src/HOL/NSA/NSCA.thy
author huffman
Mon, 17 May 2010 18:59:59 -0700
changeset 36977 71c8973a604b
parent 28952 15a4b2cf8c34
child 37765 26bdfb7b680b
permissions -rw-r--r--
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
     1 (*  Title       : NSA/NSCA.thy
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 2001,2002 University of Edinburgh
     4 *)
     5 
     6 header{*Non-Standard Complex Analysis*}
     7 
     8 theory NSCA
     9 imports NSComplex HTranscendental
    10 begin
    11 
    12 abbreviation
    13    (* standard complex numbers reagarded as an embedded subset of NS complex *)
    14    SComplex  :: "hcomplex set" where
    15    "SComplex \<equiv> Standard"
    16 
    17 definition --{* standard part map*}
    18   stc :: "hcomplex => hcomplex" where 
    19   [code del]: "stc x = (SOME r. x \<in> HFinite & r:SComplex & r @= x)"
    20 
    21 
    22 subsection{*Closure Laws for SComplex, the Standard Complex Numbers*}
    23 
    24 lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)"
    25 by (auto, drule Standard_minus, auto)
    26 
    27 lemma SComplex_add_cancel:
    28      "[| x + y \<in> SComplex; y \<in> SComplex |] ==> x \<in> SComplex"
    29 by (drule (1) Standard_diff, simp)
    30 
    31 lemma SReal_hcmod_hcomplex_of_complex [simp]:
    32      "hcmod (hcomplex_of_complex r) \<in> Reals"
    33 by (simp add: Reals_eq_Standard)
    34 
    35 lemma SReal_hcmod_number_of [simp]: "hcmod (number_of w ::hcomplex) \<in> Reals"
    36 by (simp add: Reals_eq_Standard)
    37 
    38 lemma SReal_hcmod_SComplex: "x \<in> SComplex ==> hcmod x \<in> Reals"
    39 by (simp add: Reals_eq_Standard)
    40 
    41 lemma SComplex_divide_number_of:
    42      "r \<in> SComplex ==> r/(number_of w::hcomplex) \<in> SComplex"
    43 by simp
    44 
    45 lemma SComplex_UNIV_complex:
    46      "{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)"
    47 by simp
    48 
    49 lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)"
    50 by (simp add: Standard_def image_def)
    51 
    52 lemma hcomplex_of_complex_image:
    53      "hcomplex_of_complex `(UNIV::complex set) = SComplex"
    54 by (simp add: Standard_def)
    55 
    56 lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
    57 apply (auto simp add: Standard_def image_def)
    58 apply (rule inj_hcomplex_of_complex [THEN inv_f_f, THEN subst], blast)
    59 done
    60 
    61 lemma SComplex_hcomplex_of_complex_image: 
    62       "[| \<exists>x. x: P; P \<le> SComplex |] ==> \<exists>Q. P = hcomplex_of_complex ` Q"
    63 apply (simp add: Standard_def, blast)
    64 done
    65 
    66 lemma SComplex_SReal_dense:
    67      "[| x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y  
    68       |] ==> \<exists>r \<in> Reals. hcmod x< r & r < hcmod y"
    69 apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex)
    70 done
    71 
    72 lemma SComplex_hcmod_SReal: 
    73       "z \<in> SComplex ==> hcmod z \<in> Reals"
    74 by (simp add: Reals_eq_Standard)
    75 
    76 
    77 subsection{*The Finite Elements form a Subring*}
    78 
    79 lemma HFinite_hcmod_hcomplex_of_complex [simp]:
    80      "hcmod (hcomplex_of_complex r) \<in> HFinite"
    81 by (auto intro!: SReal_subset_HFinite [THEN subsetD])
    82 
    83 lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)"
    84 by (simp add: HFinite_def)
    85 
    86 lemma HFinite_bounded_hcmod:
    87   "[|x \<in> HFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite"
    88 by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff)
    89 
    90 
    91 subsection{*The Complex Infinitesimals form a Subring*}
    92 
    93 lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x"
    94 by auto
    95 
    96 lemma Infinitesimal_hcmod_iff: 
    97    "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
    98 by (simp add: Infinitesimal_def)
    99 
   100 lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
   101 by (simp add: HInfinite_def)
   102 
   103 lemma HFinite_diff_Infinitesimal_hcmod:
   104      "x \<in> HFinite - Infinitesimal ==> hcmod x \<in> HFinite - Infinitesimal"
   105 by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff)
   106 
   107 lemma hcmod_less_Infinitesimal:
   108      "[| e \<in> Infinitesimal; hcmod x < hcmod e |] ==> x \<in> Infinitesimal"
