src/HOL/Complete_Lattice.thy
author haftmann
Mon, 18 Jul 2011 21:49:39 +0200
changeset 44771 7162691e740b
parent 44770 60ef6abb2f92
child 44772 3ab6c30d256d
permissions -rw-r--r--
generalization; various notation and proof tuning
     1 (*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
     2 
     3 header {* Complete lattices, with special focus on sets *}
     4 
     5 theory Complete_Lattice
     6 imports Set
     7 begin
     8 
     9 notation
    10   less_eq (infix "\<sqsubseteq>" 50) and
    11   less (infix "\<sqsubset>" 50) and
    12   inf (infixl "\<sqinter>" 70) and
    13   sup (infixl "\<squnion>" 65) and
    14   top ("\<top>") and
    15   bot ("\<bottom>")
    16 
    17 
    18 subsection {* Syntactic infimum and supremum operations *}
    19 
    20 class Inf =
    21   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
    22 
    23 class Sup =
    24   fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
    25 
    26 subsection {* Abstract complete lattices *}
    27 
    28 class complete_lattice = bounded_lattice + Inf + Sup +
    29   assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
    30      and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
    31   assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
    32      and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
    33 begin
    34 
    35 lemma dual_complete_lattice:
    36   "class.complete_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
    37   by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
    38     (unfold_locales, (fact bot_least top_greatest
    39         Sup_upper Sup_least Inf_lower Inf_greatest)+)
    40 
    41 lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
    42   by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
    43 
    44 lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
    45   by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
    46 
    47 lemma Inf_empty [simp]:
    48   "\<Sqinter>{} = \<top>"
    49   by (auto intro: antisym Inf_greatest)
    50 
    51 lemma Sup_empty [simp]:
    52   "\<Squnion>{} = \<bottom>"
    53   by (auto intro: antisym Sup_least)
    54 
    55 lemma Inf_UNIV [simp]:
    56   "\<Sqinter>UNIV = \<bottom>"
    57   by (simp add: Sup_Inf Sup_empty [symmetric])
    58 
    59 lemma Sup_UNIV [simp]:
    60   "\<Squnion>UNIV = \<top>"
    61   by (simp add: Inf_Sup Inf_empty [symmetric])
    62 
    63 lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
    64   by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
    65 
    66 lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
    67   by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
    68 
    69 lemma Inf_singleton [simp]:
    70   "\<Sqinter>{a} = a"
    71   by (auto intro: antisym Inf_lower Inf_greatest)
    72 
    73 lemma Sup_singleton [simp]:
    74   "\<Squnion>{a} = a"
    75   by (auto intro: antisym Sup_upper Sup_least)
    76 
    77 lemma Inf_binary:
    78   "\<Sqinter>{a, b} = a \<sqinter> b"
    79   by (simp add: Inf_insert)
    80 
    81 lemma Sup_binary:
    82   "\<Squnion>{a, b} = a \<squnion> b"
    83   by (simp add: Sup_insert)
    84 
    85 lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
    86   by (auto intro: Inf_greatest dest: Inf_lower)
    87 
    88 lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
    89   by (auto intro: Sup_least dest: Sup_upper)
    90 
    91 lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
    92   by (auto intro: Inf_greatest Inf_lower)
    93 
    94 lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
    95   by (auto intro: Sup_least Sup_upper)
    96 
    97 lemma Inf_mono:
    98   assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
    99   shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
   100 proof (rule Inf_greatest)
   101   fix b assume "b \<in> B"
   102   with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
   103   from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
   104   with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
   105 qed
   106 
   107 lemma Sup_mono:
   108   assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
   109   shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
   110 proof (rule Sup_least)
   111   fix a assume "a \<in> A"
   112   with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
   113   from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
   114   with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
   115 qed
   116 
   117 lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
   118   using Sup_upper [of u A] by auto
   119 
   120 lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
   121   using Inf_lower [of u A] by auto
   122 
   123 lemma Inf_less_eq:
   124   assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
   125     and "A \<noteq> {}"
   126   shows "\<Sqinter>A \<sqsubseteq> u"
   127 proof -
