doc-src/TutorialI/Recdef/document/Induction.tex
author nipkow
Wed, 24 Jan 2001 12:29:10 +0100
changeset 10971 6852682eaf16
parent 10950 aa788fcb75a5
child 11023 6e6c8d1ec89e
permissions -rw-r--r--
*** empty log message ***
     1 %
     2 \begin{isabellebody}%
     3 \def\isabellecontext{Induction}%
     4 %
     5 \begin{isamarkuptext}%
     6 Assuming we have defined our function such that Isabelle could prove
     7 termination and that the recursion equations (or some suitable derived
     8 equations) are simplification rules, we might like to prove something about
     9 our function. Since the function is recursive, the natural proof principle is
    10 again induction. But this time the structural form of induction that comes
    11 with datatypes is unlikely to work well --- otherwise we could have defined the
    12 function by \isacommand{primrec}. Therefore \isacommand{recdef} automatically
    13 proves a suitable induction rule $f$\isa{{\isachardot}induct} that follows the
    14 recursion pattern of the particular function $f$. We call this
    15 \textbf{recursion induction}. Roughly speaking, it
    16 requires you to prove for each \isacommand{recdef} equation that the property
    17 you are trying to establish holds for the left-hand side provided it holds
    18 for all recursive calls on the right-hand side. Here is a simple example
    19 involving the predefined \isa{map} functional on lists:%
    20 \end{isamarkuptext}%
    21 \isacommand{lemma}\ {\isachardoublequote}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequote}%
    22 \begin{isamarkuptxt}%
    23 \noindent
    24 Note that \isa{map\ f\ xs}
    25 is the result of applying \isa{f} to all elements of \isa{xs}. We prove
    26 this lemma by recursion induction over \isa{sep}:%
    27 \end{isamarkuptxt}%
    28 \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}%
    29 \begin{isamarkuptxt}%
    30 \noindent
    31 The resulting proof state has three subgoals corresponding to the three
    32 clauses for \isa{sep}:
    33 \begin{isabelle}%
    34 \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}a{\isachardot}\ map\ f\ {\isacharparenleft}sep\ {\isacharparenleft}a{\isacharcomma}\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep\ {\isacharparenleft}f\ a{\isacharcomma}\ map\ f\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\isanewline
    35 \ {\isadigit{2}}{\isachardot}\ {\isasymAnd}a\ x{\isachardot}\ map\ f\ {\isacharparenleft}sep\ {\isacharparenleft}a{\isacharcomma}\ {\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep\ {\isacharparenleft}f\ a{\isacharcomma}\ map\ f\ {\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}\isanewline
    36 \ {\isadigit{3}}{\isachardot}\ {\isasymAnd}a\ x\ y\ zs{\isachardot}\isanewline
    37 \isaindent{\ {\isadigit{3}}{\isachardot}\ \ \ \ }map\ f\ {\isacharparenleft}sep\ {\isacharparenleft}a{\isacharcomma}\ y\ {\isacharhash}\ zs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep\ {\isacharparenleft}f\ a{\isacharcomma}\ map\ f\ {\isacharparenleft}y\ {\isacharhash}\ zs{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\isanewline
    38 \isaindent{\ {\isadigit{3}}{\isachardot}\ \ \ \ }map\ f\ {\isacharparenleft}sep\ {\isacharparenleft}a{\isacharcomma}\ x\ {\isacharhash}\ y\ {\isacharhash}\ zs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep\ {\isacharparenleft}f\ a{\isacharcomma}\ map\ f\ {\isacharparenleft}x\ {\isacharhash}\ y\ {\isacharhash}\ zs{\isacharparenright}{\isacharparenright}%
    39 \end{isabelle}
    40 The rest is pure simplification:%
    41 \end{isamarkuptxt}%
    42 \isacommand{apply}\ simp{\isacharunderscore}all\isanewline
    43 \isacommand{done}%
    44 \begin{isamarkuptext}%
    45 Try proving the above lemma by structural induction, and you find that you
    46 need an additional case distinction. What is worse, the names of variables
    47 are invented by Isabelle and have nothing to do with the names in the
    48 definition of \isa{sep}.
    49 
    50 In general, the format of invoking recursion induction is
    51 \begin{quote}
    52 \isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac\ }$x@1 \dots x@n$ \isa{rule{\isacharcolon}} $f$\isa{{\isachardot}induct{\isacharparenright}}
    53 \end{quote}\index{*induct_tac}%
    54 where $x@1~\dots~x@n$ is a list of free variables in the subgoal and $f$ the
    55 name of a function that takes an $n$-tuple. Usually the subgoal will
    56 contain the term $f(x@1,\dots,x@n)$ but this need not be the case. The
    57 induction rules do not mention $f$ at all. For example \isa{sep{\isachardot}induct}
    58 \begin{isabelle}
    59 {\isasymlbrakk}~{\isasymAnd}a.~P~a~[];\isanewline
    60 ~~{\isasymAnd}a~x.~P~a~[x];\isanewline
    61 ~~{\isasymAnd}a~x~y~zs.~P~a~(y~\#~zs)~{\isasymLongrightarrow}~P~a~(x~\#~y~\#~zs){\isasymrbrakk}\isanewline
    62 {\isasymLongrightarrow}~P~u~v%
    63 \end{isabelle}
    64 merely says that in order to prove a property \isa{P} of \isa{u} and
    65 \isa{v} you need to prove it for the three cases where \isa{v} is the
    66 empty list, the singleton list, and the list with at least two elements
    67 (in which case you may assume it holds for the tail of that list).%
    68 \end{isamarkuptext}%
    69 \end{isabellebody}%
    70 %%% Local Variables:
    71 %%% mode: latex
    72 %%% TeX-master: "root"
    73 %%% End: