` show "\<exists>x. range S <<| x"
   141     by (rule list_cpo_lemma)
   142 qed
   143 
   144 subsection {* Continuity of list operations *}
   145 
   146 lemma cont2cont_Cons [simp, cont2cont]:
   147   assumes f: "cont (\<lambda>x. f x)"
   148   assumes g: "cont (\<lambda>x. g x)"
   149   shows "cont (\<lambda>x. f x # g x)"
   150 apply (rule contI)
   151 apply (rule is_lub_Cons)
   152 apply (erule contE [OF f])
   153 apply (erule contE [OF g])
   154 done
   155 
   156 lemma lub_Cons:
   157   fixes A :: "nat \<Rightarrow> 'a::cpo"
   158   assumes A: "chain A" and B: "chain B"
   159   shows "(\<Squnion>i. A i # B i) = (\<Squnion>i. A i) # (\<Squnion>i. B i)"
   160 by (intro thelubI is_lub_Cons cpo_lubI A B)
   161 
   162 lemma cont2cont_list_case:
   163   assumes f: "cont (\<lambda>x. f x)"
   164   assumes g: "cont (\<lambda>x. g x)"
   165   assumes h1: "\<And>y ys. cont (\<lambda>x. h x y ys)"
   166   assumes h2: "\<And>x ys. cont (\<lambda>y. h x y ys)"
   167   assumes h3: "\<And>x y. cont (\<lambda>ys. h x y ys)"
   168   shows "cont (\<lambda>x. case f x of [] \<Rightarrow> g x | y # ys \<Rightarrow> h x y ys)"
   169 apply (rule cont_apply [OF f])
   170 apply (rule contI)
   171 apply (erule list_chain_cases)
   172 apply (simp add: lub_const)
   173 apply (simp add: lub_Cons)
   174 apply (simp add: cont2contlubE [OF h2])
   175 apply (simp add: cont2contlubE [OF h3])
   176 apply (simp add: diag_lub ch2ch_cont [OF h2] ch2ch_cont [OF h3])
   177 apply (rule cpo_lubI, rule chainI, rule below_trans)
   178 apply (erule cont2monofunE [OF h2 chainE])
   179 apply (erule cont2monofunE [OF h3 chainE])
   180 apply (case_tac y, simp_all add: g h1)
   181 done
   182 
   183 lemma cont2cont_list_case' [simp, cont2cont]:
   184   assumes f: "cont (\<lambda>x. f x)"
   185   assumes g: "cont (\<lambda>x. g x)"
   186   assumes h: "cont (\<lambda>p. h (fst p) (fst (snd p)) (snd (snd p)))"
   187   shows "cont (\<lambda>x. case f x of [] \<Rightarrow> g x | y # ys \<Rightarrow> h x y ys)"
   188 proof -
   189   have "\<And>y ys. cont (\<lambda>x. h x (fst (y, ys)) (snd (y, ys)))"
   190     by (rule h [THEN cont_fst_snd_D1])
   191   hence h1: "\<And>y ys. cont (\<lambda>x. h x y ys)" by simp
   192   note h2 = h [THEN cont_fst_snd_D2, THEN cont_fst_snd_D1]
   193   note h3 = h [THEN cont_fst_snd_D2, THEN cont_fst_snd_D2]
   194   from f g h1 h2 h3 show ?thesis by (rule cont2cont_list_case)
   195 qed
   196 
   197 text {* The simple version (due to Joachim Breitner) is needed if the
   198   element type of the list is not a cpo. *}
   199 
   200 lemma cont2cont_list_case_simple [simp, cont2cont]:
   201   assumes "cont (\<lambda>x. f1 x)"
   202   assumes "\<And>y ys. cont (\<lambda>x. f2 x y ys)"
   203   shows "cont (\<lambda>x. case l of [] \<Rightarrow> f1 x | y # ys \<Rightarrow> f2 x y ys)"
   204 using assms by (cases l) auto
   205 
   206 text {* There are probably lots of other list operations that also
   207 deserve to have continuity lemmas.  I'll add more as they are
   208 needed. *}
   209 
   210 end