   109 by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
   110 
   111 lemma hcmod_le_Infinitesimal:
   112      "[| e \<in> Infinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> Infinitesimal"
   113 by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
   114 
   115 lemma Infinitesimal_interval_hcmod:
   116      "[| e \<in> Infinitesimal;  
   117           e' \<in> Infinitesimal;  
   118           hcmod e' < hcmod x ; hcmod x < hcmod e  
   119        |] ==> x \<in> Infinitesimal"
   120 by (auto intro: Infinitesimal_interval simp add: Infinitesimal_hcmod_iff)
   121 
   122 lemma Infinitesimal_interval2_hcmod:
   123      "[| e \<in> Infinitesimal;  
   124          e' \<in> Infinitesimal;  
   125          hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e  
   126       |] ==> x \<in> Infinitesimal"
   127 by (auto intro: Infinitesimal_interval2 simp add: Infinitesimal_hcmod_iff)
   128 
   129 
   130 subsection{*The ``Infinitely Close'' Relation*}
   131 
   132 (*
   133 Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z @= hcmod w)"
   134 by (auto_tac (claset(),simpset() addsimps [Infinitesimal_hcmod_iff]));
   135 *)
   136 
   137 lemma approx_SComplex_mult_cancel_zero:
   138      "[| a \<in> SComplex; a \<noteq> 0; a*x @= 0 |] ==> x @= 0"
   139 apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
   140 apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric])
   141 done
   142 
   143 lemma approx_mult_SComplex1: "[| a \<in> SComplex; x @= 0 |] ==> x*a @= 0"
   144 by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult1)
   145 
   146 lemma approx_mult_SComplex2: "[| a \<in> SComplex; x @= 0 |] ==> a*x @= 0"
   147 by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult2)
   148 
   149 lemma approx_mult_SComplex_zero_cancel_iff [simp]:
   150      "[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)"
   151 by (blast intro: approx_SComplex_mult_cancel_zero approx_mult_SComplex2)
   152 
   153 lemma approx_SComplex_mult_cancel:
   154      "[| a \<in> SComplex; a \<noteq> 0; a* w @= a*z |] ==> w @= z"
   155 apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
   156 apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric])
   157 done
   158 
   159 lemma approx_SComplex_mult_cancel_iff1 [simp]:
   160      "[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)"
   161 by (auto intro!: approx_mult2 Standard_subset_HFinite [THEN subsetD]
   162             intro: approx_SComplex_mult_cancel)
   163 
   164 (* TODO: generalize following theorems: hcmod -> hnorm *)
   165 
   166 lemma approx_hcmod_approx_zero: "(x @= y) = (hcmod (y - x) @= 0)"
   167 apply (subst hnorm_minus_commute)
   168 apply (simp add: approx_def Infinitesimal_hcmod_iff diff_minus)
   169 done
   170 
   171 lemma approx_approx_zero_iff: "(x @= 0) = (hcmod x @= 0)"
   172 by (simp add: approx_hcmod_approx_zero)
   173 
   174 lemma approx_minus_zero_cancel_iff [simp]: "(-x @= 0) = (x @= 0)"
   175 by (simp add: approx_def)
   176 
   177 lemma Infinitesimal_hcmod_add_diff:
   178      "u @= 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
   179 apply (drule approx_approx_zero_iff [THEN iffD1])
   180 apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2)
   181 apply (auto simp add: mem_infmal_iff [symmetric] diff_def)
   182 apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1])
   183 apply (auto simp add: diff_minus [symmetric])
   184 done
   185 
   186 lemma approx_hcmod_add_hcmod: "u @= 0 ==> hcmod(x + u) @= hcmod x"
   187 apply (rule approx_minus_iff [THEN iffD2])
   188 apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric] diff_minus [symmetric])
   189 done
   190 
   191 
   192 subsection{*Zero is the Only Infinitesimal Complex Number*}
   193 
   194 lemma Infinitesimal_less_SComplex:
   195    "[| x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x"
   196 by (auto intro: Infinitesimal_less_SReal SComplex_hcmod_SReal simp add: Infinitesimal_hcmod_iff)
   197 
   198 lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
   199 by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
   200 
   201 lemma SComplex_Infinitesimal_zero:
   202      "[| x \<in> SComplex; x \<in> Infinitesimal|] ==> x = 0"
   203 by (cut_tac SComplex_Int_Infinitesimal_zero, blast)
   204 
   205 lemma SComplex_HFinite_diff_Infinitesimal:
   206      "[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
   207 by (auto dest: SComplex_Infinitesimal_zero Standard_subset_HFinite [THEN subsetD])
   208 
   209 lemma hcomplex_of_complex_HFinite_diff_Infinitesimal:
   210      "hcomplex_of_complex x \<noteq> 0 
   211       ==> hcomplex_of_complex x \<in> HFinite - Infinitesimal"
   212 by (rule SComplex_HFinite_diff_Infinitesimal, auto)
   213 
   214 lemma number_of_not_Infinitesimal [simp]:
   215      "number_of w \<noteq> (0::hcomplex) ==> (number_of w::hcomplex) \<notin> Infinitesimal"
   216 by (fast dest: Standard_number_of [THEN SComplex_Infinitesimal_zero])
   217 
   218 lemma approx_SComplex_not_zero:
   219      "[| y \<in> SComplex; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0"
   220 by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
   221 
   222 lemma SComplex_approx_iff:
   223      "[|x \<in> SComplex; y \<in> SComplex|] ==> (x @= y) = (x = y)"
   224 by (auto simp add: Standard_def)
   225 
   226 lemma number_of_Infinitesimal_iff [simp]:
   227      "((number_of w :: hcomplex) \<in> Infinitesimal) =
   228       (number_of w = (0::hcomplex))"
   229 apply (rule iffI)
   230 apply (fast dest: Standard_number_of [THEN SComplex_Infinitesimal_zero])
   231 apply (simp (no_asm_simp))
   232 done
   233 
   234 lemma approx_unique_complex:
   235      "[| r \<in> SComplex; s \<in> SComplex; r @= x; s @= x|] ==> r = s"
   236 by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
   237 
   238 subsection {* Properties of @{term hRe}, @{term hIm} and @{term HComplex} *}
   239 
   240 
   241 lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x"
   242 by transfer (rule abs_Re_le_cmod)
   243 
   244 lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x"
   245 by transfer (rule abs_Im_le_cmod)
   246 
   247 lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal"
   248 apply (rule InfinitesimalI2, simp)
   249 apply (rule order_le_less_trans [OF abs_hRe_le_hcmod])
   250 apply (erule (1) InfinitesimalD2)
   251 done
   252 
   253 lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal"
   254 apply (rule InfinitesimalI2, simp)
   255 apply (rule order_le_less_trans [OF abs_hIm_le_hcmod])
   256 apply (erule (1) InfinitesimalD2)
   257 done
   258 
   259 lemma real_sqrt_lessI: "\<lbrakk>0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> sqrt x < u"
   260 (* TODO: this belongs somewhere else *)
   261 by (frule real_sqrt_less_mono) simp
   262 
   263 lemma hypreal_sqrt_lessI:
   264   "\<And>x u. \<lbrakk>0 < u; x < u\<twosuperior>\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u"
   265 by transfer (rule real_sqrt_lessI)
   266  
   267 lemma hypreal_sqrt_ge_zero: "\<And>x. 0 \<le> x \<Longrightarrow> 0 \<le> ( *f* sqrt) x"
   268 by transfer (rule real_sqrt_ge_zero)
   269 
   270 lemma Infinitesimal_sqrt:
   271   "\<lbrakk>x \<in> Infinitesimal; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> Infinitesimal"
   272 apply (rule InfinitesimalI2)
   273 apply (drule_tac r="r\<twosuperior>" in InfinitesimalD2, simp)
   274 apply (simp add: hypreal_sqrt_ge_zero)
   275 apply (rule hypreal_sqrt_lessI, simp_all)
   276 done
   277 
   278 lemma Infinitesimal_HComplex:
   279   "\<lbrakk>x \<in> Infinitesimal; y \<in> Infinitesimal\<rbrakk> \<Longrightarrow> HComplex x y \<in> Infinitesimal"
   280 apply (rule Infinitesimal_hcmod_iff [THEN iffD2])
   281 apply (simp add: hcmod_i)
   282 apply (rule Infinitesimal_add)
   283 apply (erule Infinitesimal_hrealpow, simp)
   284 apply (erule Infinitesimal_hrealpow, simp)
   285 done
   286 
   287 lemma hcomplex_Infinitesimal_iff:
   288   "(x \<in> Infinitesimal) = (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)"
   289 apply (safe intro!: Infinitesimal_hRe Infinitesimal_hIm)
   290 apply (drule (1) Infinitesimal_HComplex, simp)
   291 done
   292 
   293 lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
   294 by transfer (rule complex_Re_diff)
   295 
   296 lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
   297 by transfer (rule complex_Im_diff)
   298 
   299 lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
   300 unfolding approx_def by (drule Infinitesimal_hRe) simp
   301 
   302 lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y"
   303 unfolding approx_def by (drule Infinitesimal_hIm) simp
   304 
   305 lemma approx_HComplex:
   306   "\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d"
   307 unfolding approx_def by (simp add: Infinitesimal_HComplex)
   308 
   309 lemma hcomplex_approx_iff:
   310   "(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)"
   311 unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
   312 
   313 lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite"
   314 apply (auto simp add: HFinite_def SReal_def)
   315 apply (rule_tac x="star_of r" in exI, simp)
   316 apply (erule order_le_less_trans [OF abs_hRe_le_hcmod])
   317 done
   318 
   319 lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite"
   320 apply (auto simp add: HFinite_def SReal_def)
   321 apply (rule_tac x="star_of r" in exI, simp)
   322 apply (erule order_le_less_trans [OF abs_hIm_le_hcmod])
   323 done
   324 
   325 lemma HFinite_HComplex:
   326   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> HComplex x y \<in> HFinite"
   327 apply (subgoal_tac "HComplex x 0 + HComplex 0 y \<in> HFinite", simp)
   328 apply (rule HFinite_add)
   329 apply (simp add: HFinite_hcmod_iff hcmod_i)
   330 apply (simp add: HFinite_hcmod_iff hcmod_i)
   331 done
   332 
   333 lemma hcomplex_HFinite_iff:
   334   "(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)"
   335 apply (safe intro!: HFinite_hRe HFinite_hIm)
   336 apply (drule (1) HFinite_HComplex, simp)
   337 done
   338 
   339 lemma hcomplex_HInfinite_iff:
   340   "(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)"
   341 by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
   342 
   343 lemma hcomplex_of_hypreal_approx_iff [simp]:
   344      "(hcomplex_of_hypreal x @= hcomplex_of_hypreal z) = (x @= z)"
   345 by (simp add: hcomplex_approx_iff)
   346 
   347 lemma Standard_HComplex:
   348   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> HComplex x y \<in> Standard"
   349 by (simp add: HComplex_def)
   350 
   351 (* Here we go - easy proof now!! *)
   352 lemma stc_part_Ex: "x:HFinite ==> \<exists>t \<in> SComplex. x @= t"
   353 apply (simp add: hcomplex_HFinite_iff hcomplex_approx_iff)
   354 apply (rule_tac x="HComplex (st (hRe x)) (st (hIm x))" in bexI)
   355 apply (simp add: st_approx_self [THEN approx_sym])
   356 apply (simp add: Standard_HComplex st_SReal [unfolded Reals_eq_Standard])
   357 done
   358 
   359 lemma stc_part_Ex1: "x:HFinite ==> EX! t. t \<in> SComplex &  x @= t"
   360 apply (drule stc_part_Ex, safe)
   361 apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
   362 apply (auto intro!: approx_unique_complex)
   363 done
   364 
   365 lemmas hcomplex_of_complex_approx_inverse =
   366   hcomplex_of_complex_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
   367 
   368 
   369 subsection{*Theorems About Monads*}
   370 
   371 lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x:monad 0)"
   372 by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
   373 
   374 
   375 subsection{*Theorems About Standard Part*}
   376 
   377 lemma stc_approx_self: "x \<in> HFinite ==> stc x @= x"
   378 apply (simp add: stc_def)
   379 apply (frule stc_part_Ex, safe)
   380 apply (rule someI2)
   381 apply (auto intro: approx_sym)
   382 done
   383 
   384 lemma stc_SComplex: "x \<in> HFinite ==> stc x \<in> SComplex"
   385 apply (simp add: stc_def)
   386 apply (frule stc_part_Ex, safe)
   387 apply (rule someI2)
   388 apply (auto intro: approx_sym)
   389 done
   390 
   391 lemma stc_HFinite: "x \<in> HFinite ==> stc x \<in> HFinite"
   392 by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
   393 
   394 lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y"
   395 apply (frule Standard_subset_HFinite [THEN subsetD])
   396 apply (drule (1) approx_HFinite)
   397 apply (unfold stc_def)
   398 apply (rule some_equality)
   399 apply (auto intro: approx_unique_complex)
   400 done
   401 
   402 lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x"
   403 apply (erule stc_unique)
   404 apply (rule approx_refl)
   405 done
   406 
   407 lemma stc_hcomplex_of_complex:
   408      "stc (hcomplex_of_complex x) = hcomplex_of_complex x"
   409 by auto
   410 
   411 lemma stc_eq_approx:
   412      "[| x \<in> HFinite; y \<in> HFinite; stc x = stc y |] ==> x @= y"