   128   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
   129   moreover with assms have "v \<sqsubseteq> u" by blast
   130   ultimately show ?thesis by (rule Inf_lower2)
   131 qed
   132 
   133 lemma less_eq_Sup:
   134   assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
   135     and "A \<noteq> {}"
   136   shows "u \<sqsubseteq> \<Squnion>A"
   137 proof -
   138   from `A \<noteq> {}` obtain v where "v \<in> A" by blast
   139   moreover with assms have "u \<sqsubseteq> v" by blast
   140   ultimately show ?thesis by (rule Sup_upper2)
   141 qed
   142 
   143 lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
   144   by (auto intro: Inf_greatest Inf_lower)
   145 
   146 lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
   147   by (auto intro: Sup_least Sup_upper)
   148 
   149 lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
   150   by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
   151 
   152 lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
   153   by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
   154 
   155 lemma Inf_top_conv [no_atp]:
   156   "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   157   "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   158 proof -
   159   show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
   160   proof
   161     assume "\<forall>x\<in>A. x = \<top>"
   162     then have "A = {} \<or> A = {\<top>}" by auto
   163     then show "\<Sqinter>A = \<top>" by auto
   164   next
   165     assume "\<Sqinter>A = \<top>"
   166     show "\<forall>x\<in>A. x = \<top>"
   167     proof (rule ccontr)
   168       assume "\<not> (\<forall>x\<in>A. x = \<top>)"
   169       then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
   170       then obtain B where "A = insert x B" by blast
   171       with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by (simp add: Inf_insert)
   172     qed
   173   qed
   174   then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
   175 qed
   176 
   177 lemma Sup_bot_conv [no_atp]:
   178   "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
   179   "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
   180 proof -
   181   interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
   182     by (fact dual_complete_lattice)
   183   from dual.Inf_top_conv show ?P and ?Q by simp_all
   184 qed
   185 
   186 definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
   187   INF_def: "INFI A f = \<Sqinter> (f ` A)"
   188 
   189 definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
   190   SUP_def: "SUPR A f = \<Squnion> (f ` A)"
   191 
   192 text {*
   193   Note: must use names @{const INFI} and @{const SUPR} here instead of
   194   @{text INF} and @{text SUP} to allow the following syntax coexist
   195   with the plain constant names.
   196 *}
   197 
   198 end
   199 
   200 syntax
   201   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
   202   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
   203   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
   204   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
   205 
   206 syntax (xsymbols)
   207   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
   208   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
   209   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
   210   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
   211 
   212 translations
   213   "INF x y. B"   == "INF x. INF y. B"
   214   "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
   215   "INF x. B"     == "INF x:CONST UNIV. B"
   216   "INF x:A. B"   == "CONST INFI A (%x. B)"
   217   "SUP x y. B"   == "SUP x. SUP y. B"
   218   "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
   219   "SUP x. B"     == "SUP x:CONST UNIV. B"
   220   "SUP x:A. B"   == "CONST SUPR A (%x. B)"
   221 
   222 print_translation {*
   223   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
   224     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
   225 *} -- {* to avoid eta-contraction of body *}
   226 
   227 context complete_lattice
   228 begin
   229 
   230 lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
   231   by (simp add: INF_def)
   232 
   233 lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
   234   by (simp add: SUP_def)
   235 
   236 lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
   237   by (simp add: INF_def Inf_insert)
   238 
   239 lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
   240   by (simp add: SUP_def Sup_insert)
   241 
   242 lemma INF_leI: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
   243   by (auto simp add: INF_def intro: Inf_lower)
   244 
   245 lemma le_SUP_I: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
   246   by (auto simp add: SUP_def intro: Sup_upper)
   247 
   248 lemma INF_leI2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
   249   using INF_leI [of i A f] by auto
   250 
