doc-src/HOL/HOL.tex
author wenzelm
Tue, 17 Aug 1999 22:24:15 +0200
changeset 7245 65ccac4e1f3f
parent 7044 193a8601fabd
child 7283 5cfe2944910a
permissions -rw-r--r--
eliminated HOL_quantifiers (replaced by "HOL" print mode);
     1 %% $Id$
     2 \chapter{Higher-Order Logic}
     3 \index{higher-order logic|(}
     4 \index{HOL system@{\sc hol} system}
     5 
     6 The theory~\thydx{HOL} implements higher-order logic.  It is based on
     7 Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on
     8 Church's original paper~\cite{church40}.  Andrews's
     9 book~\cite{andrews86} is a full description of the original
    10 Church-style higher-order logic.  Experience with the {\sc hol} system
    11 has demonstrated that higher-order logic is widely applicable in many
    12 areas of mathematics and computer science, not just hardware
    13 verification, {\sc hol}'s original \textit{raison d'\^etre\/}.  It is
    14 weaker than {\ZF} set theory but for most applications this does not
    15 matter.  If you prefer {\ML} to Lisp, you will probably prefer \HOL\ 
    16 to~{\ZF}.
    17 
    18 The syntax of \HOL\footnote{Earlier versions of Isabelle's \HOL\ used a
    19 different syntax.  Ancient releases of Isabelle included still another version
    20 of~\HOL, with explicit type inference rules~\cite{paulson-COLOG}.  This
    21 version no longer exists, but \thydx{ZF} supports a similar style of
    22 reasoning.} follows $\lambda$-calculus and functional programming.  Function
    23 application is curried.  To apply the function~$f$ of type
    24 $\tau@1\To\tau@2\To\tau@3$ to the arguments~$a$ and~$b$ in \HOL, you simply
    25 write $f\,a\,b$.  There is no `apply' operator as in \thydx{ZF}.  Note that
    26 $f(a,b)$ means ``$f$ applied to the pair $(a,b)$'' in \HOL.  We write ordered
    27 pairs as $(a,b)$, not $\langle a,b\rangle$ as in {\ZF}.
    28 
    29 \HOL\ has a distinct feel, compared with {\ZF} and {\CTT}.  It
    30 identifies object-level types with meta-level types, taking advantage of
    31 Isabelle's built-in type-checker.  It identifies object-level functions
    32 with meta-level functions, so it uses Isabelle's operations for abstraction
    33 and application.
    34 
    35 These identifications allow Isabelle to support \HOL\ particularly
    36 nicely, but they also mean that \HOL\ requires more sophistication
    37 from the user --- in particular, an understanding of Isabelle's type
    38 system.  Beginners should work with \texttt{show_types} (or even
    39 \texttt{show_sorts}) set to \texttt{true}.
    40 %  Gain experience by
    41 %working in first-order logic before attempting to use higher-order logic.
    42 %This chapter assumes familiarity with~{\FOL{}}.
    43 
    44 
    45 \begin{figure}
    46 \begin{constants}
    47   \it name      &\it meta-type  & \it description \\
    48   \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
    49   \cdx{Not}     & $bool\To bool$                & negation ($\neg$) \\
    50   \cdx{True}    & $bool$                        & tautology ($\top$) \\
    51   \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
    52   \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
    53   \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
    54 \end{constants}
    55 \subcaption{Constants}
    56 
    57 \begin{constants}
    58 \index{"@@{\tt\at} symbol}
    59 \index{*"! symbol}\index{*"? symbol}
    60 \index{*"?"! symbol}\index{*"E"X"! symbol}
    61   \it symbol &\it name     &\it meta-type & \it description \\
    62   \sdx{SOME} or \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
    63         Hilbert description ($\varepsilon$) \\
    64   \sdx{ALL} or {\tt!~} & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
    65         universal quantifier ($\forall$) \\
    66   \sdx{EX} or {\tt?~}  & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
    67         existential quantifier ($\exists$) \\
    68   \texttt{EX!} or {\tt?!} & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
    69         unique existence ($\exists!$)\\
    70   \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
    71         least element
    72 \end{constants}
    73 \subcaption{Binders} 
    74 
    75 \begin{constants}
    76 \index{*"= symbol}
    77 \index{&@{\tt\&} symbol}
    78 \index{*"| symbol}
    79 \index{*"-"-"> symbol}
    80   \it symbol    & \it meta-type & \it priority & \it description \\ 
    81   \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
    82         Left 55 & composition ($\circ$) \\
    83   \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
    84   \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
    85   \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
    86                 less than or equals ($\leq$)\\
    87   \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
    88   \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
    89   \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
    90 \end{constants}
    91 \subcaption{Infixes}
    92 \caption{Syntax of \texttt{HOL}} \label{hol-constants}
    93 \end{figure}
    94 
    95 
    96 \begin{figure}
    97 \index{*let symbol}
    98 \index{*in symbol}
    99 \dquotes
   100 \[\begin{array}{rclcl}
   101     term & = & \hbox{expression of class~$term$} \\
   102          & | & "SOME~" id " . " formula
   103          & | & "\at~" id " . " formula \\
   104          & | & 
   105     \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
   106          & | & 
   107     \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
   108          & | & "LEAST"~ id " . " formula \\[2ex]
   109  formula & = & \hbox{expression of type~$bool$} \\
   110          & | & term " = " term \\
   111          & | & term " \ttilde= " term \\
   112          & | & term " < " term \\
   113          & | & term " <= " term \\
   114          & | & "\ttilde\ " formula \\
   115          & | & formula " \& " formula \\
   116          & | & formula " | " formula \\
   117          & | & formula " --> " formula \\
   118          & | & "ALL~" id~id^* " . " formula
   119          & | & "!~~~" id~id^* " . " formula \\
   120          & | & "EX~~" id~id^* " . " formula 
   121          & | & "?~~~" id~id^* " . " formula \\
   122          & | & "EX!~" id~id^* " . " formula
   123          & | & "?!~~" id~id^* " . " formula \\
   124   \end{array}
   125 \]
   126 \caption{Full grammar for \HOL} \label{hol-grammar}
   127 \end{figure} 
   128 
   129 
   130 \section{Syntax}
   131 
   132 Figure~\ref{hol-constants} lists the constants (including infixes and
   133 binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
   134 higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
   135 $\neg(a=b)$.
   136 
   137 \begin{warn}
   138   \HOL\ has no if-and-only-if connective; logical equivalence is expressed
   139   using equality.  But equality has a high priority, as befitting a
   140   relation, while if-and-only-if typically has the lowest priority.  Thus,
   141   $\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$.
   142   When using $=$ to mean logical equivalence, enclose both operands in
   143   parentheses.
   144 \end{warn}
   145 
   146 \subsection{Types and classes}
   147 The universal type class of higher-order terms is called~\cldx{term}.
   148 By default, explicit type variables have class \cldx{term}.  In
   149 particular the equality symbol and quantifiers are polymorphic over
   150 class \texttt{term}.
   151 
   152 The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
   153 formulae are terms.  The built-in type~\tydx{fun}, which constructs
   154 function types, is overloaded with arity {\tt(term,\thinspace
   155   term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
   156   term} if $\sigma$ and~$\tau$ do, allowing quantification over
   157 functions.
   158 
   159 \HOL\ offers various methods for introducing new types.
   160 See~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}.
   161 
   162 Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
   163 signatures; the relations $<$ and $\leq$ are polymorphic over this
   164 class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
   165 the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
   166 \cldx{order} of \cldx{ord} which axiomatizes partially ordered types
   167 (w.r.t.\ $\le$).
   168 
   169 Three other syntactic type classes --- \cldx{plus}, \cldx{minus} and
   170 \cldx{times} --- permit overloading of the operators {\tt+},\index{*"+
   171   symbol} {\tt-}\index{*"- symbol} and {\tt*}.\index{*"* symbol} In
   172 particular, {\tt-} is instantiated for set difference and subtraction
   173 on natural numbers.
   174 
   175 If you state a goal containing overloaded functions, you may need to include
   176 type constraints.  Type inference may otherwise make the goal more
   177 polymorphic than you intended, with confusing results.  For example, the
   178 variables $i$, $j$ and $k$ in the goal $i \le j \Imp i \le j+k$ have type
   179 $\alpha::\{ord,plus\}$, although you may have expected them to have some
   180 numeric type, e.g. $nat$.  Instead you should have stated the goal as
   181 $(i::nat) \le j \Imp i \le j+k$, which causes all three variables to have
   182 type $nat$.
   183 
   184 \begin{warn}
   185   If resolution fails for no obvious reason, try setting
   186   \ttindex{show_types} to \texttt{true}, causing Isabelle to display
   187   types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
   188   well, causing Isabelle to display type classes and sorts.
   189 
   190   \index{unification!incompleteness of}
   191   Where function types are involved, Isabelle's unification code does not
   192   guarantee to find instantiations for type variables automatically.  Be
   193   prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
   194   possibly instantiating type variables.  Setting
   195   \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
   196   omitted search paths during unification.\index{tracing!of unification}
   197 \end{warn}
   198 
   199 
   200 \subsection{Binders}
   201 
   202 Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for
   203 some~$x$ satisfying~$P$, if such exists.  Since all terms in \HOL\ 
   204 denote something, a description is always meaningful, but we do not
   205 know its value unless $P$ defines it uniquely.  We may write
   206 descriptions as \cdx{Eps}($\lambda x. P[x]$) or use the syntax
   207 \hbox{\tt SOME~$x$.~$P[x]$}.
   208 
   209 Existential quantification is defined by
   210 \[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
   211 The unique existence quantifier, $\exists!x. P$, is defined in terms
   212 of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
   213 quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
   214 $\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
   215 exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
   216 
   217 \medskip
   218 
   219 \index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} The
   220 basic Isabelle/HOL binders have two notations.  Apart from the usual
   221 \texttt{ALL} and \texttt{EX} for $\forall$ and $\exists$, Isabelle/HOL also
   222 supports the original notation of Gordon's {\sc hol} system: \texttt{!}\ 
   223 and~\texttt{?}.  In the latter case, the existential quantifier \emph{must} be
   224 followed by a space; thus {\tt?x} is an unknown, while \verb'? x. f x=y' is a
   225 quantification.  Both notations are accepted for input.  The print mode
   226 ``\ttindexbold{HOL}'' governs the output notation.  If enabled (e.g.\ by
   227 passing option \texttt{-m HOL} to the \texttt{isabelle} executable),
   228 then~{\tt!}\ and~{\tt?}\ are displayed.
   229 
   230 \medskip
   231 
   232 If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
   233 variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
   234 to be the least (w.r.t.\ $\le$) $x$ such that $P~x$ holds (see
   235 Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
   236 choice operator, so \texttt{Least} is always meaningful, but may yield
   237 nothing useful in case there is not a unique least element satisfying
   238 $P$.\footnote{Class $ord$ does not require much of its instances, so
   239   $\le$ need not be a well-ordering, not even an order at all!}
   240 
   241 \medskip All these binders have priority 10.
   242 
   243 \begin{warn}
   244 The low priority of binders means that they need to be enclosed in
   245 parenthesis when they occur in the context of other operations.  For example,
   246 instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
   247 \end{warn}
   248 
   249 
   250 \subsection{The let and case constructions}
   251 Local abbreviations can be introduced by a \texttt{let} construct whose
   252 syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
   253 the constant~\cdx{Let}.  It can be expanded by rewriting with its
   254 definition, \tdx{Let_def}.
   255 
   256 \HOL\ also defines the basic syntax
   257 \[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
   258 as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
   259 and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
   260 logical meaning.  By declaring translations, you can cause instances of the
   261 \texttt{case} construct to denote applications of particular case operators.
   262 This is what happens automatically for each \texttt{datatype} definition
   263 (see~\S\ref{sec:HOL:datatype}).
   264 
   265 \begin{warn}
   266 Both \texttt{if} and \texttt{case} constructs have as low a priority as
   267 quantifiers, which requires additional enclosing parentheses in the context
   268 of most other operations.  For example, instead of $f~x = {\tt if\dots
   269 then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
   270 else\dots})$.
   271 \end{warn}
   272 
   273 \section{Rules of inference}
   274 
   275 \begin{figure}
   276 \begin{ttbox}\makeatother
   277 \tdx{refl}           t = (t::'a)
   278 \tdx{subst}          [| s = t; P s |] ==> P (t::'a)
   279 \tdx{ext}            (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
   280 \tdx{impI}           (P ==> Q) ==> P-->Q
   281 \tdx{mp}             [| P-->Q;  P |] ==> Q
   282 \tdx{iff}            (P-->Q) --> (Q-->P) --> (P=Q)
   283 \tdx{selectI}        P(x::'a) ==> P(@x. P x)
   284 \tdx{True_or_False}  (P=True) | (P=False)
   285 \end{ttbox}
   286 \caption{The \texttt{HOL} rules} \label{hol-rules}
   287 \end{figure}
   288 
   289 Figure~\ref{hol-rules} shows the primitive inference rules of~\HOL{},
   290 with their~{\ML} names.  Some of the rules deserve additional
   291 comments:
   292 \begin{ttdescription}
   293 \item[\tdx{ext}] expresses extensionality of functions.
   294 \item[\tdx{iff}] asserts that logically equivalent formulae are
   295   equal.
   296 \item[\tdx{selectI}] gives the defining property of the Hilbert
   297   $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
   298   \tdx{select_equality} (see below) is often easier to use.
   299 \item[\tdx{True_or_False}] makes the logic classical.\footnote{In
   300     fact, the $\varepsilon$-operator already makes the logic classical, as
   301     shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
   302 \end{ttdescription}
   303 
   304 
   305 \begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
   306 \begin{ttbox}\makeatother
   307 \tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
   308 \tdx{All_def}    All      == (\%P. P = (\%x. True))
   309 \tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
   310 \tdx{False_def}  False    == (!P. P)
   311 \tdx{not_def}    not      == (\%P. P-->False)
   312 \tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
   313 \tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
   314 \tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
   315 
   316 \tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
   317 \tdx{if_def}     If P x y ==
   318               (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
   319 \tdx{Let_def}    Let s f  == f s
   320 \tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
   321 \end{ttbox}
   322 \caption{The \texttt{HOL} definitions} \label{hol-defs}
   323 \end{figure}
   324 
   325 
   326 \HOL{} follows standard practice in higher-order logic: only a few
   327 connectives are taken as primitive, with the remainder defined obscurely
   328 (Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
   329 corresponding definitions \cite[page~270]{mgordon-hol} using
   330 object-equality~({\tt=}), which is possible because equality in
   331 higher-order logic may equate formulae and even functions over formulae.
   332 But theory~\HOL{}, like all other Isabelle theories, uses
   333 meta-equality~({\tt==}) for definitions.
   334 \begin{warn}
   335 The definitions above should never be expanded and are shown for completeness
   336 only.  Instead users should reason in terms of the derived rules shown below
   337 or, better still, using high-level tactics
   338 (see~\S\ref{sec:HOL:generic-packages}).
   339 \end{warn}
   340 
   341 Some of the rules mention type variables; for example, \texttt{refl}
   342 mentions the type variable~{\tt'a}.  This allows you to instantiate
   343 type variables explicitly by calling \texttt{res_inst_tac}.
   344 
   345 
   346 \begin{figure}
   347 \begin{ttbox}
   348 \tdx{sym}         s=t ==> t=s
   349 \tdx{trans}       [| r=s; s=t |] ==> r=t
   350 \tdx{ssubst}      [| t=s; P s |] ==> P t
   351 \tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
   352 \tdx{arg_cong}    x = y ==> f x = f y
   353 \tdx{fun_cong}    f = g ==> f x = g x
   354 \tdx{cong}        [| f = g; x = y |] ==> f x = g y
   355 \tdx{not_sym}     t ~= s ==> s ~= t
   356 \subcaption{Equality}
   357 
   358 \tdx{TrueI}       True 
   359 \tdx{FalseE}      False ==> P
   360 
   361 \tdx{conjI}       [| P; Q |] ==> P&Q
   362 \tdx{conjunct1}   [| P&Q |] ==> P
   363 \tdx{conjunct2}   [| P&Q |] ==> Q 
   364 \tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
   365 
   366 \tdx{disjI1}      P ==> P|Q
   367 \tdx{disjI2}      Q ==> P|Q
   368 \tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
   369 
   370 \tdx{notI}        (P ==> False) ==> ~ P
   371 \tdx{notE}        [| ~ P;  P |] ==> R
   372 \tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
   373 \subcaption{Propositional logic}
   374 
   375 \tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
   376 \tdx{iffD1}       [| P=Q; P |] ==> Q
   377 \tdx{iffD2}       [| P=Q; Q |] ==> P
   378 \tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
   379 %
   380 %\tdx{eqTrueI}     P ==> P=True 
   381 %\tdx{eqTrueE}     P=True ==> P 
   382 \subcaption{Logical equivalence}
   383 
   384 \end{ttbox}
   385 \caption{Derived rules for \HOL} \label{hol-lemmas1}
   386 \end{figure}
   387 
   388 
   389 \begin{figure}
   390 \begin{ttbox}\makeatother
   391 \tdx{allI}      (!!x. P x) ==> !x. P x
   392 \tdx{spec}      !x. P x ==> P x
   393 \tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
   394 \tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
   395 
   396 \tdx{exI}       P x ==> ? x. P x
   397 \tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
   398 
   399 \tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
   400 \tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
   401           |] ==> R
   402 
   403 \tdx{select_equality} [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
   404 \subcaption{Quantifiers and descriptions}
   405 
   406 \tdx{ccontr}          (~P ==> False) ==> P
   407 \tdx{classical}       (~P ==> P) ==> P
   408 \tdx{excluded_middle} ~P | P
   409 
   410 \tdx{disjCI}          (~Q ==> P) ==> P|Q
   411 \tdx{exCI}            (! x. ~ P x ==> P a) ==> ? x. P x
   412 \tdx{impCE}           [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
   413 \tdx{iffCE}           [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
   414 \tdx{notnotD}         ~~P ==> P
   415 \tdx{swap}            ~P ==> (~Q ==> P) ==> Q
   416 \subcaption{Classical logic}
   417 
   418 %\tdx{if_True}         (if True then x else y) = x
   419 %\tdx{if_False}        (if False then x else y) = y
   420 \tdx{if_P}            P ==> (if P then x else y) = x
   421 \tdx{if_not_P}        ~ P ==> (if P then x else y) = y
   422 \tdx{split_if}        P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
   423 \subcaption{Conditionals}
   424 \end{ttbox}
   425 \caption{More derived rules} \label{hol-lemmas2}
   426 \end{figure}
   427 
   428 Some derived rules are shown in Figures~\ref{hol-lemmas1}
   429 and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
   430 for the logical connectives, as well as sequent-style elimination rules for
   431 conjunctions, implications, and universal quantifiers.  
   432 
   433 Note the equality rules: \tdx{ssubst} performs substitution in
   434 backward proofs, while \tdx{box_equals} supports reasoning by
   435 simplifying both sides of an equation.
   436 
   437 The following simple tactics are occasionally useful:
   438 \begin{ttdescription}
   439 \item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
   440   repeatedly to remove all outermost universal quantifiers and implications
   441   from subgoal $i$.
   442 \item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction
   443   on $P$ for subgoal $i$: the latter is replaced by two identical subgoals
   444   with the added assumptions $P$ and $\neg P$, respectively.
   445 \end{ttdescription}
   446 
   447 
   448 \begin{figure} 
   449 \begin{center}
   450 \begin{tabular}{rrr}
   451   \it name      &\it meta-type  & \it description \\ 
   452 \index{{}@\verb'{}' symbol}
   453   \verb|{}|     & $\alpha\,set$         & the empty set \\
   454   \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
   455         & insertion of element \\
   456   \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
   457         & comprehension \\
   458   \cdx{Compl}   & $\alpha\,set\To\alpha\,set$
   459         & complement \\
   460   \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   461         & intersection over a set\\
   462   \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   463         & union over a set\\
   464   \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
   465         &set of sets intersection \\
   466   \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
   467         &set of sets union \\
   468   \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
   469         & powerset \\[1ex]
   470   \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
   471         & range of a function \\[1ex]
   472   \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
   473         & bounded quantifiers
   474 \end{tabular}
   475 \end{center}
   476 \subcaption{Constants}
   477 
   478 \begin{center}
   479 \begin{tabular}{llrrr} 
   480   \it symbol &\it name     &\it meta-type & \it priority & \it description \\
   481   \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   482         intersection over a type\\
   483   \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   484         union over a type
   485 \end{tabular}
   486 \end{center}
   487 \subcaption{Binders} 
   488 
   489 \begin{center}
   490 \index{*"`"` symbol}
   491 \index{*": symbol}
   492 \index{*"<"= symbol}
   493 \begin{tabular}{rrrr} 
   494   \it symbol    & \it meta-type & \it priority & \it description \\ 
   495   \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
   496         & Left 90 & image \\
   497   \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   498         & Left 70 & intersection ($\int$) \\
   499   \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   500         & Left 65 & union ($\un$) \\
   501   \tt:          & $[\alpha ,\alpha\,set]\To bool$       
   502         & Left 50 & membership ($\in$) \\
   503   \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
   504         & Left 50 & subset ($\subseteq$) 
   505 \end{tabular}
   506 \end{center}
   507 \subcaption{Infixes}
   508 \caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
   509 \end{figure} 
   510 
   511 
   512 \begin{figure} 
   513 \begin{center} \tt\frenchspacing
   514 \index{*"! symbol}
   515 \begin{tabular}{rrr} 
   516   \it external          & \it internal  & \it description \\ 
   517   $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm non-membership\\
   518   {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
   519   {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
   520         \rm comprehension \\
   521   \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
   522         \rm intersection \\
   523   \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
   524         \rm union \\
   525   \sdx{ALL} $x$:$A$. $P[x]$ or \sdx{!} $x$:$A$. $P[x]$ &
   526         Ball $A$ $\lambda x. P[x]$ & 
   527         \rm bounded $\forall$ \\
   528   \sdx{EX}{\tt\ } $x$:$A$. $P[x]$ or \sdx{?} $x$:$A$. $P[x]$ & 
   529         Bex $A$ $\lambda x. P[x]$ & \rm bounded $\exists$
   530 \end{tabular}
   531 \end{center}
   532 \subcaption{Translations}
   533 
   534 \dquotes
   535 \[\begin{array}{rclcl}
   536     term & = & \hbox{other terms\ldots} \\
   537          & | & "{\ttlbrace}{\ttrbrace}" \\
   538          & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   539          & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
   540          & | & term " `` " term \\
   541          & | & term " Int " term \\
   542          & | & term " Un " term \\
   543          & | & "INT~~"  id ":" term " . " term \\
   544          & | & "UN~~~"  id ":" term " . " term \\
   545          & | & "INT~~"  id~id^* " . " term \\
   546          & | & "UN~~~"  id~id^* " . " term \\[2ex]
   547  formula & = & \hbox{other formulae\ldots} \\
   548          & | & term " : " term \\
   549          & | & term " \ttilde: " term \\
   550          & | & term " <= " term \\
   551          & | & "ALL " id ":" term " . " formula
   552          & | & "!~" id ":" term " . " formula \\
   553          & | & "EX~~" id ":" term " . " formula
   554          & | & "?~" id ":" term " . " formula \\
   555   \end{array}
   556 \]
   557 \subcaption{Full Grammar}
   558 \caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
   559 \end{figure} 
   560 
   561 
   562 \section{A formulation of set theory}
   563 Historically, higher-order logic gives a foundation for Russell and
   564 Whitehead's theory of classes.  Let us use modern terminology and call them
   565 {\bf sets}, but note that these sets are distinct from those of {\ZF} set
   566 theory, and behave more like {\ZF} classes.
   567 \begin{itemize}
   568 \item
   569 Sets are given by predicates over some type~$\sigma$.  Types serve to
   570 define universes for sets, but type-checking is still significant.
   571 \item
   572 There is a universal set (for each type).  Thus, sets have complements, and
   573 may be defined by absolute comprehension.
   574 \item
   575 Although sets may contain other sets as elements, the containing set must
   576 have a more complex type.
   577 \end{itemize}
   578 Finite unions and intersections have the same behaviour in \HOL\ as they
   579 do in~{\ZF}.  In \HOL\ the intersection of the empty set is well-defined,
   580 denoting the universal set for the given type.
   581 
   582 \subsection{Syntax of set theory}\index{*set type}
   583 \HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is
   584 essentially the same as $\alpha\To bool$.  The new type is defined for
   585 clarity and to avoid complications involving function types in unification.
   586 The isomorphisms between the two types are declared explicitly.  They are
   587 very natural: \texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while
   588 \hbox{\tt op :} maps in the other direction (ignoring argument order).
   589 
   590 Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
   591 translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
   592 constructs.  Infix operators include union and intersection ($A\un B$
   593 and $A\int B$), the subset and membership relations, and the image
   594 operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
   595 $\neg(a\in b)$.  
   596 
   597 The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
   598 the obvious manner using~\texttt{insert} and~$\{\}$:
   599 \begin{eqnarray*}
   600   \{a, b, c\} & \equiv &
   601   \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
   602 \end{eqnarray*}
   603 
   604 The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of suitable type)
   605 that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free
   606 occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda
   607 x. P[x])$.  It defines sets by absolute comprehension, which is impossible
   608 in~{\ZF}; the type of~$x$ implicitly restricts the comprehension.
   609 
   610 The set theory defines two {\bf bounded quantifiers}:
   611 \begin{eqnarray*}
   612    \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   613    \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   614 \end{eqnarray*}
   615 The constants~\cdx{Ball} and~\cdx{Bex} are defined
   616 accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
   617 write\index{*"! symbol}\index{*"? symbol}
   618 \index{*ALL symbol}\index{*EX symbol} 
   619 %
   620 \hbox{\tt ALL~$x$:$A$.\ $P[x]$} and \hbox{\tt EX~$x$:$A$.\ $P[x]$}.  The
   621 original notation of Gordon's {\sc hol} system is supported as well: \sdx{!}\ 
   622 and \sdx{?}.
   623 
   624 Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
   625 $\bigcap@{x\in A}B[x]$, are written 
   626 \sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
   627 \sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
   628 
   629 Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
   630 B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
   631 \sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
   632 union and intersection operators when $A$ is the universal set.
   633 
   634 The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
   635 not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
   636 respectively.
   637 
   638 
   639 
   640 \begin{figure} \underscoreon
   641 \begin{ttbox}
   642 \tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
   643 \tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
   644 
   645 \tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
   646 \tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
   647 \tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
   648 \tdx{Bex_def}           Bex A P     == ? x. x:A & P x
   649 \tdx{subset_def}        A <= B      == ! x:A. x:B
   650 \tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
   651 \tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
   652 \tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
   653 \tdx{Compl_def}         Compl A     == {\ttlbrace}x. ~ x:A{\ttrbrace}
   654 \tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
   655 \tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
   656 \tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
   657 \tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
   658 \tdx{Inter_def}         Inter S     == (INT x:S. x)
   659 \tdx{Union_def}         Union S     == (UN  x:S. x)
   660 \tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
   661 \tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
   662 \tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
   663 \end{ttbox}
   664 \caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
   665 \end{figure}
   666 
   667 
   668 \begin{figure} \underscoreon
   669 \begin{ttbox}
   670 \tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
   671 \tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
   672 \tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
   673 
   674 \tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
   675 \tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
   676 \tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
   677 
   678 \tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
   679 \tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
   680 \tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
   681 \subcaption{Comprehension and Bounded quantifiers}
   682 
   683 \tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
   684 \tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
   685 \tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
   686 
   687 \tdx{subset_refl}     A <= A
   688 \tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   689 
   690 \tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
   691 \tdx{equalityD1}      A = B ==> A<=B
   692 \tdx{equalityD2}      A = B ==> B<=A
   693 \tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   694 
   695 \tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
   696                            [| ~ c:A; ~ c:B |] ==> P 
   697                 |]  ==>  P
   698 \subcaption{The subset and equality relations}
   699 \end{ttbox}
   700 \caption{Derived rules for set theory} \label{hol-set1}
   701 \end{figure}
   702 
   703 
   704 \begin{figure} \underscoreon
   705 \begin{ttbox}
   706 \tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
   707 
   708 \tdx{insertI1} a : insert a B
   709 \tdx{insertI2} a : B ==> a : insert b B
   710 \tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
   711 
   712 \tdx{ComplI}   [| c:A ==> False |] ==> c : Compl A
   713 \tdx{ComplD}   [| c : Compl A |] ==> ~ c:A
   714 
   715 \tdx{UnI1}     c:A ==> c : A Un B
   716 \tdx{UnI2}     c:B ==> c : A Un B
   717 \tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
   718 \tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   719 
   720 \tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
   721 \tdx{IntD1}    c : A Int B ==> c:A
   722 \tdx{IntD2}    c : A Int B ==> c:B
   723 \tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   724 
   725 \tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
   726 \tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
   727 
   728 \tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
   729 \tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
   730 \tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
   731 
   732 \tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
   733 \tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
   734 
   735 \tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
   736 \tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
   737 \tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
   738 
   739 \tdx{PowI}     A<=B ==> A: Pow B
   740 \tdx{PowD}     A: Pow B ==> A<=B
   741 
   742 \tdx{imageI}   [| x:A |] ==> f x : f``A
   743 \tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
   744 
   745 \tdx{rangeI}   f x : range f
   746 \tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
   747 \end{ttbox}
   748 \caption{Further derived rules for set theory} \label{hol-set2}
   749 \end{figure}
   750 
   751 
   752 \subsection{Axioms and rules of set theory}
   753 Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
   754 axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
   755 that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
   756 course, \hbox{\tt op :} also serves as the membership relation.
   757 
   758 All the other axioms are definitions.  They include the empty set, bounded
   759 quantifiers, unions, intersections, complements and the subset relation.
   760 They also include straightforward constructions on functions: image~({\tt``})
   761 and \texttt{range}.
   762 
   763 %The predicate \cdx{inj_on} is used for simulating type definitions.
   764 %The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
   765 %set~$A$, which specifies a subset of its domain type.  In a type
   766 %definition, $f$ is the abstraction function and $A$ is the set of valid
   767 %representations; we should not expect $f$ to be injective outside of~$A$.
   768 
   769 %\begin{figure} \underscoreon
   770 %\begin{ttbox}
   771 %\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
   772 %\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
   773 %
   774 %\tdx{Inv_injective}
   775 %    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
   776 %
   777 %
   778 %\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
   779 %\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
   780 %
   781 %\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
   782 %\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
   783 %\tdx{injD}       [| inj f; f x = f y |] ==> x=y
   784 %
   785 %\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
   786 %\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
   787 %
   788 %\tdx{inj_on_inverseI}
   789 %    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
   790 %\tdx{inj_on_contraD}
   791 %    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
   792 %\end{ttbox}
   793 %\caption{Derived rules involving functions} \label{hol-fun}
   794 %\end{figure}
   795 
   796 
   797 \begin{figure} \underscoreon
   798 \begin{ttbox}
   799 \tdx{Union_upper}     B:A ==> B <= Union A
   800 \tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
   801 
   802 \tdx{Inter_lower}     B:A ==> Inter A <= B
   803 \tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
   804 
   805 \tdx{Un_upper1}       A <= A Un B
   806 \tdx{Un_upper2}       B <= A Un B
   807 \tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   808 
   809 \tdx{Int_lower1}      A Int B <= A
   810 \tdx{Int_lower2}      A Int B <= B
   811 \tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   812 \end{ttbox}
   813 \caption{Derived rules involving subsets} \label{hol-subset}
   814 \end{figure}
   815 
   816 
   817 \begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
   818 \begin{ttbox}
   819 \tdx{Int_absorb}        A Int A = A
   820 \tdx{Int_commute}       A Int B = B Int A
   821 \tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   822 \tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
   823 
   824 \tdx{Un_absorb}         A Un A = A
   825 \tdx{Un_commute}        A Un B = B Un A
   826 \tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
   827 \tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   828 
   829 \tdx{Compl_disjoint}    A Int (Compl A) = {\ttlbrace}x. False{\ttrbrace}
   830 \tdx{Compl_partition}   A Un  (Compl A) = {\ttlbrace}x. True{\ttrbrace}
   831 \tdx{double_complement} Compl(Compl A) = A
   832 \tdx{Compl_Un}          Compl(A Un B)  = (Compl A) Int (Compl B)
   833 \tdx{Compl_Int}         Compl(A Int B) = (Compl A) Un (Compl B)
   834 
   835 \tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
   836 \tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
   837 \tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
   838 
   839 \tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
   840 \tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
   841 \tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
   842 \end{ttbox}
   843 \caption{Set equalities} \label{hol-equalities}
   844 \end{figure}
   845 
   846 
   847 Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
   848 obvious and resemble rules of Isabelle's {\ZF} set theory.  Certain rules,
   849 such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI},
   850 are designed for classical reasoning; the rules \tdx{subsetD},
   851 \tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not
   852 strictly necessary but yield more natural proofs.  Similarly,
   853 \tdx{equalityCE} supports classical reasoning about extensionality,
   854 after the fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for
   855 proofs pertaining to set theory.
   856 
   857 Figure~\ref{hol-subset} presents lattice properties of the subset relation.
   858 Unions form least upper bounds; non-empty intersections form greatest lower
   859 bounds.  Reasoning directly about subsets often yields clearer proofs than
   860 reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
   861 
   862 Figure~\ref{hol-equalities} presents many common set equalities.  They
   863 include commutative, associative and distributive laws involving unions,
   864 intersections and complements.  For a complete listing see the file {\tt
   865 HOL/equalities.ML}.
   866 
   867 \begin{warn}
   868 \texttt{Blast_tac} proves many set-theoretic theorems automatically.
   869 Hence you seldom need to refer to the theorems above.
   870 \end{warn}
   871 
   872 \begin{figure}
   873 \begin{center}
   874 \begin{tabular}{rrr}
   875   \it name      &\it meta-type  & \it description \\ 
   876   \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
   877         & injective/surjective \\
   878   \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
   879         & injective over subset\\
   880   \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
   881 \end{tabular}
   882 \end{center}
   883 
   884 \underscoreon
   885 \begin{ttbox}
   886 \tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
   887 \tdx{surj_def}        surj f     == ! y. ? x. y=f x
   888 \tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
   889 \tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
   890 \end{ttbox}
   891 \caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
   892 \end{figure}
   893 
   894 \subsection{Properties of functions}\nopagebreak
   895 Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
   896 Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
   897 of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
   898 rules.  Reasoning about function composition (the operator~\sdx{o}) and the
   899 predicate~\cdx{surj} is done simply by expanding the definitions.
   900 
   901 There is also a large collection of monotonicity theorems for constructions
   902 on sets in the file \texttt{HOL/mono.ML}.
   903 
   904 \section{Generic packages}
   905 \label{sec:HOL:generic-packages}
   906 
   907 \HOL\ instantiates most of Isabelle's generic packages, making available the
   908 simplifier and the classical reasoner.
   909 
   910 \subsection{Simplification and substitution}
   911 
   912 Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
   913 (\texttt{simpset()}), which works for most purposes.  A quite minimal
   914 simplification set for higher-order logic is~\ttindexbold{HOL_ss};
   915 even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
   916 also expresses logical equivalence, may be used for rewriting.  See
   917 the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
   918 simplification rules.
   919 
   920 See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
   921 {Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
   922 and simplification.
   923 
   924 \begin{warn}\index{simplification!of conjunctions}%
   925   Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
   926   left part of a conjunction helps in simplifying the right part.  This effect
   927   is not available by default: it can be slow.  It can be obtained by
   928   including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
   929 \end{warn}
   930 
   931 If the simplifier cannot use a certain rewrite rule --- either because
   932 of nontermination or because its left-hand side is too flexible ---
   933 then you might try \texttt{stac}:
   934 \begin{ttdescription}
   935 \item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
   936   replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
   937   $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
   938   may be necessary to select the desired ones.
   939 
   940 If $thm$ is a conditional equality, the instantiated condition becomes an
   941 additional (first) subgoal.
   942 \end{ttdescription}
   943 
   944  \HOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
   945   for an equality throughout a subgoal and its hypotheses.  This tactic uses
   946   \HOL's general substitution rule.
   947 
   948 \subsubsection{Case splitting}
   949 \label{subsec:HOL:case:splitting}
   950 
   951 \HOL{} also provides convenient means for case splitting during
   952 rewriting. Goals containing a subterm of the form \texttt{if}~$b$~{\tt
   953 then\dots else\dots} often require a case distinction on $b$. This is
   954 expressed by the theorem \tdx{split_if}:
   955 $$
   956 \Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
   957 ((\Var{b} \to \Var{P}(\Var{x})) \land (\neg \Var{b} \to \Var{P}(\Var{y})))
   958 \eqno{(*)}
   959 $$
   960 For example, a simple instance of $(*)$ is
   961 \[
   962 x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
   963 ((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
   964 \]
   965 Because $(*)$ is too general as a rewrite rule for the simplifier (the
   966 left-hand side is not a higher-order pattern in the sense of
   967 \iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
   968 {Chap.\ts\ref{chap:simplification}}), there is a special infix function 
   969 \ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
   970 (analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
   971 simpset, as in
   972 \begin{ttbox}
   973 by(simp_tac (simpset() addsplits [split_if]) 1);
   974 \end{ttbox}
   975 The effect is that after each round of simplification, one occurrence of
   976 \texttt{if} is split acording to \texttt{split_if}, until all occurences of
   977 \texttt{if} have been eliminated.
   978 
   979 It turns out that using \texttt{split_if} is almost always the right thing to
   980 do. Hence \texttt{split_if} is already included in the default simpset. If
   981 you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
   982 the inverse of \texttt{addsplits}:
   983 \begin{ttbox}
   984 by(simp_tac (simpset() delsplits [split_if]) 1);
   985 \end{ttbox}
   986 
   987 In general, \texttt{addsplits} accepts rules of the form
   988 \[
   989 \Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
   990 \]
   991 where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
   992 right form because internally the left-hand side is
   993 $\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
   994 are splitting rules for \texttt{case} expressions (see~\S\ref{subsec:list}
   995 and~\S\ref{subsec:datatype:basics}).
   996 
   997 Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
   998 imperative versions of \texttt{addsplits} and \texttt{delsplits}
   999 \begin{ttbox}
  1000 \ttindexbold{Addsplits}: thm list -> unit
  1001 \ttindexbold{Delsplits}: thm list -> unit
  1002 \end{ttbox}
  1003 for adding splitting rules to, and deleting them from the current simpset.
  1004 
  1005 \subsection{Classical reasoning}
  1006 
  1007 \HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as
  1008 well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
  1009 rule; recall Fig.\ts\ref{hol-lemmas2} above.
  1010 
  1011 The classical reasoner is installed.  Tactics such as \texttt{Blast_tac} and {\tt
  1012 Best_tac} refer to the default claset (\texttt{claset()}), which works for most
  1013 purposes.  Named clasets include \ttindexbold{prop_cs}, which includes the
  1014 propositional rules, and \ttindexbold{HOL_cs}, which also includes quantifier
  1015 rules.  See the file \texttt{HOL/cladata.ML} for lists of the classical rules,
  1016 and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  1017 {Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  1018 
  1019 
  1020 \section{Types}\label{sec:HOL:Types}
  1021 This section describes \HOL's basic predefined types ($\alpha \times
  1022 \beta$, $\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for
  1023 introducing new types in general.  The most important type
  1024 construction, the \texttt{datatype}, is treated separately in
  1025 \S\ref{sec:HOL:datatype}.
  1026 
  1027 
  1028 \subsection{Product and sum types}\index{*"* type}\index{*"+ type}
  1029 \label{subsec:prod-sum}
  1030 
  1031 \begin{figure}[htbp]
  1032 \begin{constants}
  1033   \it symbol    & \it meta-type &           & \it description \\ 
  1034   \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
  1035         & & ordered pairs $(a,b)$ \\
  1036   \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
  1037   \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
  1038   \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
  1039         & & generalized projection\\
  1040   \cdx{Sigma}  & 
  1041         $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
  1042         & general sum of sets
  1043 \end{constants}
  1044 \begin{ttbox}\makeatletter
  1045 %\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
  1046 %\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
  1047 %\tdx{split_def}    split c p == c (fst p) (snd p)
  1048 \tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
  1049 
  1050 \tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
  1051 \tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
  1052 \tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
  1053 
  1054 \tdx{fst_conv}     fst (a,b) = a
  1055 \tdx{snd_conv}     snd (a,b) = b
  1056 \tdx{surjective_pairing}  p = (fst p,snd p)
  1057 
  1058 \tdx{split}        split c (a,b) = c a b
  1059 \tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
  1060 
  1061 \tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
  1062 \tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P
  1063 \end{ttbox}
  1064 \caption{Type $\alpha\times\beta$}\label{hol-prod}
  1065 \end{figure} 
  1066 
  1067 Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
  1068 $\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
  1069 tuples are simulated by pairs nested to the right:
  1070 \begin{center}
  1071 \begin{tabular}{c|c}
  1072 external & internal \\
  1073 \hline
  1074 $\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
  1075 \hline
  1076 $(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
  1077 \end{tabular}
  1078 \end{center}
  1079 In addition, it is possible to use tuples
  1080 as patterns in abstractions:
  1081 \begin{center}
  1082 {\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
  1083 \end{center}
  1084 Nested patterns are also supported.  They are translated stepwise:
  1085 {\tt\%($x$,$y$,$z$). $t$} $\leadsto$ {\tt\%($x$,($y$,$z$)). $t$} $\leadsto$
  1086 {\tt split(\%$x$.\%($y$,$z$). $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
  1087   $z$.\ $t$))}.  The reverse translation is performed upon printing.
  1088 \begin{warn}
  1089   The translation between patterns and \texttt{split} is performed automatically
  1090   by the parser and printer.  Thus the internal and external form of a term
  1091   may differ, which can affects proofs.  For example the term {\tt
  1092   (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
  1093   default simpset) to rewrite to {\tt(b,a)}.
  1094 \end{warn}
  1095 In addition to explicit $\lambda$-abstractions, patterns can be used in any
  1096 variable binding construct which is internally described by a
  1097 $\lambda$-abstraction.  Some important examples are
  1098 \begin{description}
  1099 \item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
  1100 \item[Quantifiers:] \texttt{!~{\it pattern}:$A$.~$P$}
  1101 \item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$}
  1102 \item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
  1103 \item[Sets:] \texttt{{\ttlbrace}~{\it pattern}~.~$P$~{\ttrbrace}}
  1104 \end{description}
  1105 
  1106 There is a simple tactic which supports reasoning about patterns:
  1107 \begin{ttdescription}
  1108 \item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
  1109   {\tt!!}-quantified variables of product type by individual variables for
  1110   each component.  A simple example:
  1111 \begin{ttbox}
  1112 {\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
  1113 by(split_all_tac 1);
  1114 {\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
  1115 \end{ttbox}
  1116 \end{ttdescription}
  1117 
  1118 Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
  1119 which contains only a single element named {\tt()} with the property
  1120 \begin{ttbox}
  1121 \tdx{unit_eq}       u = ()
  1122 \end{ttbox}
  1123 \bigskip
  1124 
  1125 Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
  1126 which associates to the right and has a lower priority than $*$: $\tau@1 +
  1127 \tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
  1128 
  1129 The definition of products and sums in terms of existing types is not
  1130 shown.  The constructions are fairly standard and can be found in the
  1131 respective theory files.
  1132 
  1133 \begin{figure}
  1134 \begin{constants}
  1135   \it symbol    & \it meta-type &           & \it description \\ 
  1136   \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
  1137   \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
  1138   \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
  1139         & & conditional
  1140 \end{constants}
  1141 \begin{ttbox}\makeatletter
  1142 %\tdx{sum_case_def}   sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) &
  1143 %                                        (!y. p=Inr y --> z=g y))
  1144 %
  1145 \tdx{Inl_not_Inr}    Inl a ~= Inr b
  1146 
  1147 \tdx{inj_Inl}        inj Inl
  1148 \tdx{inj_Inr}        inj Inr
  1149 
  1150 \tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
  1151 
  1152 \tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
  1153 \tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
  1154 
  1155 \tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
  1156 \tdx{split_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
  1157                                      (! y. s = Inr(y) --> R(g(y))))
  1158 \end{ttbox}
  1159 \caption{Type $\alpha+\beta$}\label{hol-sum}
  1160 \end{figure}
  1161 
  1162 \begin{figure}
  1163 \index{*"< symbol}
  1164 \index{*"* symbol}
  1165 \index{*div symbol}
  1166 \index{*mod symbol}
  1167 \index{*"+ symbol}
  1168 \index{*"- symbol}
  1169 \begin{constants}
  1170   \it symbol    & \it meta-type & \it priority & \it description \\ 
  1171   \cdx{0}       & $nat$         & & zero \\
  1172   \cdx{Suc}     & $nat \To nat$ & & successor function\\
  1173 % \cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ & & conditional\\
  1174 % \cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$
  1175 %        & & primitive recursor\\
  1176   \tt *         & $[nat,nat]\To nat$    &  Left 70      & multiplication \\
  1177   \tt div       & $[nat,nat]\To nat$    &  Left 70      & division\\
  1178   \tt mod       & $[nat,nat]\To nat$    &  Left 70      & modulus\\
  1179   \tt +         & $[nat,nat]\To nat$    &  Left 65      & addition\\
  1180   \tt -         & $[nat,nat]\To nat$    &  Left 65      & subtraction
  1181 \end{constants}
  1182 \subcaption{Constants and infixes}
  1183 
  1184 \begin{ttbox}\makeatother
  1185 \tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
  1186 
  1187 \tdx{Suc_not_Zero}   Suc m ~= 0
  1188 \tdx{inj_Suc}        inj Suc
  1189 \tdx{n_not_Suc_n}    n~=Suc n
  1190 \subcaption{Basic properties}
  1191 \end{ttbox}
  1192 \caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
  1193 \end{figure}
  1194 
  1195 
  1196 \begin{figure}
  1197 \begin{ttbox}\makeatother
  1198               0+n           = n
  1199               (Suc m)+n     = Suc(m+n)
  1200 
  1201               m-0           = m
  1202               0-n           = n
  1203               Suc(m)-Suc(n) = m-n
  1204 
  1205               0*n           = 0
  1206               Suc(m)*n      = n + m*n
  1207 
  1208 \tdx{mod_less}      m<n ==> m mod n = m
  1209 \tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
  1210 
  1211 \tdx{div_less}      m<n ==> m div n = 0
  1212 \tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
  1213 \end{ttbox}
  1214 \caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
  1215 \end{figure}
  1216 
  1217 \subsection{The type of natural numbers, \textit{nat}}
  1218 \index{nat@{\textit{nat}} type|(}
  1219 
  1220 The theory \thydx{NatDef} defines the natural numbers in a roundabout but
  1221 traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
  1222 individuals, which is non-empty and closed under an injective operation.  The
  1223 natural numbers are inductively generated by choosing an arbitrary individual
  1224 for~0 and using the injective operation to take successors.  This is a least
  1225 fixedpoint construction.  For details see the file \texttt{NatDef.thy}.
  1226 
  1227 Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the
  1228 overloaded functions of this class (esp.\ \cdx{<} and \cdx{<=}, but also
  1229 \cdx{min}, \cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory
  1230 \thydx{Nat} builds on \texttt{NatDef} and shows that {\tt<=} is a partial order,
  1231 so \tydx{nat} is also an instance of class \cldx{order}.
  1232 
  1233 Theory \thydx{Arith} develops arithmetic on the natural numbers.  It defines
  1234 addition, multiplication and subtraction.  Theory \thydx{Divides} defines
  1235 division, remainder and the ``divides'' relation.  The numerous theorems
  1236 proved include commutative, associative, distributive, identity and
  1237 cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
  1238 recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
  1239 \texttt{nat} are part of the default simpset.
  1240 
  1241 Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
  1242 see \S\ref{sec:HOL:recursive}.  A simple example is addition.
  1243 Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
  1244 the standard convention.
  1245 \begin{ttbox}
  1246 \sdx{primrec}
  1247       "0 + n = n"
  1248   "Suc m + n = Suc (m + n)"
  1249 \end{ttbox}
  1250 There is also a \sdx{case}-construct
  1251 of the form
  1252 \begin{ttbox}
  1253 case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
  1254 \end{ttbox}
  1255 Note that Isabelle insists on precisely this format; you may not even change
  1256 the order of the two cases.
  1257 Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
  1258 \cdx{nat_rec}, the details of which can be found in theory \texttt{NatDef}.
  1259 
  1260 %The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
  1261 %Recursion along this relation resembles primitive recursion, but is
  1262 %stronger because we are in higher-order logic; using primitive recursion to
  1263 %define a higher-order function, we can easily Ackermann's function, which
  1264 %is not primitive recursive \cite[page~104]{thompson91}.
  1265 %The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
  1266 %natural numbers are most easily expressed using recursion along~$<$.
  1267 
  1268 Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
  1269 in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
  1270 theorem \tdx{less_induct}:
  1271 \begin{ttbox}
  1272 [| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
  1273 \end{ttbox}
  1274 
  1275 
  1276 Reasoning about arithmetic inequalities can be tedious.  Fortunately HOL
  1277 provides a decision procedure for quantifier-free linear arithmetic (i.e.\ 
  1278 only addition and subtraction). The simplifier invokes a weak version of this
  1279 decision procedure automatically. If this is not sufficent, you can invoke
  1280 the full procedure \ttindex{arith_tac} explicitly.  It copes with arbitrary
  1281 formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
  1282   min}, {\tt max} and numerical constants; other subterms are treated as
  1283 atomic; subformulae not involving type $nat$ are ignored; quantified
  1284 subformulae are ignored unless they are positive universal or negative
  1285 existential. Note that the running time is exponential in the number of
  1286 occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
  1287 distinctions. Note also that \texttt{arith_tac} is not complete: if
  1288 divisibility plays a role, it may fail to prove a valid formula, for example
  1289 $m+m \neq n+n+1$. Fortunately such examples are rare in practice.
  1290 
  1291 If \texttt{arith_tac} fails you, try to find relevant arithmetic results in
  1292 the library.  The theory \texttt{NatDef} contains theorems about {\tt<} and
  1293 {\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+},
  1294 \texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about
  1295 \texttt{div} and \texttt{mod}.  Use the \texttt{find}-functions to locate them
  1296 (see the {\em Reference Manual\/}).
  1297 
  1298 \begin{figure}
  1299 \index{#@{\tt[]} symbol}
  1300 \index{#@{\tt\#} symbol}
  1301 \index{"@@{\tt\at} symbol}
  1302 \index{*"! symbol}
  1303 \begin{constants}
  1304   \it symbol & \it meta-type & \it priority & \it description \\
  1305   \tt[]    & $\alpha\,list$ & & empty list\\
  1306   \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
  1307         list constructor \\
  1308   \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
  1309   \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
  1310   \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
  1311   \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
  1312   \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
  1313   \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
  1314   \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
  1315         & & apply to all\\
  1316   \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
  1317         & & filter functional\\
  1318   \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
  1319   \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
  1320   \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
  1321   & iteration \\
  1322   \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
  1323   \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
  1324   \cdx{length}  & $\alpha\,list \To nat$ & & length \\
  1325   \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
  1326   \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
  1327     take or drop a prefix \\
  1328   \cdx{takeWhile},\\
  1329   \cdx{dropWhile} &
  1330     $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
  1331     take or drop a prefix
  1332 \end{constants}
  1333 \subcaption{Constants and infixes}
  1334 
  1335 \begin{center} \tt\frenchspacing
  1336 \begin{tabular}{rrr} 
  1337   \it external        & \it internal  & \it description \\{}
  1338   [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
  1339         \rm finite list \\{}
  1340   [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
  1341         \rm list comprehension
  1342 \end{tabular}
  1343 \end{center}
  1344 \subcaption{Translations}
  1345 \caption{The theory \thydx{List}} \label{hol-list}
  1346 \end{figure}
  1347 
  1348 
  1349 \begin{figure}
  1350 \begin{ttbox}\makeatother
  1351 null [] = True
  1352 null (x#xs) = False
  1353 
  1354 hd (x#xs) = x
  1355 tl (x#xs) = xs
  1356 tl [] = []
  1357 
  1358 [] @ ys = ys
  1359 (x#xs) @ ys = x # xs @ ys
  1360 
  1361 map f [] = []
  1362 map f (x#xs) = f x # map f xs
  1363 
  1364 filter P [] = []
  1365 filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
  1366 
  1367 set [] = \ttlbrace\ttrbrace
  1368 set (x#xs) = insert x (set xs)
  1369 
  1370 x mem [] = False
  1371 x mem (y#ys) = (if y=x then True else x mem ys)
  1372 
  1373 foldl f a [] = a
  1374 foldl f a (x#xs) = foldl f (f a x) xs
  1375 
  1376 concat([]) = []
  1377 concat(x#xs) = x @ concat(xs)
  1378 
  1379 rev([]) = []
  1380 rev(x#xs) = rev(xs) @ [x]
  1381 
  1382 length([]) = 0
  1383 length(x#xs) = Suc(length(xs))
  1384 
  1385 xs!0 = hd xs
  1386 xs!(Suc n) = (tl xs)!n
  1387 
  1388 take n [] = []
  1389 take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
  1390 
  1391 drop n [] = []
  1392 drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
  1393 
  1394 takeWhile P [] = []
  1395 takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
  1396 
  1397 dropWhile P [] = []
  1398 dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
  1399 \end{ttbox}
  1400 \caption{Recursions equations for list processing functions}
  1401 \label{fig:HOL:list-simps}
  1402 \end{figure}
  1403 \index{nat@{\textit{nat}} type|)}
  1404 
  1405 
  1406 \subsection{The type constructor for lists, \textit{list}}
  1407 \label{subsec:list}
  1408 \index{list@{\textit{list}} type|(}
  1409 
  1410 Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
  1411 operations with their types and syntax.  Type $\alpha \; list$ is
  1412 defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
  1413 As a result the generic structural induction and case analysis tactics
  1414 \texttt{induct\_tac} and \texttt{exhaust\_tac} also become available for
  1415 lists.  A \sdx{case} construct of the form
  1416 \begin{center}\tt
  1417 case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
  1418 \end{center}
  1419 is defined by translation.  For details see~\S\ref{sec:HOL:datatype}. There
  1420 is also a case splitting rule \tdx{split_list_case}
  1421 \[
  1422 \begin{array}{l}
  1423 P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
  1424                x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
  1425 ((e = \texttt{[]} \to P(a)) \land
  1426  (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
  1427 \end{array}
  1428 \]
  1429 which can be fed to \ttindex{addsplits} just like
  1430 \texttt{split_if} (see~\S\ref{subsec:HOL:case:splitting}).
  1431 
  1432 \texttt{List} provides a basic library of list processing functions defined by
  1433 primitive recursion (see~\S\ref{sec:HOL:primrec}).  The recursion equations
  1434 are shown in Fig.\ts\ref{fig:HOL:list-simps}.
  1435 
  1436 \index{list@{\textit{list}} type|)}
  1437 
  1438 
  1439 \subsection{Introducing new types} \label{sec:typedef}
  1440 
  1441 The \HOL-methodology dictates that all extensions to a theory should
  1442 be \textbf{definitional}.  The type definition mechanism that
  1443 meets this criterion is \ttindex{typedef}.  Note that \emph{type synonyms},
  1444 which are inherited from {\Pure} and described elsewhere, are just
  1445 syntactic abbreviations that have no logical meaning.
  1446 
  1447 \begin{warn}
  1448   Types in \HOL\ must be non-empty; otherwise the quantifier rules would be
  1449   unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}.
  1450 \end{warn}
  1451 A \bfindex{type definition} identifies the new type with a subset of
  1452 an existing type.  More precisely, the new type is defined by
  1453 exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a
  1454 theorem of the form $x:A$.  Thus~$A$ is a non-empty subset of~$\tau$,
  1455 and the new type denotes this subset.  New functions are defined that
  1456 establish an isomorphism between the new type and the subset.  If
  1457 type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$,
  1458 then the type definition creates a type constructor
  1459 $(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type.
  1460 
  1461 \begin{figure}[htbp]
  1462 \begin{rail}
  1463 typedef  : 'typedef' ( () | '(' name ')') type '=' set witness;
  1464 
  1465 type    : typevarlist name ( () | '(' infix ')' );
  1466 set     : string;
  1467 witness : () | '(' id ')';
  1468 \end{rail}
  1469 \caption{Syntax of type definitions}
  1470 \label{fig:HOL:typedef}
  1471 \end{figure}
  1472 
  1473 The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}.  For
  1474 the definition of `typevarlist' and `infix' see
  1475 \iflabelundefined{chap:classical}
  1476 {the appendix of the {\em Reference Manual\/}}%
  1477 {Appendix~\ref{app:TheorySyntax}}.  The remaining nonterminals have the
  1478 following meaning:
  1479 \begin{description}
  1480 \item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with
  1481   optional infix annotation.
  1482 \item[\it name:] an alphanumeric name $T$ for the type constructor
  1483   $ty$, in case $ty$ is a symbolic name.  Defaults to $ty$.
  1484 \item[\it set:] the representing subset $A$.
  1485 \item[\it witness:] name of a theorem of the form $a:A$ proving
  1486   non-emptiness.  It can be omitted in case Isabelle manages to prove
  1487   non-emptiness automatically.
  1488 \end{description}
  1489 If all context conditions are met (no duplicate type variables in
  1490 `typevarlist', no extra type variables in `set', and no free term variables
  1491 in `set'), the following components are added to the theory:
  1492 \begin{itemize}
  1493 \item a type $ty :: (term,\dots,term)term$
  1494 \item constants
  1495 \begin{eqnarray*}
  1496 T &::& \tau\;set \\
  1497 Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\
  1498 Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty
  1499 \end{eqnarray*}
  1500 \item a definition and three axioms
  1501 \[
  1502 \begin{array}{ll}
  1503 T{\tt_def} & T \equiv A \\
  1504 {\tt Rep_}T & Rep_T\,x \in T \\
  1505 {\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\
  1506 {\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y
  1507 \end{array}
  1508 \]
  1509 stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$
  1510 and its inverse $Abs_T$.
  1511 \end{itemize}
  1512 Below are two simple examples of \HOL\ type definitions.  Non-emptiness
  1513 is proved automatically here.
  1514 \begin{ttbox}
  1515 typedef unit = "{\ttlbrace}True{\ttrbrace}"
  1516 
  1517 typedef (prod)
  1518   ('a, 'b) "*"    (infixr 20)
  1519       = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}"
  1520 \end{ttbox}
  1521 
  1522 Type definitions permit the introduction of abstract data types in a safe
  1523 way, namely by providing models based on already existing types.  Given some
  1524 abstract axiomatic description $P$ of a type, this involves two steps:
  1525 \begin{enumerate}
  1526 \item Find an appropriate type $\tau$ and subset $A$ which has the desired
  1527   properties $P$, and make a type definition based on this representation.
  1528 \item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
  1529 \end{enumerate}
  1530 You can now forget about the representation and work solely in terms of the
  1531 abstract properties $P$.
  1532 
  1533 \begin{warn}
  1534 If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by
  1535 declaring the type and its operations and by stating the desired axioms, you
  1536 should make sure the type has a non-empty model.  You must also have a clause
  1537 \par
  1538 \begin{ttbox}
  1539 arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term
  1540 \end{ttbox}
  1541 in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the
  1542 class of all \HOL\ types.
  1543 \end{warn}
  1544 
  1545 
  1546 \section{Records}
  1547 
  1548 At a first approximation, records are just a minor generalisation of tuples,
  1549 where components may be addressed by labels instead of just position (think of
  1550 {\ML}, for example).  The version of records offered by Isabelle/HOL is
  1551 slightly more advanced, though, supporting \emph{extensible record schemes}.
  1552 This admits operations that are polymorphic with respect to record extension,
  1553 yielding ``object-oriented'' effects like (single) inheritance.  See also
  1554 \cite{NaraschewskiW-TPHOLs98} for more details on object-oriented
  1555 verification and record subtyping in HOL.
  1556 
  1557 
  1558 \subsection{Basics}
  1559 
  1560 Isabelle/HOL supports fixed and schematic records both at the level of terms
  1561 and types.  The concrete syntax is as follows:
  1562 
  1563 \begin{center}
  1564 \begin{tabular}{l|l|l}
  1565   & record terms & record types \\ \hline
  1566   fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\
  1567   schematic & $\record{x = a\fs y = b\fs \more = m}$ &
  1568     $\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\
  1569 \end{tabular}
  1570 \end{center}
  1571 
  1572 \noindent The \textsc{ascii} representation of $\record{x = a}$ is \texttt{(| x = a |)}.
  1573 
  1574 A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field
  1575 $y$ of value $b$.  The corresponding type is $\record{x \ty A\fs y \ty B}$,
  1576 assuming that $a \ty A$ and $b \ty B$.
  1577 
  1578 A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields
  1579 $x$ and $y$ as before, but also possibly further fields as indicated by the
  1580 ``$\more$'' notation (which is actually part of the syntax).  The improper
  1581 field ``$\more$'' of a record scheme is called the \emph{more part}.
  1582 Logically it is just a free variable, which is occasionally referred to as
  1583 \emph{row variable} in the literature.  The more part of a record scheme may
  1584 be instantiated by zero or more further components.  For example, above scheme
  1585 might get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = m'}$,
  1586 where $m'$ refers to a different more part.  Fixed records are special
  1587 instances of record schemes, where ``$\more$'' is properly terminated by the
  1588 $() :: unit$ element.  Actually, $\record{x = a\fs y = b}$ is just an
  1589 abbreviation for $\record{x = a\fs y = b\fs \more = ()}$.
  1590 
  1591 \medskip
  1592 
  1593 There are two key features that make extensible records in a simply typed
  1594 language like HOL feasible:
  1595 \begin{enumerate}
  1596 \item the more part is internalised, as a free term or type variable,
  1597 \item field names are externalised, they cannot be accessed within the logic
  1598   as first-class values.