   413 by (auto dest!: stc_approx_self elim!: approx_trans3)
   414 
   415 lemma approx_stc_eq:
   416      "[| x \<in> HFinite; y \<in> HFinite; x @= y |] ==> stc x = stc y"
   417 by (blast intro: approx_trans approx_trans2 SComplex_approx_iff [THEN iffD1]
   418           dest: stc_approx_self stc_SComplex)
   419 
   420 lemma stc_eq_approx_iff:
   421      "[| x \<in> HFinite; y \<in> HFinite|] ==> (x @= y) = (stc x = stc y)"
   422 by (blast intro: approx_stc_eq stc_eq_approx)
   423 
   424 lemma stc_Infinitesimal_add_SComplex:
   425      "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(x + e) = x"
   426 apply (erule stc_unique)
   427 apply (erule Infinitesimal_add_approx_self)
   428 done
   429 
   430 lemma stc_Infinitesimal_add_SComplex2:
   431      "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(e + x) = x"
   432 apply (erule stc_unique)
   433 apply (erule Infinitesimal_add_approx_self2)
   434 done
   435 
   436 lemma HFinite_stc_Infinitesimal_add:
   437      "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
   438 by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
   439 
   440 lemma stc_add:
   441      "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x + y) = stc(x) + stc(y)"
   442 by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
   443 
   444 lemma stc_number_of [simp]: "stc (number_of w) = number_of w"
   445 by (rule Standard_number_of [THEN stc_SComplex_eq])
   446 
   447 lemma stc_zero [simp]: "stc 0 = 0"
   448 by simp
   449 
   450 lemma stc_one [simp]: "stc 1 = 1"
   451 by simp
   452 
   453 lemma stc_minus: "y \<in> HFinite ==> stc(-y) = -stc(y)"
   454 by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
   455 
   456 lemma stc_diff: 
   457      "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x-y) = stc(x) - stc(y)"
   458 by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
   459 
   460 lemma stc_mult:
   461      "[| x \<in> HFinite; y \<in> HFinite |]  
   462                ==> stc (x * y) = stc(x) * stc(y)"
   463 by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
   464 
   465 lemma stc_Infinitesimal: "x \<in> Infinitesimal ==> stc x = 0"
   466 by (simp add: stc_unique mem_infmal_iff)
   467 
   468 lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
   469 by (fast intro: stc_Infinitesimal)
   470 
   471 lemma stc_inverse:
   472      "[| x \<in> HFinite; stc x \<noteq> 0 |]  
   473       ==> stc(inverse x) = inverse (stc x)"
   474 apply (drule stc_not_Infinitesimal)
   475 apply (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse)
   476 done
   477 
   478 lemma stc_divide [simp]:
   479      "[| x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0 |]  
   480       ==> stc(x/y) = (stc x) / (stc y)"
   481 by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
   482 
   483 lemma stc_idempotent [simp]: "x \<in> HFinite ==> stc(stc(x)) = stc(x)"
   484 by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
   485 
   486 lemma HFinite_HFinite_hcomplex_of_hypreal:
   487      "z \<in> HFinite ==> hcomplex_of_hypreal z \<in> HFinite"
   488 by (simp add: hcomplex_HFinite_iff)
   489 
   490 lemma SComplex_SReal_hcomplex_of_hypreal:
   491      "x \<in> Reals ==>  hcomplex_of_hypreal x \<in> SComplex"
   492 apply (rule Standard_of_hypreal)
   493 apply (simp add: Reals_eq_Standard)
   494 done
   495 
   496 lemma stc_hcomplex_of_hypreal: 
   497  "z \<in> HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
   498 apply (rule stc_unique)
   499 apply (rule SComplex_SReal_hcomplex_of_hypreal)
   500 apply (erule st_SReal)
   501 apply (simp add: hcomplex_of_hypreal_approx_iff st_approx_self)
   502 done
   503 
   504 (*
   505 Goal "x \<in> HFinite ==> hcmod(stc x) = st(hcmod x)"
   506 by (dtac stc_approx_self 1)
   507 by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym]));
   508 
   509 
   510 approx_hcmod_add_hcmod
   511 *)
   512 
   513 lemma Infinitesimal_hcnj_iff [simp]:
   514      "(hcnj z \<in> Infinitesimal) = (z \<in> Infinitesimal)"
   515 by (simp add: Infinitesimal_hcmod_iff)
   516 
   517 lemma Infinitesimal_hcomplex_of_hypreal_epsilon [simp]:
   518      "hcomplex_of_hypreal epsilon \<in> Infinitesimal"
   519 by (simp add: Infinitesimal_hcmod_iff)
   520 
   521 end