   251 lemma le_SUP_I2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
   252   using le_SUP_I [of i A f] by auto
   253 
   254 lemma le_INF_I: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
   255   by (auto simp add: INF_def intro: Inf_greatest)
   256 
   257 lemma SUP_leI: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
   258   by (auto simp add: SUP_def intro: Sup_least)
   259 
   260 lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> f i)"
   261   by (auto simp add: INF_def le_Inf_iff)
   262 
   263 lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. f i \<sqsubseteq> u)"
   264   by (auto simp add: SUP_def Sup_le_iff)
   265 
   266 lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
   267   by (auto intro: antisym INF_leI le_INF_I)
   268 
   269 lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
   270   by (auto intro: antisym SUP_leI le_SUP_I)
   271 
   272 lemma INF_top: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
   273   by (cases "A = {}") (simp_all add: INF_empty)
   274 
   275 lemma SUP_bot: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
   276   by (cases "A = {}") (simp_all add: SUP_empty)
   277 
   278 lemma INF_cong:
   279   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
   280   by (simp add: INF_def image_def)
   281 
   282 lemma SUP_cong:
   283   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
   284   by (simp add: SUP_def image_def)
   285 
   286 lemma INF_mono:
   287   "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
   288   by (force intro!: Inf_mono simp: INF_def)
   289 
   290 lemma SUP_mono:
   291   "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
   292   by (force intro!: Sup_mono simp: SUP_def)
   293 
   294 lemma INF_superset_mono:
   295   "B \<subseteq> A \<Longrightarrow> INFI A f \<sqsubseteq> INFI B f"
   296   by (rule INF_mono) auto
   297 
   298 lemma SUP_subset_mono:
   299   "A \<subseteq> B \<Longrightarrow> SUPR A f \<sqsubseteq> SUPR B f"
   300   by (rule SUP_mono) auto
   301 
   302 lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
   303   by (iprover intro: INF_leI le_INF_I order_trans antisym)
   304 
   305 lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
   306   by (iprover intro: SUP_leI le_SUP_I order_trans antisym)
   307 
   308 lemma INF_absorb:
   309   assumes "k \<in> I"
   310   shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
   311 proof -
   312   from assms obtain J where "I = insert k J" by blast
   313   then show ?thesis by (simp add: INF_insert)
   314 qed
   315 
   316 lemma SUP_absorb:
   317   assumes "k \<in> I"
   318   shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
   319 proof -
   320   from assms obtain J where "I = insert k J" by blast
   321   then show ?thesis by (simp add: SUP_insert)
   322 qed
   323 
   324 lemma INF_union:
   325   "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
   326   by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 le_INF_I INF_leI)
   327 
   328 lemma SUP_union:
   329   "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
   330   by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_leI le_SUP_I)
   331 
   332 lemma INF_constant:
   333   "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
   334   by (simp add: INF_empty)
   335 
   336 lemma SUP_constant:
   337   "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
   338   by (simp add: SUP_empty)
   339 
   340 lemma INF_eq:
   341   "(\<Sqinter>x\<in>A. B x) = \<Sqinter>({Y. \<exists>x\<in>A. Y = B x})"
   342   by (simp add: INF_def image_def)
   343 
   344 lemma SUP_eq:
   345   "(\<Squnion>x\<in>A. B x) = \<Squnion>({Y. \<exists>x\<in>A. Y = B x})"
   346   by (simp add: SUP_def image_def)
   347 
   348 lemma INF_top_conv:
   349  "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
   350  "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
   351   by (auto simp add: INF_def Inf_top_conv)
   352 
   353 lemma SUP_bot_conv:
   354  "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
   355  "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
   356   by (auto simp add: SUP_def Sup_bot_conv)
   357 
   358 lemma INF_UNIV_range:
   359   "(\<Sqinter>x. f x) = \<Sqinter>range f"
   360   by (fact INF_def)
   361 
   362 lemma SUP_UNIV_range:
   363   "(\<Squnion>x. f x) = \<Squnion>range f"
   364   by (fact SUP_def)
   365 
   366 lemma INF_UNIV_bool_expand:
   367   "(\<Sqinter>b. A b) = A True \<sqinter> A False"
   368   by (simp add: UNIV_bool INF_empty INF_insert inf_commute)
   369 
   370 lemma SUP_UNIV_bool_expand:
   371   "(\<Squnion>b. A b) = A True \<squnion> A False"
   372   by (simp add: UNIV_bool SUP_empty SUP_insert sup_commute)
   373 
   374 lemma INF_mono':
   375   "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
   376   -- {* The last inclusion is POSITIVE! *}
   377   by (rule INF_mono) auto
   378 
   379 lemma SUP_mono':
   380   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
   381   -- {* The last inclusion is POSITIVE! *}
   382   by (blast intro: SUP_mono dest: subsetD)
   383 
   384 end
   385 
   386 lemma Inf_less_iff:
   387   fixes a :: "'a\<Colon>{complete_lattice,linorder}"
   388   shows "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
   389   unfolding not_le [symmetric] le_Inf_iff by auto
   390 
   391 lemma less_Sup_iff:
   392   fixes a :: "'a\<Colon>{complete_lattice,linorder}"
   393   shows "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
   394   unfolding not_le [symmetric] Sup_le_iff by auto
   395 
   396 lemma INF_less_iff:
   397   fixes a :: "'a::{complete_lattice,linorder}"
   398   shows "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
   399   unfolding INF_def Inf_less_iff by auto
   400 
   401 lemma less_SUP_iff:
   402   fixes a :: "'a::{complete_lattice,linorder}"
   403   shows "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
   404   unfolding SUP_def less_Sup_iff by auto
   405 
   406 class complete_boolean_algebra = boolean_algebra + complete_lattice
   407 begin
   408 
   409 lemma uminus_Inf:
   410   "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
   411 proof (rule antisym)
   412   show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
   413     by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
   414   show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
   415     by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
   416 qed
   417 
   418 lemma uminus_Sup:
   419   "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
   420 proof -
   421   have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
   422   then show ?thesis by simp
   423 qed
   424   
   425 lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
   426   by (simp add: INF_def SUP_def uminus_Inf image_image)
   427 
   428 lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
   429   by (simp add: INF_def SUP_def uminus_Sup image_image)
   430 
   431 end
   432 
   433 
   434 subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
   435 
   436 instantiation bool :: complete_boolean_algebra
   437 begin
   438 
   439 definition
   440   "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
   441 
   442 definition
   443   "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
   444 
   445 instance proof
   446 qed (auto simp add: Inf_bool_def Sup_bool_def)
   447 
   448 end
   449 
   450 lemma INF_bool_eq [simp]:
   451   "INFI = Ball"
   452 proof (rule ext)+
   453   fix A :: "'a set"
   454   fix P :: "'a \<Rightarrow> bool"
   455   show "(\<Sqinter>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
   456     by (auto simp add: Ball_def INF_def Inf_bool_def)
   457 qed
   458 
   459 lemma SUP_bool_eq [simp]:
   460   "SUPR = Bex"
   461 proof (rule ext)+
   462   fix A :: "'a set"
   463   fix P :: "'a \<Rightarrow> bool"
   464   show "(\<Squnion>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x)"
   465     by (auto simp add: Bex_def SUP_def Sup_bool_def)
   466 qed
   467 
   468 instantiation "fun" :: (type, complete_lattice) complete_lattice
   469 begin
   470 
   471 definition
   472   "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
   473 
   474 lemma Inf_apply:
   475   "(\<Sqinter>A) x = \<Sqinter>{y. \<exists>f\<in>A. y = f x}"
   476   by (simp add: Inf_fun_def)
   477 
   478 definition
   479   "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
   480 
   481 lemma Sup_apply:
   482   "(\<Squnion>A) x = \<Squnion>{y. \<exists>f\<in>A. y = f x}"
   483   by (simp add: Sup_fun_def)
   484 
   485 instance proof
   486 qed (auto simp add: le_fun_def Inf_apply Sup_apply
   487   intro: Inf_lower Sup_upper Inf_greatest Sup_least)
   488 
   489 end
   490 
   491 lemma INF_apply:
   492   "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
   493   by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply)
   494 
   495 lemma SUP_apply:
   496   "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
   497   by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)
   498 
   499 instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
   500 
   501 
   502 subsection {* Inter *}
   503 
   504 abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
   505   "Inter S \<equiv> \<Sqinter>S"
   506   
   507 notation (xsymbols)
   508   Inter  ("\<Inter>_" [90] 90)
   509 
   510 lemma Inter_eq:
   511   "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
   512 proof (rule set_eqI)
   513   fix x
   514   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
   515     by auto
   516   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
   517     by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
   518 qed
   519 
   520 lemma Inter_iff [simp,no_atp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
   521   by (unfold Inter_eq) blast
   522 
   523 lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
   524   by (simp add: Inter_eq)
   525 
   526 text {*
   527   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
   528   contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
   529   @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
   530 *}
   531 
   532 lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
   533   by auto
   534 
   535 lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
   536   -- {* ``Classical'' elimination rule -- does not require proving
   537     @{prop "X \<in> C"}. *}
   538   by (unfold Inter_eq) blast
   539 
   540 lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
   541   by (fact Inf_lower)
   542 
   543 lemma Inter_subset:
   544   "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
   545   by (fact Inf_less_eq)
   546 
   547 lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
   548   by (fact Inf_greatest)
   549 
   550 lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
   551   by (fact Inf_binary [symmetric])
   552 
   553 lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
   554   by (fact Inf_empty)
   555 
   556 lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
   557   by (fact Inf_UNIV)
   558 
   559 lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
   560   by (fact Inf_insert)
   561 
   562 lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
   563   by (fact less_eq_Inf_inter)
   564 
   565 lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
   566   by (fact Inf_union_distrib)
   567 
   568 lemma Inter_UNIV_conv [simp, no_atp]:
   569   "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
   570   "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
   571   by (fact Inf_top_conv)+
   572 
   573 lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
   574   by (fact Inf_superset_mono)
   575 
   576 
   577 subsection {* Intersections of families *}
   578 
   579 abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
   580   "INTER \<equiv> INFI"
   581 
   582 text {*
   583   Note: must use name @{const INTER} here instead of @{text INT}
   584   to allow the following syntax coexist with the plain constant name.
   585 *}
   586 
   587 syntax
   588   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
   589   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
   590 
   591 syntax (xsymbols)
   592   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
   593   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
   594 
   595 syntax (latex output)
   596   "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
   597   "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
   598 
   599 translations
   600   "INT x y. B"  == "INT x. INT y. B"
   601   "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
   602   "INT x. B"    == "INT x:CONST UNIV. B"
   603   "INT x:A. B"  == "CONST INTER A (%x. B)"
   604 
   605 print_translation {*
   606   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
   607 *} -- {* to avoid eta-contraction of body *}
   608 
   609 lemma INTER_eq_Inter_image:
   610   "(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
   611   by (fact INF_def)
   612   
   613 lemma Inter_def:
   614   "\<Inter>S = (\<Inter>x\<in>S. x)"
   615   by (simp add: INTER_eq_Inter_image image_def)
   616 
   617 lemma INTER_def:
   618   "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
   619   by (auto simp add: INTER_eq_Inter_image Inter_eq)
   620 
   621 lemma Inter_image_eq [simp]:
   622   "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
   623   by (rule sym) (fact INF_def)
   624 
   625 lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
   626   by (unfold INTER_def) blast
   627 
   628 lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
   629   by (unfold INTER_def) blast
   630 
   631 lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
   632   by auto
   633 
   634 lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
   635   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
   636   by (unfold INTER_def) blast
   637 
   638 lemma INT_cong [cong]:
   639   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
   640   by (fact INF_cong)
   641 
   642 lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
   643   by blast
   644 
   645 lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
   646   by blast
   647 
   648 lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
   649   by (fact INF_leI)
   650 
   651 lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
   652   by (fact le_INF_I)
   653 
   654 lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
   655   by (fact INF_empty)
   656 
   657 lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
   658   by (fact INF_absorb)
   659 
   660 lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
   661   by (fact le_INF_iff)
   662 
   663 lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
   664   by (fact INF_insert)
   665 
   666 lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
   667   by (fact INF_union)
   668 
   669 lemma INT_insert_distrib:
   670   "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
   671   by blast
   672 
   673 lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
   674   by (fact INF_constant)
   675 
   676 lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
   677   -- {* Look: it has an \emph{existential} quantifier *}
   678   by (fact INF_eq)
   679 
   680 lemma INTER_UNIV_conv [simp]:
   681  "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
   682  "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
   683   by (fact INF_top_conv)+
   684 
   685 lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
   686   by (fact INF_UNIV_bool_expand)
   687 
   688 lemma INT_anti_mono:
   689   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
   690   -- {* The last inclusion is POSITIVE! *}
   691   by (fact INF_mono')
   692 
   693 lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
   694   by blast
   695 
   696 lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
   697   by blast
   698 
   699 
   700 subsection {* Union *}
   701 
   702 abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
   703   "Union S \<equiv> \<Squnion>S"
   704 
   705 notation (xsymbols)
   706   Union  ("\<Union>_" [90] 90)
   707 
   708 lemma Union_eq:
   709   "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
   710 proof (rule set_eqI)
   711   fix x
   712   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
   713     by auto
   714   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
   715     by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
   716 qed
   717 
   718 lemma Union_iff [simp, no_atp]:
   719   "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
   720   by (unfold Union_eq) blast
   721 
   722 lemma UnionI [intro]:
   723   "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
   724   -- {* The order of the premises presupposes that @{term C} is rigid;
   725     @{term A} may be flexible. *}
   726   by auto
   727 
   728 lemma UnionE [elim!]:
   729   "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
   730   by auto
   731 
   732 lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
   733   by (iprover intro: subsetI UnionI)
   734 
   735 lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
   736   by (iprover intro: subsetI elim: UnionE dest: subsetD)
   737 
   738 lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
   739   by blast
   740 
   741 lemma Union_empty [simp]: "\<Union>{} = {}"
   742   by blast
   743 
   744 lemma Union_UNIV [simp]: "\<Union>UNIV = UNIV"
   745   by blast
   746 
   747 lemma Union_insert [simp]: "\<Union>insert a B = a \<union> \<Union>B"
   748   by blast
   749 
   750 lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
   751   by blast
   752 
   753 lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
   754   by blast
   755 
   756 lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
   757   by blast
   758 
   759 lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
   760   by blast
   761 
   762 lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
   763   by blast
   764 
   765 lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
   766   by blast
   767 
   768 lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
   769   by blast
   770 
   771 lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
   772   by blast
   773 
   774 
   775 subsection {* Unions of families *}
   776 
   777 abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
   778   "UNION \<equiv> SUPR"
   779 
   780 text {*
   781   Note: must use name @{const UNION} here instead of @{text UN}
   782   to allow the following syntax coexist with the plain constant name.
   783 *}
   784 
   785 syntax
   786   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
   787   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
   788 
   789 syntax (xsymbols)
   790   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
   791   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
   792 
   793 syntax (latex output)
   794   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
   795   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
   796 
   797 translations
   798   "UN x y. B"   == "UN x. UN y. B"
   799   "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
   800   "UN x. B"     == "UN x:CONST UNIV. B"
   801   "UN x:A. B"   == "CONST UNION A (%x. B)"
   802 
   803 text {*
   804   Note the difference between ordinary xsymbol syntax of indexed
   805   unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
   806   and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
   807   former does not make the index expression a subscript of the
   808   union/intersection symbol because this leads to problems with nested
   809   subscripts in Proof General.
   810 *}
   811 
   812 print_translation {*
   813   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
   814 *} -- {* to avoid eta-contraction of body *}
   815 
   816 lemma UNION_eq_Union_image:
   817   "(\<Union>x\<in>A. B x) = \<Union>(B ` A)"
   818   by (fact SUP_def)
   819 
   820 lemma Union_def:
   821   "\<Union>S = (\<Union>x\<in>S. x)"
   822   by (simp add: UNION_eq_Union_image image_def)
   823 
   824 lemma UNION_def [no_atp]:
   825   "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
   826   by (auto simp add: UNION_eq_Union_image Union_eq)
   827   
   828 lemma Union_image_eq [simp]:
   829   "\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
   830   by (rule sym) (fact UNION_eq_Union_image)
   831   
   832 lemma UN_iff [simp]: "(b \<in> (\<Union>x\<in>A. B x)) = (\<exists>x\<in>A. b \<in> B x)"
   833   by (unfold UNION_def) blast
   834 
   835 lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
   836   -- {* The order of the premises presupposes that @{term A} is rigid;
   837     @{term b} may be flexible. *}
   838   by auto
   839 
   840 lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
   841   by (unfold UNION_def) blast
   842 
   843 lemma UN_cong [cong]:
   844   "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
   845   by (fact SUP_cong)
   846 
   847 lemma strong_UN_cong:
   848   "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
   849   by (unfold simp_implies_def) (fact UN_cong)
   850 
   851 lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
   852   by blast
   853 
   854 lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
   855   by (fact le_SUP_I)
   856 
   857 lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
   858   by (fact SUP_leI)
   859 
   860 lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
   861   by blast
   862 
   863 lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
   864   by blast
   865 
   866 lemma UN_empty [simp, no_atp]: "(\<Union>x\<in>{}. B x) = {}"
   867   by (fact SUP_empty)
   868 
   869 lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
   870   by (fact SUP_bot)
   871 
   872 lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
   873   by blast
   874 
   875 lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
   876   by (fact SUP_absorb)
   877 
   878 lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
   879   by (fact SUP_insert)
   880 
   881 lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
   882   by (fact SUP_union)
   883 
   884 lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" -- "FIXME generalize"
   885   by blast
   886 
   887 lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
   888   by (fact SUP_le_iff)
   889 
   890 lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
   891   by (fact SUP_constant)
   892 
   893 lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
   894   by (fact SUP_eq)
   895 
   896 lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" -- "FIXME generalize"
   897   by blast
   898 
   899 lemma UNION_empty_conv[simp]:
   900   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
   901   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
   902   by (fact SUP_bot_conv)+
   903 
   904 lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
   905   by blast
   906 
   907 lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
   908   by blast
   909 
   910 lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
   911   by blast
   912 
   913 lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
   914   by (auto simp add: split_if_mem2)
   915 
   916 lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
   917   by (fact SUP_UNIV_bool_expand)
   918 
   919 lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
   920   by blast
   921 
   922 lemma UN_mono:
   923   "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
   924     (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
   925   by (fact SUP_mono')
   926 
   927 lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
   928   by blast
   929 
   930 lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
   931   by blast
   932 
   933 lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
   934   -- {* NOT suitable for rewriting *}
   935   by blast
   936 
   937 lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
   938   by blast
   939 
   940 
   941 subsection {* Distributive laws *}
   942 
   943 lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
   944   by blast
   945 
   946 lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
   947   by blast
   948 
   949 lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
   950   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
   951   -- {* Union of a family of unions *}
   952   by blast
   953 
   954 lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
   955   -- {* Equivalent version *}
   956   by blast
   957 
   958 lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
   959   by blast
   960 
   961 lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
   962   by blast
   963 
   964 lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
   965   -- {* Equivalent version *}
   966   by blast
   967 
   968 lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
   969   -- {* Halmos, Naive Set Theory, page 35. *}
   970   by blast
   971 
   972 lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
   973   by blast
   974 
   975 lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
   976   by blast
   977 
   978 lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
   979   by blast
   980 
   981 
   982 subsection {* Complement *}
   983 
   984 lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
   985   by (fact uminus_INF)
   986 
   987 lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
   988   by (fact uminus_SUP)
   989 
   990 
   991 subsection {* Miniscoping and maxiscoping *}
   992 
   993 text {* \medskip Miniscoping: pushing in quantifiers and big Unions
   994            and Intersections. *}
   995 
   996 lemma UN_simps [simp]:
   997   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
   998   "\<And>A B C. (\<Union>x\<in>C. A x \<union>  B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
   999   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
  1000   "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter>B)"
  1001   "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
  1002   "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
  1003   "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
  1004   "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
  1005   "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
  1006   "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
  1007   by auto
  1008 
  1009 lemma INT_simps [simp]:
  1010   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter>B)"
  1011   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
  1012   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
  1013   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
  1014   "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
  1015   "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
  1016   "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
  1017   "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
  1018   "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
  1019   "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
  1020   by auto
  1021 
  1022 lemma ball_simps [simp,no_atp]:
  1023   "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)"
  1024   "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))"
  1025   "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))"
  1026   "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)"
  1027   "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
  1028   "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)"
  1029   "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))"
  1030   "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
  1031   "\<And>A B P. (\<forall>x\<in> UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
  1032   "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)"
  1033   "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))"
  1034   "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)"
  1035   by auto
  1036 
  1037 lemma bex_simps [simp,no_atp]:
  1038   "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)"
  1039   "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))"
  1040   "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
  1041   "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)"
  1042   "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))"
  1043   "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
  1044   "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
  1045   "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)"
  1046   "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))"
  1047   "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)"
  1048   by auto
  1049 
  1050 text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
  1051 
  1052 lemma UN_extend_simps:
  1053   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
  1054   "\<And>A B C. (\<Union>x\<in>C. A x) \<union>  B  = (if C={} then B else (\<Union>x\<in>C. A x \<union>  B))"
  1055   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
  1056   "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
  1057   "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
  1058   "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
  1059   "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
  1060   "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
  1061   "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
  1062   "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
  1063   by auto
  1064 
  1065 lemma INT_extend_simps:
  1066   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
  1067   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
  1068   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
  1069   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
  1070   "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
  1071   "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
  1072   "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
  1073   "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
  1074   "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
  1075   "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
  1076   by auto
  1077 
  1078 
  1079 text {* Legacy names *}
  1080 
  1081 lemmas (in complete_lattice) INFI_def = INF_def
  1082 lemmas (in complete_lattice) SUPR_def = SUP_def
  1083 lemmas (in complete_lattice) le_SUPI = le_SUP_I
  1084 lemmas (in complete_lattice) le_SUPI2 = le_SUP_I2
  1085 lemmas (in complete_lattice) le_INFI = le_INF_I
  1086 lemmas (in complete_lattice) INF_subset = INF_superset_mono 
  1087 lemmas INFI_apply = INF_apply
  1088 lemmas SUPR_apply = SUP_apply
  1089 
  1090 text {* Finally *}
  1091 
  1092 no_notation
  1093   less_eq  (infix "\<sqsubseteq>" 50) and
  1094   less (infix "\<sqsubset>" 50) and
  1095   bot ("\<bottom>") and
  1096   top ("\<top>") and
  1097   inf  (infixl "\<sqinter>" 70) and
  1098   sup  (infixl "\<squnion>" 65) and
  1099   Inf  ("\<Sqinter>_" [900] 900) and
  1100   Sup  ("\<Squnion>_" [900] 900)
  1101 
  1102 no_syntax (xsymbols)
  1103   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
  1104   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
  1105   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
  1106   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
  1107 
  1108 lemmas mem_simps =
  1109   insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
  1110   mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
  1111   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
  1112 
  1113 end