  1599 \end{enumerate}
  1600 
  1601 \medskip
  1602 
  1603 In Isabelle/HOL record types have to be defined explicitly, fixing their field
  1604 names and types, and their (optional) parent record (see
  1605 \S\ref{sec:HOL:record-def}).  Afterwards, records may be formed using above
  1606 syntax, while obeying the canonical order of fields as given by their
  1607 declaration.  The record package also provides several operations like
  1608 selectors and updates (see \S\ref{sec:HOL:record-ops}), together with
  1609 characteristic properties (see \S\ref{sec:HOL:record-thms}).
  1610 
  1611 There is an example theory demonstrating most basic aspects of extensible
  1612 records (see theory \texttt{HOL/ex/Points} in the Isabelle sources).
  1613 
  1614 
  1615 \subsection{Defining records}\label{sec:HOL:record-def}
  1616 
  1617 The theory syntax for record type definitions is shown in
  1618 Fig.~\ref{fig:HOL:record}.  For the definition of `typevarlist' and `type' see
  1619 \iflabelundefined{chap:classical}
  1620 {the appendix of the {\em Reference Manual\/}}%
  1621 {Appendix~\ref{app:TheorySyntax}}.
  1622 
  1623 \begin{figure}[htbp]
  1624 \begin{rail}
  1625 record  : 'record' typevarlist name '=' parent (field +);
  1626 
  1627 parent  : ( () | type '+');
  1628 field   : name '::' type;
  1629 \end{rail}
  1630 \caption{Syntax of record type definitions}
  1631 \label{fig:HOL:record}
  1632 \end{figure}
  1633 
  1634 A general \ttindex{record} specification is of the following form:
  1635 \[
  1636 \mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~
  1637   (\tau@1, \dots, \tau@m) \, s ~+~ c@1 :: \sigma@1 ~ \dots ~ c@l :: \sigma@l
  1638 \]
  1639 where $\vec\alpha@n$ are distinct type variables, and $\vec\tau@m$,
  1640 $\vec\sigma@l$ are types containing at most variables from $\vec\alpha@n$.
  1641 Type constructor $t$ has to be new, while $s$ has to specify an existing
  1642 record type.  Furthermore, the $\vec c@l$ have to be distinct field names.
  1643 There has to be at least one field.
  1644 
  1645 In principle, field names may never be shared with other records.  This is no
  1646 actual restriction in practice, since $\vec c@l$ are internally declared
  1647 within a separate name space qualified by the name $t$ of the record.
  1648 
  1649 \medskip
  1650 
  1651 Above definition introduces a new record type $(\vec\alpha@n) \, t$ by
  1652 extending an existing one $(\vec\tau@m) \, s$ by new fields $\vec c@l \ty
  1653 \vec\sigma@l$.  The parent record specification is optional, by omitting it
  1654 $t$ becomes a \emph{root record}.  The hierarchy of all records declared
  1655 within a theory forms a forest structure, i.e.\ a set of trees, where any of
  1656 these is rooted by some root record.
  1657 
  1658 For convenience, $(\vec\alpha@n) \, t$ is made a type abbreviation for the
  1659 fixed record type $\record{\vec c@l \ty \vec\sigma@l}$, and $(\vec\alpha@n,
  1660 \zeta) \, t_scheme$ is made an abbreviation for $\record{\vec c@l \ty
  1661   \vec\sigma@l\fs \more \ty \zeta}$.
  1662 
  1663 \medskip
  1664 
  1665 The following simple example defines a root record type $point$ with fields $x
  1666 \ty nat$ and $y \ty nat$, and record type $cpoint$ by extending $point$ with
  1667 an additional $colour$ component.
  1668 
  1669 \begin{ttbox}
  1670   record point =
  1671     x :: nat
  1672     y :: nat
  1673 
  1674   record cpoint = point +
  1675     colour :: string
  1676 \end{ttbox}
  1677 
  1678 
  1679 \subsection{Record operations}\label{sec:HOL:record-ops}
  1680 
  1681 Any record definition of the form presented above produces certain standard
  1682 operations.  Selectors and updates are provided for any field, including the
  1683 improper one ``$more$''.  There are also cumulative record constructor
  1684 functions.
  1685 
  1686 To simplify the presentation below, we first assume that $(\vec\alpha@n) \, t$
  1687 is a root record with fields $\vec c@l \ty \vec\sigma@l$.
  1688 
  1689 \medskip
  1690 
  1691 \textbf{Selectors} and \textbf{updates} are available for any field (including
  1692 ``$more$'') as follows:
  1693 \begin{matharray}{lll}
  1694   c@i & \ty & \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To \sigma@i \\
  1695   c@i_update & \ty & \sigma@i \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To
  1696     \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  1697 \end{matharray}
  1698 
  1699 There is some special syntax for updates: $r \, \record{x \asn a}$ abbreviates
  1700 term $x_update \, a \, r$.  Repeated updates are also supported: $r \,
  1701 \record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as
  1702 $r \, \record{x \asn a\fs y \asn b\fs z \asn c}$.  Note that because of
  1703 postfix notation the order of fields shown here is reverse than in the actual
  1704 term.  This might lead to confusion in conjunction with proof tools like
  1705 ordered rewriting.
  1706 
  1707 Since repeated updates are just function applications, fields may be freely
  1708 permuted in $\record{x \asn a\fs y \asn b\fs z \asn c}$, as far as the logic
  1709 is concerned.  Thus commutativity of updates can be proven within the logic
  1710 for any two fields, but not as a general theorem: fields are not first-class
  1711 values.
  1712 
  1713 \medskip
  1714 
  1715 \textbf{Make} operations provide cumulative record constructor functions:
  1716 \begin{matharray}{lll}
  1717   make & \ty & \vec\sigma@l \To \record{\vec c@l \ty \vec \sigma@l} \\
  1718   make_scheme & \ty & \vec\sigma@l \To
  1719     \zeta \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \\
  1720 \end{matharray}
  1721 \noindent
  1722 These functions are curried.  The corresponding definitions in terms of actual
  1723 record terms are part of the standard simpset.  Thus $point\dtt make\,a\,b$
  1724 rewrites to $\record{x = a\fs y = b}$.
  1725 
  1726 \medskip
  1727 
  1728 Any of above selector, update and make operations are declared within a local
  1729 name space prefixed by the name $t$ of the record.  In case that different
  1730 records share base names of fields, one has to qualify names explicitly (e.g.\ 
  1731 $t\dtt c@i_update$).  This is recommended especially for operations like
  1732 $make$ or $update_more$ that always have the same base name.  Just use $t\dtt
  1733 make$ etc.\ to avoid confusion.
  1734 
  1735 \bigskip
  1736 
  1737 We reconsider the case of non-root records, which are derived of some parent
  1738 record.  In general, the latter may depend on another parent as well,
  1739 resulting in a list of \emph{ancestor records}.  Appending the lists of fields
  1740 of all ancestors results in a certain field prefix.  The record package
  1741 automatically takes care of this by lifting operations over this context of
  1742 ancestor fields.  Assuming that $(\vec\alpha@n) \, t$ has ancestor fields
  1743 $\vec d@k \ty \vec\rho@k$, selectors will get the following types:
  1744 \begin{matharray}{lll}
  1745   c@i & \ty & \record{\vec d@k \ty \vec\rho@k, \vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  1746     \To \sigma@i
  1747 \end{matharray}
  1748 \noindent
  1749 Update and make operations are analogous.
  1750 
  1751 
  1752 \subsection{Proof tools}\label{sec:HOL:record-thms}
  1753 
  1754 The record package provides the following proof rules for any record type $t$.
  1755 \begin{enumerate}
  1756   
  1757 \item Standard conversions (selectors or updates applied to record constructor
  1758   terms, make function definitions) are part of the standard simpset (via
  1759   \texttt{addsimps}).
  1760   
  1761 \item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x'
  1762   \conj y=y'$ are made part of the standard simpset and claset (via
  1763   \texttt{addIffs}).
  1764   
  1765 \item A tactic for record field splitting (\ttindex{record_split_tac}) is made
  1766   part of the standard claset (via \texttt{addSWrapper}).  This tactic is
  1767   based on rules analogous to $(\All x PROP~P~x) \equiv (\All{a~b} PROP~P(a,
  1768   b))$ for any field.
  1769 \end{enumerate}
  1770 
  1771 The first two kinds of rules are stored within the theory as $t\dtt simps$ and
  1772 $t\dtt iffs$, respectively.  In some situations it might be appropriate to
  1773 expand the definitions of updates: $t\dtt updates$.  Following a new trend in
  1774 Isabelle system architecture, these names are \emph{not} bound at the {\ML}
  1775 level, though.
  1776 
  1777 \medskip
  1778 
  1779 The example theory \texttt{HOL/ex/Points} demonstrates typical proofs
  1780 concerning records.  The basic idea is to make \ttindex{record_split_tac}
  1781 expand quantified record variables and then simplify by the conversion rules.
  1782 By using a combination of the simplifier and classical prover together with
  1783 the default simpset and claset, record problems should be solved with a single
  1784 stroke of \texttt{Auto_tac} or \texttt{Force_tac}.
  1785 
  1786 
  1787 \section{Datatype definitions}
  1788 \label{sec:HOL:datatype}
  1789 \index{*datatype|(}
  1790 
  1791 Inductive datatypes, similar to those of \ML, frequently appear in
  1792 applications of Isabelle/HOL.  In principle, such types could be defined by
  1793 hand via \texttt{typedef} (see \S\ref{sec:typedef}), but this would be far too
  1794 tedious.  The \ttindex{datatype} definition package of Isabelle/HOL (cf.\ 
  1795 \cite{Berghofer-Wenzel:1999:TPHOL}) automates such chores.  It generates an
  1796 appropriate \texttt{typedef} based on a least fixed-point construction, and
  1797 proves freeness theorems and induction rules, as well as theorems for
  1798 recursion and case combinators.  The user just has to give a simple
  1799 specification of new inductive types using a notation similar to {\ML} or
  1800 Haskell.
  1801 
  1802 The current datatype package can handle both mutual and indirect recursion.
  1803 It also offers to represent existing types as datatypes giving the advantage
  1804 of a more uniform view on standard theories.
  1805 
  1806 
  1807 \subsection{Basics}
  1808 \label{subsec:datatype:basics}
  1809 
  1810 A general \texttt{datatype} definition is of the following form:
  1811 \[
  1812 \begin{array}{llcl}
  1813 \mathtt{datatype} & (\alpha@1,\ldots,\alpha@h)t@1 & = &
  1814   C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
  1815     C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
  1816  & & \vdots \\
  1817 \mathtt{and} & (\alpha@1,\ldots,\alpha@h)t@n & = &
  1818   C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
  1819     C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
  1820 \end{array}
  1821 \]
  1822 where $\alpha@i$ are type variables, $C^j@i$ are distinct constructor
  1823 names and $\tau^j@{i,i'}$ are {\em admissible} types containing at
  1824 most the type variables $\alpha@1, \ldots, \alpha@h$. A type $\tau$
  1825 occurring in a \texttt{datatype} definition is {\em admissible} iff
  1826 \begin{itemize}
  1827 \item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
  1828 newly defined type constructors $t@1,\ldots,t@n$, or
  1829 \item $\tau = (\alpha@1,\ldots,\alpha@h)t@{j'}$ where $1 \leq j' \leq n$, or
  1830 \item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
  1831 the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
  1832 are admissible types.
  1833 \item $\tau = \sigma \rightarrow \tau'$, where $\tau'$ is an admissible
  1834 type and $\sigma$ is non-recursive (i.e. the occurrences of the newly defined
  1835 types are {\em strictly positive})
  1836 \end{itemize}
  1837 If some $(\alpha@1,\ldots,\alpha@h)t@{j'}$ occurs in a type $\tau^j@{i,i'}$
  1838 of the form
  1839 \[
  1840 (\ldots,\ldots ~ (\alpha@1,\ldots,\alpha@h)t@{j'} ~ \ldots,\ldots)t'
  1841 \]
  1842 this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
  1843 example of a datatype is the type \texttt{list}, which can be defined by
  1844 \begin{ttbox}
  1845 datatype 'a list = Nil
  1846                  | Cons 'a ('a list)
  1847 \end{ttbox}
  1848 Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
  1849 by the mutually recursive datatype definition
  1850 \begin{ttbox}
  1851 datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
  1852                  | Sum ('a aexp) ('a aexp)
  1853                  | Diff ('a aexp) ('a aexp)
  1854                  | Var 'a
  1855                  | Num nat
  1856 and      'a bexp = Less ('a aexp) ('a aexp)
  1857                  | And ('a bexp) ('a bexp)
  1858                  | Or ('a bexp) ('a bexp)
  1859 \end{ttbox}
  1860 The datatype \texttt{term}, which is defined by
  1861 \begin{ttbox}
  1862 datatype ('a, 'b) term = Var 'a
  1863                        | App 'b ((('a, 'b) term) list)
  1864 \end{ttbox}
  1865 is an example for a datatype with nested recursion. Using nested recursion
  1866 involving function spaces, we may also define infinitely branching datatypes, e.g.
  1867 \begin{ttbox}
  1868 datatype 'a tree = Atom 'a | Branch "nat => 'a tree"
  1869 \end{ttbox}
  1870 
  1871 \medskip
  1872 
  1873 Types in HOL must be non-empty. Each of the new datatypes
  1874 $(\alpha@1,\ldots,\alpha@h)t@j$ with $1 \le j \le n$ is non-empty iff it has a
  1875 constructor $C^j@i$ with the following property: for all argument types
  1876 $\tau^j@{i,i'}$ of the form $(\alpha@1,\ldots,\alpha@h)t@{j'}$ the datatype
  1877 $(\alpha@1,\ldots,\alpha@h)t@{j'}$ is non-empty.
  1878 
  1879 If there are no nested occurrences of the newly defined datatypes, obviously
  1880 at least one of the newly defined datatypes $(\alpha@1,\ldots,\alpha@h)t@j$
  1881 must have a constructor $C^j@i$ without recursive arguments, a \emph{base
  1882   case}, to ensure that the new types are non-empty. If there are nested
  1883 occurrences, a datatype can even be non-empty without having a base case
  1884 itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
  1885   list)} is non-empty as well.
  1886 
  1887 
  1888 \subsubsection{Freeness of the constructors}
  1889 
  1890 The datatype constructors are automatically defined as functions of their
  1891 respective type:
  1892 \[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
  1893 These functions have certain {\em freeness} properties.  They construct
  1894 distinct values:
  1895 \[
  1896 C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
  1897 \mbox{for all}~ i \neq i'.
  1898 \]
  1899 The constructor functions are injective:
  1900 \[
  1901 (C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
  1902 (x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
  1903 \]
  1904 Since the number of distinctness inequalities is quadratic in the number of
  1905 constructors, the datatype package avoids proving them separately if there are
  1906 too many constructors. Instead, specific inequalities are proved by a suitable
  1907 simplification procedure on demand.\footnote{This procedure, which is already part
  1908 of the default simpset, may be referred to by the ML identifier
  1909 \texttt{DatatypePackage.distinct_simproc}.}
  1910 
  1911 \subsubsection{Structural induction}
  1912 
  1913 The datatype package also provides structural induction rules.  For
  1914 datatypes without nested recursion, this is of the following form:
  1915 \[
  1916 \infer{P@1~x@1 \wedge \dots \wedge P@n~x@n}
  1917   {\begin{array}{lcl}
  1918      \Forall x@1 \dots x@{m^1@1}.
  1919        \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
  1920          P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
  1921            P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
  1922      & \vdots \\
  1923      \Forall x@1 \dots x@{m^1@{k@1}}.
  1924        \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
  1925          P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
  1926            P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
  1927      & \vdots \\
  1928      \Forall x@1 \dots x@{m^n@1}.
  1929        \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
  1930          P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
  1931            P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
  1932      & \vdots \\
  1933      \Forall x@1 \dots x@{m^n@{k@n}}.
  1934        \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
  1935          P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
  1936            P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
  1937    \end{array}}
  1938 \]
  1939 where
  1940 \[
  1941 \begin{array}{rcl}
  1942 Rec^j@i & := &
  1943    \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  1944      \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
  1945 && \left\{(i',i'')~\left|~
  1946      1\leq i' \leq m^j@i \wedge 1 \leq i'' \leq n \wedge
  1947        \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
  1948 \end{array}
  1949 \]
  1950 i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
  1951 
  1952 For datatypes with nested recursion, such as the \texttt{term} example from
  1953 above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
  1954 a definition like
  1955 \begin{ttbox}
  1956 datatype ('a, 'b) term = Var 'a
  1957                        | App 'b ((('a, 'b) term) list)
  1958 \end{ttbox}
  1959 to an equivalent definition without nesting:
  1960 \begin{ttbox}
  1961 datatype ('a, 'b) term      = Var
  1962                             | App 'b (('a, 'b) term_list)
  1963 and      ('a, 'b) term_list = Nil'
  1964                             | Cons' (('a,'b) term) (('a,'b) term_list)
  1965 \end{ttbox}
  1966 Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
  1967   Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
  1968 the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
  1969 constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
  1970 \texttt{term} gets the form
  1971 \[
  1972 \infer{P@1~x@1 \wedge P@2~x@2}
  1973   {\begin{array}{l}
  1974      \Forall x.~P@1~(\mathtt{Var}~x) \\
  1975      \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
  1976      P@2~\mathtt{Nil} \\
  1977      \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
  1978    \end{array}}
  1979 \]
  1980 Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
  1981 and one for the type \texttt{(('a, 'b) term) list}.
  1982 
  1983 For a datatype with function types such as \texttt{'a tree}, the induction rule
  1984 is of the form
  1985 \[
  1986 \infer{P~t}
  1987   {\Forall a.~P~(\mathtt{Atom}~a) &
  1988    \Forall ts.~(\forall x.~P~(ts~x)) \Imp P~(\mathtt{Branch}~ts)}
  1989 \]
  1990 
  1991 \medskip In principle, inductive types are already fully determined by
  1992 freeness and structural induction.  For convenience in applications,
  1993 the following derived constructions are automatically provided for any
  1994 datatype.
  1995 
  1996 \subsubsection{The \sdx{case} construct}
  1997 
  1998 The type comes with an \ML-like \texttt{case}-construct:
  1999 \[
  2000 \begin{array}{rrcl}
  2001 \mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
  2002                            \vdots \\
  2003                            \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
  2004 \end{array}
  2005 \]
  2006 where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
  2007 \S\ref{subsec:prod-sum}.
  2008 \begin{warn}
  2009   All constructors must be present, their order is fixed, and nested patterns
  2010   are not supported (with the exception of tuples).  Violating this
  2011   restriction results in strange error messages.
  2012 \end{warn}
  2013 
  2014 To perform case distinction on a goal containing a \texttt{case}-construct,
  2015 the theorem $t@j.$\texttt{split} is provided:
  2016 \[
  2017 \begin{array}{@{}rcl@{}}
  2018 P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
  2019 \!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
  2020                              P(f@1~x@1\dots x@{m^j@1})) \\
  2021 &&\!\!\! ~\land~ \dots ~\land \\
  2022 &&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
  2023                              P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
  2024 \end{array}
  2025 \]
  2026 where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
  2027 This theorem can be added to a simpset via \ttindex{addsplits}
  2028 (see~\S\ref{subsec:HOL:case:splitting}).
  2029 
  2030 \subsubsection{The function \cdx{size}}\label{sec:HOL:size}
  2031 
  2032 Theory \texttt{Arith} declares a generic function \texttt{size} of type
  2033 $\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
  2034 by overloading according to the following scheme:
  2035 %%% FIXME: This formula is too big and is completely unreadable
  2036 \[
  2037 size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
  2038 \left\{
  2039 \begin{array}{ll}
  2040 0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
  2041 1+\sum\limits@{h=1}^{l^j@i}size~x@{r^j@{i,h}} &
  2042  \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  2043   \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
  2044 \end{array}
  2045 \right.
  2046 \]
  2047 where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
  2048 size of a leaf is 0 and the size of a node is the sum of the sizes of its
  2049 subtrees ${}+1$.
  2050 
  2051 \subsection{Defining datatypes}
  2052 
  2053 The theory syntax for datatype definitions is shown in
  2054 Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  2055 definition has to obey the rules stated in the previous section.  As a result
  2056 the theory is extended with the new types, the constructors, and the theorems
  2057 listed in the previous section.
  2058 
  2059 \begin{figure}
  2060 \begin{rail}
  2061 datatype : 'datatype' typedecls;
  2062 
  2063 typedecls: ( newtype '=' (cons + '|') ) + 'and'
  2064          ;
  2065 newtype  : typevarlist id ( () | '(' infix ')' )
  2066          ;
  2067 cons     : name (argtype *) ( () | ( '(' mixfix ')' ) )
  2068          ;
  2069 argtype  : id | tid | ('(' typevarlist id ')')
  2070          ;
  2071 \end{rail}
  2072 \caption{Syntax of datatype declarations}
  2073 \label{datatype-grammar}
  2074 \end{figure}
  2075 
  2076 Most of the theorems about datatypes become part of the default simpset and
  2077 you never need to see them again because the simplifier applies them
  2078 automatically.  Only induction or exhaustion are usually invoked by hand.
  2079 \begin{ttdescription}
  2080 \item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
  2081  applies structural induction on variable $x$ to subgoal $i$, provided the
  2082  type of $x$ is a datatype.
  2083 \item[\ttindexbold{mutual_induct_tac}
  2084   {\tt["}$x@1${\tt",}$\ldots${\tt,"}$x@n${\tt"]} $i$] applies simultaneous
  2085   structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
  2086   is the canonical way to prove properties of mutually recursive datatypes
  2087   such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
  2088   \texttt{term}.
  2089 \end{ttdescription}
  2090 In some cases, induction is overkill and a case distinction over all
  2091 constructors of the datatype suffices.
  2092 \begin{ttdescription}
  2093 \item[\ttindexbold{exhaust_tac} {\tt"}$u${\tt"} $i$]
  2094  performs an exhaustive case analysis for the term $u$ whose type
  2095  must be a datatype.  If the datatype has $k@j$ constructors
  2096  $C^j@1$, \dots $C^j@{k@j}$, subgoal $i$ is replaced by $k@j$ new subgoals which
  2097  contain the additional assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for
  2098  $i'=1$, $\dots$,~$k@j$.
  2099 \end{ttdescription}
  2100 
  2101 Note that induction is only allowed on free variables that should not occur
  2102 among the premises of the subgoal.  Exhaustion applies to arbitrary terms.
  2103 
  2104 \bigskip
  2105 
  2106 
  2107 For the technically minded, we exhibit some more details.  Processing the
  2108 theory file produces an \ML\ structure which, in addition to the usual
  2109 components, contains a structure named $t$ for each datatype $t$ defined in
  2110 the file.  Each structure $t$ contains the following elements:
  2111 \begin{ttbox}
  2112 val distinct : thm list
  2113 val inject : thm list
  2114 val induct : thm
  2115 val exhaust : thm
  2116 val cases : thm list
  2117 val split : thm
  2118 val split_asm : thm
  2119 val recs : thm list
  2120 val size : thm list
  2121 val simps : thm list
  2122 \end{ttbox}
  2123 \texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
  2124 and \texttt{split} contain the theorems
  2125 described above.  For user convenience, \texttt{distinct} contains
  2126 inequalities in both directions.  The reduction rules of the {\tt
  2127   case}-construct are in \texttt{cases}.  All theorems from {\tt
  2128   distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
  2129 In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
  2130 and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
  2131 
  2132 
  2133 \subsection{Representing existing types as datatypes}
  2134 
  2135 For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt
  2136   +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section,
  2137 but by more primitive means using \texttt{typedef}. To be able to use the
  2138 tactics \texttt{induct_tac} and \texttt{exhaust_tac} and to define functions by
  2139 primitive recursion on these types, such types may be represented as actual
  2140 datatypes.  This is done by specifying an induction rule, as well as theorems
  2141 stating the distinctness and injectivity of constructors in a {\tt
  2142   rep_datatype} section.  For type \texttt{nat} this works as follows:
  2143 \begin{ttbox}
  2144 rep_datatype nat
  2145   distinct Suc_not_Zero, Zero_not_Suc
  2146   inject   Suc_Suc_eq
  2147   induct   nat_induct
  2148 \end{ttbox}
  2149 The datatype package automatically derives additional theorems for recursion
  2150 and case combinators from these rules.  Any of the basic HOL types mentioned
  2151 above are represented as datatypes.  Try an induction on \texttt{bool}
  2152 today.
  2153 
  2154 
  2155 \subsection{Examples}
  2156 
  2157 \subsubsection{The datatype $\alpha~mylist$}
  2158 
  2159 We want to define a type $\alpha~mylist$. To do this we have to build a new
  2160 theory that contains the type definition.  We start from the theory
  2161 \texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the
  2162 \texttt{List} theory of Isabelle/HOL.
  2163 \begin{ttbox}
  2164 MyList = Datatype +
  2165   datatype 'a mylist = Nil | Cons 'a ('a mylist)
  2166 end
  2167 \end{ttbox}
  2168 After loading the theory, we can prove $Cons~x~xs\neq xs$, for example.  To
  2169 ease the induction applied below, we state the goal with $x$ quantified at the
  2170 object-level.  This will be stripped later using \ttindex{qed_spec_mp}.
  2171 \begin{ttbox}
  2172 Goal "!x. Cons x xs ~= xs";
  2173 {\out Level 0}
  2174 {\out ! x. Cons x xs ~= xs}
  2175 {\out  1. ! x. Cons x xs ~= xs}
  2176 \end{ttbox}
  2177 This can be proved by the structural induction tactic:
  2178 \begin{ttbox}
  2179 by (induct_tac "xs" 1);
  2180 {\out Level 1}
  2181 {\out ! x. Cons x xs ~= xs}
  2182 {\out  1. ! x. Cons x Nil ~= Nil}
  2183 {\out  2. !!a mylist.}
  2184 {\out        ! x. Cons x mylist ~= mylist ==>}
  2185 {\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  2186 \end{ttbox}
  2187 The first subgoal can be proved using the simplifier.  Isabelle/HOL has
  2188 already added the freeness properties of lists to the default simplification
  2189 set.
  2190 \begin{ttbox}
  2191 by (Simp_tac 1);
  2192 {\out Level 2}
  2193 {\out ! x. Cons x xs ~= xs}
  2194 {\out  1. !!a mylist.}
  2195 {\out        ! x. Cons x mylist ~= mylist ==>}
  2196 {\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  2197 \end{ttbox}
  2198 Similarly, we prove the remaining goal.
  2199 \begin{ttbox}
  2200 by (Asm_simp_tac 1);
  2201 {\out Level 3}
  2202 {\out ! x. Cons x xs ~= xs}
  2203 {\out No subgoals!}
  2204 \ttbreak
  2205 qed_spec_mp "not_Cons_self";
  2206 {\out val not_Cons_self = "Cons x xs ~= xs" : thm}
  2207 \end{ttbox}
  2208 Because both subgoals could have been proved by \texttt{Asm_simp_tac}
  2209 we could have done that in one step:
  2210 \begin{ttbox}
  2211 by (ALLGOALS Asm_simp_tac);
  2212 \end{ttbox}
  2213 
  2214 
  2215 \subsubsection{The datatype $\alpha~mylist$ with mixfix syntax}
  2216 
  2217 In this example we define the type $\alpha~mylist$ again but this time
  2218 we want to write \texttt{[]} for \texttt{Nil} and we want to use infix
  2219 notation \verb|#| for \texttt{Cons}.  To do this we simply add mixfix
  2220 annotations after the constructor declarations as follows:
  2221 \begin{ttbox}
  2222 MyList = Datatype +
  2223   datatype 'a mylist =
  2224     Nil ("[]")  |
  2225     Cons 'a ('a mylist)  (infixr "#" 70)
  2226 end
  2227 \end{ttbox}
  2228 Now the theorem in the previous example can be written \verb|x#xs ~= xs|.
  2229 
  2230 
  2231 \subsubsection{A datatype for weekdays}
  2232 
  2233 This example shows a datatype that consists of 7 constructors:
  2234 \begin{ttbox}
  2235 Days = Main +
  2236   datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  2237 end
  2238 \end{ttbox}
  2239 Because there are more than 6 constructors, inequality is expressed via a function
  2240 \verb|days_ord|.  The theorem \verb|Mon ~= Tue| is not directly
  2241 contained among the distinctness theorems, but the simplifier can
  2242 prove it thanks to rewrite rules inherited from theory \texttt{Arith}:
  2243 \begin{ttbox}
  2244 Goal "Mon ~= Tue";
  2245 by (Simp_tac 1);
  2246 \end{ttbox}
  2247 You need not derive such inequalities explicitly: the simplifier will dispose
  2248 of them automatically.
  2249 \index{*datatype|)}
  2250 
  2251 
  2252 \section{Recursive function definitions}\label{sec:HOL:recursive}
  2253 \index{recursive functions|see{recursion}}
  2254 
  2255 Isabelle/HOL provides two main mechanisms of defining recursive functions.
  2256 \begin{enumerate}
  2257 \item \textbf{Primitive recursion} is available only for datatypes, and it is
  2258   somewhat restrictive.  Recursive calls are only allowed on the argument's
  2259   immediate constituents.  On the other hand, it is the form of recursion most
  2260   often wanted, and it is easy to use.
  2261   
  2262 \item \textbf{Well-founded recursion} requires that you supply a well-founded
  2263   relation that governs the recursion.  Recursive calls are only allowed if
  2264   they make the argument decrease under the relation.  Complicated recursion
  2265   forms, such as nested recursion, can be dealt with.  Termination can even be
  2266   proved at a later time, though having unsolved termination conditions around
  2267   can make work difficult.%
  2268   \footnote{This facility is based on Konrad Slind's TFL
  2269     package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing TFL
  2270     and assisting with its installation.}
  2271 \end{enumerate}
  2272 
  2273 Following good HOL tradition, these declarations do not assert arbitrary
  2274 axioms.  Instead, they define the function using a recursion operator.  Both
  2275 HOL and ZF derive the theory of well-founded recursion from first
  2276 principles~\cite{paulson-set-II}.  Primitive recursion over some datatype
  2277 relies on the recursion operator provided by the datatype package.  With
  2278 either form of function definition, Isabelle proves the desired recursion
  2279 equations as theorems.
  2280 
  2281 
  2282 \subsection{Primitive recursive functions}
  2283 \label{sec:HOL:primrec}
  2284 \index{recursion!primitive|(}
  2285 \index{*primrec|(}
  2286 
  2287 Datatypes come with a uniform way of defining functions, {\bf primitive
  2288   recursion}.  In principle, one could introduce primitive recursive functions
  2289 by asserting their reduction rules as new axioms, but this is not recommended:
  2290 \begin{ttbox}\slshape
  2291 Append = Main +
  2292 consts app :: ['a list, 'a list] => 'a list
  2293 rules 
  2294    app_Nil   "app [] ys = ys"
  2295    app_Cons  "app (x#xs) ys = x#app xs ys"
  2296 end
  2297 \end{ttbox}
  2298 Asserting axioms brings the danger of accidentally asserting nonsense, as
  2299 in \verb$app [] ys = us$.
  2300 
  2301 The \ttindex{primrec} declaration is a safe means of defining primitive
  2302 recursive functions on datatypes:
  2303 \begin{ttbox}
  2304 Append = Main +
  2305 consts app :: ['a list, 'a list] => 'a list
  2306 primrec
  2307    "app [] ys = ys"
  2308    "app (x#xs) ys = x#app xs ys"
  2309 end
  2310 \end{ttbox}
  2311 Isabelle will now check that the two rules do indeed form a primitive
  2312 recursive definition.  For example
  2313 \begin{ttbox}
  2314 primrec
  2315     "app [] ys = us"
  2316 \end{ttbox}
  2317 is rejected with an error message ``\texttt{Extra variables on rhs}''.
  2318 
  2319 \bigskip
  2320 
  2321 The general form of a primitive recursive definition is
  2322 \begin{ttbox}
  2323 primrec
  2324     {\it reduction rules}
  2325 \end{ttbox}
  2326 where \textit{reduction rules} specify one or more equations of the form
  2327 \[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  2328 \dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  2329 contains only the free variables on the left-hand side, and all recursive
  2330 calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  There
  2331 must be at most one reduction rule for each constructor.  The order is
  2332 immaterial.  For missing constructors, the function is defined to return a
  2333 default value.  
  2334 
  2335 If you would like to refer to some rule by name, then you must prefix
  2336 the rule with an identifier.  These identifiers, like those in the
  2337 \texttt{rules} section of a theory, will be visible at the \ML\ level.
  2338 
  2339 The primitive recursive function can have infix or mixfix syntax:
  2340 \begin{ttbox}\underscoreon
  2341 consts "@"  :: ['a list, 'a list] => 'a list  (infixr 60)
  2342 primrec
  2343    "[] @ ys = ys"
  2344    "(x#xs) @ ys = x#(xs @ ys)"
  2345 \end{ttbox}
  2346 
  2347 The reduction rules become part of the default simpset, which
  2348 leads to short proof scripts:
  2349 \begin{ttbox}\underscoreon
  2350 Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
  2351 by (induct\_tac "xs" 1);
  2352 by (ALLGOALS Asm\_simp\_tac);
  2353 \end{ttbox}
  2354 
  2355 \subsubsection{Example: Evaluation of expressions}
  2356 Using mutual primitive recursion, we can define evaluation functions \texttt{evala}
  2357 and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in
  2358 \S\ref{subsec:datatype:basics}:
  2359 \begin{ttbox}
  2360 consts
  2361   evala :: "['a => nat, 'a aexp] => nat"
  2362   evalb :: "['a => nat, 'a bexp] => bool"
  2363 
  2364 primrec
  2365   "evala env (If_then_else b a1 a2) =
  2366      (if evalb env b then evala env a1 else evala env a2)"
  2367   "evala env (Sum a1 a2) = evala env a1 + evala env a2"
  2368   "evala env (Diff a1 a2) = evala env a1 - evala env a2"
  2369   "evala env (Var v) = env v"
  2370   "evala env (Num n) = n"
  2371 
  2372   "evalb env (Less a1 a2) = (evala env a1 < evala env a2)"
  2373   "evalb env (And b1 b2) = (evalb env b1 & evalb env b2)"
  2374   "evalb env (Or b1 b2) = (evalb env b1 & evalb env b2)"
  2375 \end{ttbox}
  2376 Since the value of an expression depends on the value of its variables,
  2377 the functions \texttt{evala} and \texttt{evalb} take an additional
  2378 parameter, an {\em environment} of type \texttt{'a => nat}, which maps
  2379 variables to their values.
  2380 
  2381 Similarly, we may define substitution functions \texttt{substa}
  2382 and \texttt{substb} for expressions: The mapping \texttt{f} of type
  2383 \texttt{'a => 'a aexp} given as a parameter is lifted canonically
  2384 on the types \texttt{'a aexp} and \texttt{'a bexp}:
  2385 \begin{ttbox}
  2386 consts
  2387   substa :: "['a => 'b aexp, 'a aexp] => 'b aexp"
  2388   substb :: "['a => 'b aexp, 'a bexp] => 'b bexp"
  2389 
  2390 primrec
  2391   "substa f (If_then_else b a1 a2) =
  2392      If_then_else (substb f b) (substa f a1) (substa f a2)"
  2393   "substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"
  2394   "substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"
  2395   "substa f (Var v) = f v"
  2396   "substa f (Num n) = Num n"
  2397 
  2398   "substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"
  2399   "substb f (And b1 b2) = And (substb f b1) (substb f b2)"
  2400   "substb f (Or b1 b2) = Or (substb f b1) (substb f b2)"
  2401 \end{ttbox}
  2402 In textbooks about semantics one often finds {\em substitution theorems},
  2403 which express the relationship between substitution and evaluation. For
  2404 \texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual
  2405 induction, followed by simplification:
  2406 \begin{ttbox}
  2407 Goal
  2408   "evala env (substa (Var(v := a')) a) =
  2409      evala (env(v := evala env a')) a &
  2410    evalb env (substb (Var(v := a')) b) =
  2411      evalb (env(v := evala env a')) b";
  2412 by (mutual_induct_tac ["a","b"] 1);
  2413 by (ALLGOALS Asm_full_simp_tac);
  2414 \end{ttbox}
  2415 
  2416 \subsubsection{Example: A substitution function for terms}
  2417 Functions on datatypes with nested recursion, such as the type
  2418 \texttt{term} mentioned in \S\ref{subsec:datatype:basics}, are
  2419 also defined by mutual primitive recursion. A substitution
  2420 function \texttt{subst_term} on type \texttt{term}, similar to the functions
  2421 \texttt{substa} and \texttt{substb} described above, can
  2422 be defined as follows:
  2423 \begin{ttbox}
  2424 consts
  2425   subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term"
  2426   subst_term_list ::
  2427     "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list"
  2428 
  2429 primrec
  2430   "subst_term f (Var a) = f a"
  2431   "subst_term f (App b ts) = App b (subst_term_list f ts)"
  2432 
  2433   "subst_term_list f [] = []"
  2434   "subst_term_list f (t # ts) =
  2435      subst_term f t # subst_term_list f ts"
  2436 \end{ttbox}
  2437 The recursion scheme follows the structure of the unfolded definition of type
  2438 \texttt{term} shown in \S\ref{subsec:datatype:basics}. To prove properties of
  2439 this substitution function, mutual induction is needed:
  2440 \begin{ttbox}
  2441 Goal
  2442   "(subst_term ((subst_term f1) o f2) t) =
  2443      (subst_term f1 (subst_term f2 t)) &
  2444    (subst_term_list ((subst_term f1) o f2) ts) =
  2445      (subst_term_list f1 (subst_term_list f2 ts))";
  2446 by (mutual_induct_tac ["t", "ts"] 1);
  2447 by (ALLGOALS Asm_full_simp_tac);
  2448 \end{ttbox}
  2449 
  2450 \subsubsection{Example: A map function for infinitely branching trees}
  2451 Defining functions on infinitely branching datatypes by primitive
  2452 recursion is just as easy. For example, we can define a function
  2453 \texttt{map_tree} on \texttt{'a tree} as follows:
  2454 \begin{ttbox}
  2455 consts
  2456   map_tree :: "('a => 'b) => 'a tree => 'b tree"
  2457 
  2458 primrec
  2459   "map_tree f (Atom a) = Atom (f a)"
  2460   "map_tree f (Branch ts) = Branch (\%x. map_tree f (ts x))"
  2461 \end{ttbox}
  2462 Note that all occurrences of functions such as \texttt{ts} in the
  2463 \texttt{primrec} clauses must be applied to an argument. In particular,
  2464 \texttt{map_tree f o ts} is not allowed.
  2465 
  2466 \index{recursion!primitive|)}
  2467 \index{*primrec|)}
  2468 
  2469 
  2470 \subsection{General recursive functions}
  2471 \label{sec:HOL:recdef}
  2472 \index{recursion!general|(}
  2473 \index{*recdef|(}
  2474 
  2475 Using \texttt{recdef}, you can declare functions involving nested recursion
  2476 and pattern-matching.  Recursion need not involve datatypes and there are few
  2477 syntactic restrictions.  Termination is proved by showing that each recursive
  2478 call makes the argument smaller in a suitable sense, which you specify by
  2479 supplying a well-founded relation.
  2480 
  2481 Here is a simple example, the Fibonacci function.  The first line declares
  2482 \texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
  2483 the natural numbers).  Pattern-matching is used here: \texttt{1} is a
  2484 macro for \texttt{Suc~0}.
  2485 \begin{ttbox}
  2486 consts fib  :: "nat => nat"
  2487 recdef fib "less_than"
  2488     "fib 0 = 0"
  2489     "fib 1 = 1"
  2490     "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
  2491 \end{ttbox}
  2492 
  2493 With \texttt{recdef}, function definitions may be incomplete, and patterns may
  2494 overlap, as in functional programming.  The \texttt{recdef} package
  2495 disambiguates overlapping patterns by taking the order of rules into account.
  2496 For missing patterns, the function is defined to return a default value.
  2497 
  2498 %For example, here is a declaration of the list function \cdx{hd}:
  2499 %\begin{ttbox}
  2500 %consts hd :: 'a list => 'a
  2501 %recdef hd "\{\}"
  2502 %    "hd (x#l) = x"
  2503 %\end{ttbox}
  2504 %Because this function is not recursive, we may supply the empty well-founded
  2505 %relation, $\{\}$.
  2506 
  2507 The well-founded relation defines a notion of ``smaller'' for the function's
  2508 argument type.  The relation $\prec$ is \textbf{well-founded} provided it
  2509 admits no infinitely decreasing chains
  2510 \[ \cdots\prec x@n\prec\cdots\prec x@1. \]
  2511 If the function's argument has type~$\tau$, then $\prec$ has to be a relation
  2512 over~$\tau$: it must have type $(\tau\times\tau)set$.
  2513 
  2514 Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
  2515 of operators for building well-founded relations.  The package recognises
  2516 these operators and automatically proves that the constructed relation is
  2517 well-founded.  Here are those operators, in order of importance:
  2518 \begin{itemize}
  2519 \item \texttt{less_than} is ``less than'' on the natural numbers.
  2520   (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
  2521   
  2522 \item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
  2523   relation~$\prec$ on type~$\tau$ such that $x\prec y$ iff $f(x)<f(y)$.
  2524   Typically, $f$ takes the recursive function's arguments (as a tuple) and
  2525   returns a result expressed in terms of the function \texttt{size}.  It is
  2526   called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
  2527   and is defined on all datatypes (see \S\ref{sec:HOL:size}).
  2528                                                     
  2529 \item $\mathop{\mathtt{inv_image}} f\;R$ is a generalisation of
  2530   \texttt{measure}.  It specifies a relation such that $x\prec y$ iff $f(x)$
  2531   is less than $f(y)$ according to~$R$, which must itself be a well-founded
  2532   relation.
  2533 
  2534 \item $R@1\texttt{**}R@2$ is the lexicographic product of two relations.  It
  2535   is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ iff $x@1$
  2536   is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
  2537   is less than $y@2$ according to~$R@2$.
  2538 
  2539 \item \texttt{finite_psubset} is the proper subset relation on finite sets.
  2540 \end{itemize}
  2541 
  2542 We can use \texttt{measure} to declare Euclid's algorithm for the greatest
  2543 common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
  2544 recursion terminates because argument~$n$ decreases.
  2545 \begin{ttbox}
  2546 recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  2547     "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  2548 \end{ttbox}
  2549 
  2550 The general form of a well-founded recursive definition is
  2551 \begin{ttbox}
  2552 recdef {\it function} {\it rel}
  2553     congs   {\it congruence rules}      {\bf(optional)}
  2554     simpset {\it simplification set}      {\bf(optional)}
  2555    {\it reduction rules}
  2556 \end{ttbox}
  2557 where
  2558 \begin{itemize}
  2559 \item \textit{function} is the name of the function, either as an \textit{id}
  2560   or a \textit{string}.  
  2561   
  2562 \item \textit{rel} is a {\HOL} expression for the well-founded termination
  2563   relation.
  2564   
  2565 \item \textit{congruence rules} are required only in highly exceptional
  2566   circumstances.
  2567   
  2568 \item The \textit{simplification set} is used to prove that the supplied
  2569   relation is well-founded.  It is also used to prove the \textbf{termination
  2570     conditions}: assertions that arguments of recursive calls decrease under
  2571   \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
  2572   is sufficient to prove well-foundedness for the built-in relations listed
  2573   above. 
  2574   
  2575 \item \textit{reduction rules} specify one or more recursion equations.  Each
  2576   left-hand side must have the form $f\,t$, where $f$ is the function and $t$
  2577   is a tuple of distinct variables.  If more than one equation is present then
  2578   $f$ is defined by pattern-matching on components of its argument whose type
  2579   is a \texttt{datatype}.  
  2580 
  2581   Unlike with \texttt{primrec}, the reduction rules are not added to the
  2582   default simpset, and individual rules may not be labelled with identifiers.
  2583   However, the identifier $f$\texttt{.rules} is visible at the \ML\ level
  2584   as a list of theorems.
  2585 \end{itemize}
  2586 
  2587 With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
  2588 prove one termination condition.  It remains as a precondition of the
  2589 recursion theorems.
  2590 \begin{ttbox}
  2591 gcd.rules;
  2592 {\out ["! m n. n ~= 0 --> m mod n < n}
  2593 {\out   ==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"] }
  2594 {\out : thm list}
  2595 \end{ttbox}
  2596 The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
  2597 conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
  2598 function \texttt{goalw}, which sets up a goal to prove, but its argument
  2599 should be the identifier $f$\texttt{.rules} and its effect is to set up a
  2600 proof of the termination conditions:
  2601 \begin{ttbox}
  2602 Tfl.tgoalw thy [] gcd.rules;
  2603 {\out Level 0}
  2604 {\out ! m n. n ~= 0 --> m mod n < n}
  2605 {\out  1. ! m n. n ~= 0 --> m mod n < n}
  2606 \end{ttbox}
  2607 This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
  2608 is proved, it can be used to eliminate the termination conditions from
  2609 elements of \texttt{gcd.rules}.  Theory \texttt{HOL/Subst/Unify} is a much
  2610 more complicated example of this process, where the termination conditions can
  2611 only be proved by complicated reasoning involving the recursive function
  2612 itself.
  2613 
  2614 Isabelle/HOL can prove the \texttt{gcd} function's termination condition
  2615 automatically if supplied with the right simpset.
  2616 \begin{ttbox}
  2617 recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  2618   simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
  2619     "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  2620 \end{ttbox}
  2621 
  2622 A \texttt{recdef} definition also returns an induction rule specialised for
  2623 the recursive function.  For the \texttt{gcd} function above, the induction
  2624 rule is
  2625 \begin{ttbox}
  2626 gcd.induct;
  2627 {\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
  2628 \end{ttbox}
  2629 This rule should be used to reason inductively about the \texttt{gcd}
  2630 function.  It usually makes the induction hypothesis available at all
  2631 recursive calls, leading to very direct proofs.  If any termination conditions
  2632 remain unproved, they will become additional premises of this rule.
  2633 
  2634 \index{recursion!general|)}
  2635 \index{*recdef|)}
  2636 
  2637 
  2638 \section{Inductive and coinductive definitions}
  2639 \index{*inductive|(}
  2640 \index{*coinductive|(}
  2641 
  2642 An {\bf inductive definition} specifies the least set~$R$ closed under given
  2643 rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  2644 example, a structural operational semantics is an inductive definition of an
  2645 evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  2646 greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  2647 seen as arising by applying a rule to elements of~$R$.)  An important example
  2648 is using bisimulation relations to formalise equivalence of processes and
  2649 infinite data structures.
  2650 
  2651 A theory file may contain any number of inductive and coinductive
  2652 definitions.  They may be intermixed with other declarations; in
  2653 particular, the (co)inductive sets {\bf must} be declared separately as
  2654 constants, and may have mixfix syntax or be subject to syntax translations.
  2655 
  2656 Each (co)inductive definition adds definitions to the theory and also
  2657 proves some theorems.  Each definition creates an \ML\ structure, which is a
  2658 substructure of the main theory structure.
  2659 
  2660 This package is related to the \ZF\ one, described in a separate
  2661 paper,%
  2662 \footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  2663   distributed with Isabelle.}  %
  2664 which you should refer to in case of difficulties.  The package is simpler
  2665 than \ZF's thanks to \HOL's extra-logical automatic type-checking.  The types
  2666 of the (co)inductive sets determine the domain of the fixedpoint definition,
  2667 and the package does not have to use inference rules for type-checking.
  2668 
  2669 
  2670 \subsection{The result structure}
  2671 Many of the result structure's components have been discussed in the paper;
  2672 others are self-explanatory.
  2673 \begin{description}
  2674 \item[\tt defs] is the list of definitions of the recursive sets.
  2675 
  2676 \item[\tt mono] is a monotonicity theorem for the fixedpoint operator.
  2677 
  2678 \item[\tt unfold] is a fixedpoint equation for the recursive set (the union of
  2679 the recursive sets, in the case of mutual recursion).
  2680 
  2681 \item[\tt intrs] is the list of introduction rules, now proved as theorems, for
  2682 the recursive sets.  The rules are also available individually, using the
  2683 names given them in the theory file. 
  2684 
  2685 \item[\tt elims] is the list of elimination rule.
  2686 
  2687 \item[\tt elim] is the head of the list \texttt{elims}.
  2688   
  2689 \item[\tt mk_cases] is a function to create simplified instances of {\tt
  2690 elim} using freeness reasoning on underlying datatypes.
  2691 \end{description}
  2692 
  2693 For an inductive definition, the result structure contains the
  2694 rule \texttt{induct}.  For a
  2695 coinductive definition, it contains the rule \verb|coinduct|.
  2696 
  2697 Figure~\ref{def-result-fig} summarises the two result signatures,
  2698 specifying the types of all these components.
  2699 
  2700 \begin{figure}
  2701 \begin{ttbox}
  2702 sig
  2703 val defs         : thm list
  2704 val mono         : thm
  2705 val unfold       : thm
  2706 val intrs        : thm list
  2707 val elims        : thm list
  2708 val elim         : thm
  2709 val mk_cases     : string -> thm
  2710 {\it(Inductive definitions only)} 
  2711 val induct       : thm
  2712 {\it(coinductive definitions only)}
  2713 val coinduct     : thm
  2714 end
  2715 \end{ttbox}
  2716 \hrule
  2717 \caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig}
  2718 \end{figure}
  2719 
  2720 \subsection{The syntax of a (co)inductive definition}
  2721 An inductive definition has the form
  2722 \begin{ttbox}
  2723 inductive    {\it inductive sets}
  2724   intrs      {\it introduction rules}
  2725   monos      {\it monotonicity theorems}
  2726   con_defs   {\it constructor definitions}
  2727 \end{ttbox}
  2728 A coinductive definition is identical, except that it starts with the keyword
  2729 \texttt{coinductive}.  
  2730 
  2731 The \texttt{monos} and \texttt{con_defs} sections are optional.  If present,
  2732 each is specified by a list of identifiers.
  2733 
  2734 \begin{itemize}
  2735 \item The \textit{inductive sets} are specified by one or more strings.
  2736 
  2737 \item The \textit{introduction rules} specify one or more introduction rules in
  2738   the form \textit{ident\/}~\textit{string}, where the identifier gives the name of
  2739   the rule in the result structure.
  2740 
  2741 \item The \textit{monotonicity theorems} are required for each operator
  2742   applied to a recursive set in the introduction rules.  There {\bf must}
  2743   be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each
  2744   premise $t\in M(R@i)$ in an introduction rule!
  2745 
  2746 \item The \textit{constructor definitions} contain definitions of constants
  2747   appearing in the introduction rules.  In most cases it can be omitted.
  2748 \end{itemize}
  2749 
  2750 
  2751 \subsection{Example of an inductive definition}
  2752 Two declarations, included in a theory file, define the finite powerset
  2753 operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  2754 inductively, with two introduction rules:
  2755 \begin{ttbox}
  2756 consts Fin :: 'a set => 'a set set
  2757 inductive "Fin A"
  2758   intrs
  2759     emptyI  "{\ttlbrace}{\ttrbrace} : Fin A"
  2760     insertI "[| a: A;  b: Fin A |] ==> insert a b : Fin A"
  2761 \end{ttbox}
  2762 The resulting theory structure contains a substructure, called~\texttt{Fin}.
  2763 It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs},
  2764 and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}.  The induction
  2765 rule is \texttt{Fin.induct}.
  2766 
  2767 For another example, here is a theory file defining the accessible
  2768 part of a relation.  The main thing to note is the use of~\texttt{Pow} in
  2769 the sole introduction rule, and the corresponding mention of the rule
  2770 \verb|Pow_mono| in the \texttt{monos} list.  The paper
  2771 \cite{paulson-CADE} discusses a \ZF\ version of this example in more
  2772 detail.
  2773 \begin{ttbox}
  2774 Acc = WF + 
  2775 consts pred :: "['b, ('a * 'b)set] => 'a set"   (*Set of predecessors*)
  2776        acc  :: "('a * 'a)set => 'a set"         (*Accessible part*)
  2777 defs   pred_def  "pred x r == {y. (y,x):r}"
  2778 inductive "acc r"
  2779   intrs
  2780      pred "pred a r: Pow(acc r) ==> a: acc r"
  2781   monos   Pow_mono
  2782 end
  2783 \end{ttbox}
  2784 The Isabelle distribution contains many other inductive definitions.  Simple
  2785 examples are collected on subdirectory \texttt{HOL/Induct}.  The theory
  2786 \texttt{HOL/Induct/LList} contains coinductive definitions.  Larger examples
  2787 may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP},
  2788 \texttt{Lambda} and \texttt{Auth}.
  2789 
  2790 \index{*coinductive|)} \index{*inductive|)}
  2791 
  2792 
  2793 \section{The examples directories}
  2794 
  2795 Directory \texttt{HOL/Auth} contains theories for proving the correctness of
  2796 cryptographic protocols~\cite{paulson-jcs}.  The approach is based upon
  2797 operational semantics rather than the more usual belief logics.  On the same
  2798 directory are proofs for some standard examples, such as the Needham-Schroeder
  2799 public-key authentication protocol and the Otway-Rees
  2800 protocol.
  2801 
  2802 Directory \texttt{HOL/IMP} contains a formalization of various denotational,
  2803 operational and axiomatic semantics of a simple while-language, the necessary
  2804 equivalence proofs, soundness and completeness of the Hoare rules with
  2805 respect to the denotational semantics, and soundness and completeness of a
  2806 verification condition generator.  Much of development is taken from
  2807 Winskel~\cite{winskel93}.  For details see~\cite{nipkow-IMP}.
  2808 
  2809 Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare
  2810 logic, including a tactic for generating verification-conditions.
  2811 
  2812 Directory \texttt{HOL/MiniML} contains a formalization of the type system of
  2813 the core functional language Mini-ML and a correctness proof for its type
  2814 inference algorithm $\cal W$~\cite{milner78,nipkow-W}.
  2815 
  2816 Directory \texttt{HOL/Lambda} contains a formalization of untyped
  2817 $\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$
  2818 and $\eta$ reduction~\cite{Nipkow-CR}.
  2819 
  2820 Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory of
  2821 substitutions and unifiers.  It is based on Paulson's previous
  2822 mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's
  2823 theory~\cite{mw81}.  It demonstrates a complicated use of \texttt{recdef},
  2824 with nested recursion.
  2825 
  2826 Directory \texttt{HOL/Induct} presents simple examples of (co)inductive
  2827 definitions and datatypes.
  2828 \begin{itemize}
  2829 \item Theory \texttt{PropLog} proves the soundness and completeness of
  2830   classical propositional logic, given a truth table semantics.  The only
  2831   connective is $\imp$.  A Hilbert-style axiom system is specified, and its
  2832   set of theorems defined inductively.  A similar proof in \ZF{} is
  2833   described elsewhere~\cite{paulson-set-II}.
  2834 
  2835 \item Theory \texttt{Term} defines the datatype \texttt{term}.
  2836 
  2837 \item Theory \texttt{ABexp} defines arithmetic and boolean expressions
  2838  as mutually recursive datatypes.
  2839 
  2840 \item The definition of lazy lists demonstrates methods for handling
  2841   infinite data structures and coinduction in higher-order
  2842   logic~\cite{paulson-coind}.%
  2843 \footnote{To be precise, these lists are \emph{potentially infinite} rather
  2844   than lazy.  Lazy implies a particular operational semantics.}
  2845   Theory \thydx{LList} defines an operator for
  2846   corecursion on lazy lists, which is used to define a few simple functions
  2847   such as map and append.   A coinduction principle is defined
  2848   for proving equations on lazy lists.
  2849   
  2850 \item Theory \thydx{LFilter} defines the filter functional for lazy lists.
  2851   This functional is notoriously difficult to define because finding the next
  2852   element meeting the predicate requires possibly unlimited search.  It is not
  2853   computable, but can be expressed using a combination of induction and
  2854   corecursion.  
  2855 
  2856 \item Theory \thydx{Exp} illustrates the use of iterated inductive definitions
  2857   to express a programming language semantics that appears to require mutual
  2858   induction.  Iterated induction allows greater modularity.
  2859 \end{itemize}
  2860 
  2861 Directory \texttt{HOL/ex} contains other examples and experimental proofs in
  2862 {\HOL}.  
  2863 \begin{itemize}
  2864 \item Theory \texttt{Recdef} presents many examples of using \texttt{recdef}
  2865   to define recursive functions.  Another example is \texttt{Fib}, which
  2866   defines the Fibonacci function.
  2867 
  2868 \item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  2869   natural numbers and proves a key lemma of the Fundamental Theorem of
  2870   Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$
  2871   or $p$ divides~$n$.
  2872 
  2873 \item Theory \texttt{Primrec} develops some computation theory.  It
  2874   inductively defines the set of primitive recursive functions and presents a
  2875   proof that Ackermann's function is not primitive recursive.
  2876 
  2877 \item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty
  2878   predicate calculus theorems, ranging from simple tautologies to
  2879   moderately difficult problems involving equality and quantifiers.
  2880 
  2881 \item File \texttt{meson.ML} contains an experimental implementation of the {\sc
  2882     meson} proof procedure, inspired by Plaisted~\cite{plaisted90}.  It is
  2883   much more powerful than Isabelle's classical reasoner.  But it is less
  2884   useful in practice because it works only for pure logic; it does not
  2885   accept derived rules for the set theory primitives, for example.
  2886 
  2887 \item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof
  2888   procedure.  These are mostly taken from Pelletier \cite{pelletier86}.
  2889 
  2890 \item File \texttt{set.ML} proves Cantor's Theorem, which is presented in
  2891   \S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem.
  2892 
  2893 \item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of
  2894   Milner and Tofte's coinduction example~\cite{milner-coind}.  This
  2895   substantial proof concerns the soundness of a type system for a simple
  2896   functional language.  The semantics of recursion is given by a cyclic
  2897   environment, which makes a coinductive argument appropriate.
  2898 \end{itemize}
  2899 
  2900 
  2901 \goodbreak
  2902 \section{Example: Cantor's Theorem}\label{sec:hol-cantor}
  2903 Cantor's Theorem states that every set has more subsets than it has
  2904 elements.  It has become a favourite example in higher-order logic since
  2905 it is so easily expressed:
  2906 \[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
  2907     \forall x::\alpha. f~x \not= S 
  2908 \] 
  2909 %
  2910 Viewing types as sets, $\alpha\To bool$ represents the powerset
  2911 of~$\alpha$.  This version states that for every function from $\alpha$ to
  2912 its powerset, some subset is outside its range.  
  2913 
  2914 The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and
  2915 the operator \cdx{range}.
  2916 \begin{ttbox}
  2917 context Set.thy;
  2918 \end{ttbox}
  2919 The set~$S$ is given as an unknown instead of a
  2920 quantified variable so that we may inspect the subset found by the proof.
  2921 \begin{ttbox}
  2922 Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
  2923 {\out Level 0}
  2924 {\out ?S ~: range f}
  2925 {\out  1. ?S ~: range f}
  2926 \end{ttbox}
  2927 The first two steps are routine.  The rule \tdx{rangeE} replaces
  2928 $\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
  2929 \begin{ttbox}
  2930 by (resolve_tac [notI] 1);
  2931 {\out Level 1}
  2932 {\out ?S ~: range f}
  2933 {\out  1. ?S : range f ==> False}
  2934 \ttbreak
  2935 by (eresolve_tac [rangeE] 1);
  2936 {\out Level 2}
  2937 {\out ?S ~: range f}
  2938 {\out  1. !!x. ?S = f x ==> False}
  2939 \end{ttbox}
  2940 Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
  2941 we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
  2942 any~$\Var{c}$.
  2943 \begin{ttbox}
  2944 by (eresolve_tac [equalityCE] 1);
  2945 {\out Level 3}
  2946 {\out ?S ~: range f}
  2947 {\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
  2948 {\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
  2949 \end{ttbox}
  2950 Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
  2951 comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
  2952 $\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
  2953 instantiates~$\Var{S}$ and creates the new assumption.
  2954 \begin{ttbox}
  2955 by (dresolve_tac [CollectD] 1);
  2956 {\out Level 4}
  2957 {\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
  2958 {\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
  2959 {\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
  2960 \end{ttbox}
  2961 Forcing a contradiction between the two assumptions of subgoal~1
  2962 completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
  2963 f~x\}$, which is the standard diagonal construction.
  2964 \begin{ttbox}
  2965 by (contr_tac 1);
  2966 {\out Level 5}
  2967 {\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  2968 {\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
  2969 \end{ttbox}
  2970 The rest should be easy.  To apply \tdx{CollectI} to the negated
  2971 assumption, we employ \ttindex{swap_res_tac}:
  2972 \begin{ttbox}
  2973 by (swap_res_tac [CollectI] 1);
  2974 {\out Level 6}
  2975 {\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  2976 {\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
  2977 \ttbreak
  2978 by (assume_tac 1);
  2979 {\out Level 7}
  2980 {\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  2981 {\out No subgoals!}
  2982 \end{ttbox}
  2983 How much creativity is required?  As it happens, Isabelle can prove this
  2984 theorem automatically.  The default classical set \texttt{claset()} contains rules
  2985 for most of the constructs of \HOL's set theory.  We must augment it with
  2986 \tdx{equalityCE} to break up set equalities, and then apply best-first
  2987 search.  Depth-first search would diverge, but best-first search
  2988 successfully navigates through the large search space.
  2989 \index{search!best-first}
  2990 \begin{ttbox}
  2991 choplev 0;
  2992 {\out Level 0}
  2993 {\out ?S ~: range f}
  2994 {\out  1. ?S ~: range f}
  2995 \ttbreak
  2996 by (best_tac (claset() addSEs [equalityCE]) 1);
  2997 {\out Level 1}
  2998 {\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  2999 {\out No subgoals!}
  3000 \end{ttbox}
  3001 If you run this example interactively, make sure your current theory contains
  3002 theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
  3003 Otherwise the default claset may not contain the rules for set theory.
  3004 \index{higher-order logic|)}
  3005 
  3006 %%% Local Variables: 
  3007 %%% mode: latex
  3008 %%% TeX-master: "logics"
  3009 %%% End: