src/HOL/Tools/SMT/z3_proof_reconstruction.ML
author boehmes
Fri, 29 Oct 2010 18:17:04 +0200
changeset 40520 6486c610a549
parent 40405 57f5db2a48a3
child 40651 7550b2cba1cb
permissions -rw-r--r--
introduced SMT.distinct as a representation of the solvers' built-in predicate; check that SMT.distinct is always applied to an explicit list
     1 (*  Title:      HOL/Tools/SMT/z3_proof_reconstruction.ML
     2     Author:     Sascha Boehme, TU Muenchen
     3 
     4 Proof reconstruction for proofs found by Z3.
     5 *)
     6 
     7 signature Z3_PROOF_RECONSTRUCTION =
     8 sig
     9   val add_z3_rule: thm -> Context.generic -> Context.generic
    10   val reconstruct: Proof.context -> SMT_Translate.recon -> string list ->
    11     (int list * thm) * Proof.context
    12   val setup: theory -> theory
    13 end
    14 
    15 structure Z3_Proof_Reconstruction: Z3_PROOF_RECONSTRUCTION =
    16 struct
    17 
    18 structure P = Z3_Proof_Parser
    19 structure T = Z3_Proof_Tools
    20 structure L = Z3_Proof_Literals
    21 
    22 fun z3_exn msg = raise SMT_Solver.SMT (SMT_Solver.Other_Failure
    23   ("Z3 proof reconstruction: " ^ msg))
    24 
    25 
    26 
    27 (** net of schematic rules **)
    28 
    29 val z3_ruleN = "z3_rule"
    30 
    31 local
    32   val description = "declaration of Z3 proof rules"
    33 
    34   val eq = Thm.eq_thm
    35 
    36   structure Z3_Rules = Generic_Data
    37   (
    38     type T = thm Net.net
    39     val empty = Net.empty
    40     val extend = I
    41     val merge = Net.merge eq
    42   )
    43 
    44   val prep = `Thm.prop_of o Simplifier.rewrite_rule [L.rewrite_true]
    45 
    46   fun ins thm net = Net.insert_term eq (prep thm) net handle Net.INSERT => net
    47   fun del thm net = Net.delete_term eq (prep thm) net handle Net.DELETE => net
    48 
    49   val add = Thm.declaration_attribute (Z3_Rules.map o ins)
    50   val del = Thm.declaration_attribute (Z3_Rules.map o del)
    51 in
    52 
    53 val add_z3_rule = Z3_Rules.map o ins
    54 
    55 fun by_schematic_rule ctxt ct =
    56   the (T.net_instance (Z3_Rules.get (Context.Proof ctxt)) ct)
    57 
    58 val z3_rules_setup =
    59   Attrib.setup (Binding.name z3_ruleN) (Attrib.add_del add del) description #>
    60   Global_Theory.add_thms_dynamic (Binding.name z3_ruleN, Net.content o Z3_Rules.get)
    61 
    62 end
    63 
    64 
    65 
    66 (** proof tools **)
    67 
    68 fun named ctxt name prover ct =
    69   let val _ = SMT_Solver.trace_msg ctxt I ("Z3: trying " ^ name ^ " ...")
    70   in prover ct end
    71 
    72 fun NAMED ctxt name tac i st =
    73   let val _ = SMT_Solver.trace_msg ctxt I ("Z3: trying " ^ name ^ " ...")
    74   in tac i st end
    75 
    76 fun pretty_goal ctxt thms t =
    77   [Pretty.block [Pretty.str "proposition: ", Syntax.pretty_term ctxt t]]
    78   |> not (null thms) ? cons (Pretty.big_list "assumptions:"
    79        (map (Display.pretty_thm ctxt) thms))
    80 
    81 fun try_apply ctxt thms =
    82   let
    83     fun try_apply_err ct = Pretty.string_of (Pretty.chunks [
    84       Pretty.big_list ("Z3 found a proof," ^
    85         " but proof reconstruction failed at the following subgoal:")
    86         (pretty_goal ctxt thms (Thm.term_of ct)),
    87       Pretty.str ("Adding a rule to the lemma group " ^ quote z3_ruleN ^
    88         " might solve this problem.")])
    89 
    90     fun apply [] ct = error (try_apply_err ct)
    91       | apply (prover :: provers) ct =
    92           (case try prover ct of
    93             SOME thm => (SMT_Solver.trace_msg ctxt I "Z3: succeeded"; thm)
    94           | NONE => apply provers ct)
    95 
    96   in apply o cons (named ctxt "schematic rules" (by_schematic_rule ctxt)) end
    97 
    98 local
    99   val rewr_if =
   100     @{lemma "(if P then Q1 else Q2) = ((P --> Q1) & (~P --> Q2))" by simp}
   101 in
   102 val simp_fast_tac =
   103   Simplifier.simp_tac (HOL_ss addsimps [rewr_if])
   104   THEN_ALL_NEW Classical.fast_tac HOL_cs
   105 end
   106 
   107 
   108 
   109 (** theorems and proofs **)
   110 
   111 (* theorem incarnations *)
   112 
   113 datatype theorem =
   114   Thm of thm | (* theorem without special features *)
   115   MetaEq of thm | (* meta equality "t == s" *)
   116   Literals of thm * L.littab
   117     (* "P1 & ... & Pn" and table of all literals P1, ..., Pn *)
   118 
   119 fun thm_of (Thm thm) = thm
   120   | thm_of (MetaEq thm) = thm COMP @{thm meta_eq_to_obj_eq}
   121   | thm_of (Literals (thm, _)) = thm
   122 
   123 fun meta_eq_of (MetaEq thm) = thm
   124   | meta_eq_of p = mk_meta_eq (thm_of p)
   125 
   126 fun literals_of (Literals (_, lits)) = lits
   127   | literals_of p = L.make_littab [thm_of p]
   128 
   129 
   130 (* proof representation *)
   131 
   132 datatype proof = Unproved of P.proof_step | Proved of theorem
   133 
   134 
   135 
   136 (** core proof rules **)
   137 
   138 (* assumption *)
   139 
   140 local
   141   val remove_trigger = @{lemma "trigger t p == p"
   142     by (rule eq_reflection, rule trigger_def)}
   143 
   144   val prep_rules = [@{thm Let_def}, remove_trigger, L.rewrite_true]
   145 
   146   fun rewrite_conv ctxt eqs = Simplifier.full_rewrite
   147     (Simplifier.context ctxt Simplifier.empty_ss addsimps eqs)
   148 
   149   fun rewrites f ctxt eqs = map (f (Conv.fconv_rule (rewrite_conv ctxt eqs)))
   150 
   151   fun burrow_snd_option f (i, thm) = Option.map (pair i) (f thm)
   152   fun lookup_assm ctxt assms ct =
   153     (case T.net_instance' burrow_snd_option assms ct of
   154       SOME ithm => ithm
   155     | _ => z3_exn ("not asserted: " ^
   156         quote (Syntax.string_of_term ctxt (Thm.term_of ct))))
   157 in
   158 fun prepare_assms ctxt unfolds assms =
   159   let
   160     val unfolds' = rewrites I ctxt [L.rewrite_true] unfolds
   161     val assms' =
   162       rewrites apsnd ctxt (union Thm.eq_thm unfolds' prep_rules) assms
   163   in (unfolds', T.thm_net_of snd assms') end
   164 
   165 fun asserted ctxt (unfolds, assms) ct =
   166   let val revert_conv = rewrite_conv ctxt unfolds
   167   in Thm (T.with_conv revert_conv (snd o lookup_assm ctxt assms) ct) end
   168 
   169 fun find_assm ctxt (unfolds, assms) ct =
   170   fst (lookup_assm ctxt assms (Thm.rhs_of (rewrite_conv ctxt unfolds ct)))
   171 end
   172 
   173 
   174 
   175 (* P = Q ==> P ==> Q   or   P --> Q ==> P ==> Q *)
   176 local
   177   val meta_iffD1 = @{lemma "P == Q ==> P ==> (Q::bool)" by simp}
   178   val meta_iffD1_c = T.precompose2 Thm.dest_binop meta_iffD1
   179 
   180   val iffD1_c = T.precompose2 (Thm.dest_binop o Thm.dest_arg) @{thm iffD1}
   181   val mp_c = T.precompose2 (Thm.dest_binop o Thm.dest_arg) @{thm mp}
   182 in
   183 fun mp (MetaEq thm) p = Thm (Thm.implies_elim (T.compose meta_iffD1_c thm) p)
   184   | mp p_q p = 
   185       let
   186         val pq = thm_of p_q
   187         val thm = T.compose iffD1_c pq handle THM _ => T.compose mp_c pq
   188       in Thm (Thm.implies_elim thm p) end
   189 end
   190 
   191 
   192 
   193 (* and_elim:     P1 & ... & Pn ==> Pi *)
   194 (* not_or_elim:  ~(P1 | ... | Pn) ==> ~Pi *)
   195 local
   196   fun is_sublit conj t = L.exists_lit conj (fn u => u aconv t)
   197 
   198   fun derive conj t lits idx ptab =
   199     let
   200       val lit = the (L.get_first_lit (is_sublit conj t) lits)
   201       val ls = L.explode conj false false [t] lit
   202       val lits' = fold L.insert_lit ls (L.delete_lit lit lits)
   203 
   204       fun upd (Proved thm) = Proved (Literals (thm_of thm, lits'))
   205         | upd p = p
   206     in (the (L.lookup_lit lits' t), Inttab.map_entry idx upd ptab) end
   207 
   208   fun lit_elim conj (p, idx) ct ptab =
   209     let val lits = literals_of p
   210     in
   211       (case L.lookup_lit lits (T.term_of ct) of
   212         SOME lit => (Thm lit, ptab)
   213       | NONE => apfst Thm (derive conj (T.term_of ct) lits idx ptab))
   214     end
   215 in
   216 val and_elim = lit_elim true
   217 val not_or_elim = lit_elim false
   218 end
   219 
   220 
   221 
   222 (* P1, ..., Pn |- False ==> |- ~P1 | ... | ~Pn *)
   223 local
   224   fun step lit thm =
   225     Thm.implies_elim (Thm.implies_intr (Thm.cprop_of lit) thm) lit
   226   val explode_disj = L.explode false false false
   227   fun intro hyps thm th = fold step (explode_disj hyps th) thm
   228 
   229   fun dest_ccontr ct = [Thm.dest_arg (Thm.dest_arg (Thm.dest_arg1 ct))]
   230   val ccontr = T.precompose dest_ccontr @{thm ccontr}
   231 in
   232 fun lemma thm ct =
   233   let
   234     val cu = Thm.capply @{cterm Not} (Thm.dest_arg ct)
   235     val hyps = map_filter (try HOLogic.dest_Trueprop) (#hyps (Thm.rep_thm thm))
   236   in Thm (T.compose ccontr (T.under_assumption (intro hyps thm) cu)) end
   237 end
   238 
   239 
   240 
   241 (* \/{P1, ..., Pn, Q1, ..., Qn}, ~P1, ..., ~Pn ==> \/{Q1, ..., Qn} *)
   242 local
   243   val explode_disj = L.explode false true false
   244   val join_disj = L.join false
   245   fun unit thm thms th =
   246     let val t = @{term Not} $ T.prop_of thm and ts = map T.prop_of thms
   247     in join_disj (L.make_littab (thms @ explode_disj ts th)) t end
   248 
   249   fun dest_arg2 ct = Thm.dest_arg (Thm.dest_arg ct)
   250   fun dest ct = pairself dest_arg2 (Thm.dest_binop ct)
   251   val contrapos = T.precompose2 dest @{lemma "(~P ==> ~Q) ==> Q ==> P" by fast}
   252 in
   253 fun unit_resolution thm thms ct =
   254   Thm.capply @{cterm Not} (Thm.dest_arg ct)
   255   |> T.under_assumption (unit thm thms)
   256   |> Thm o T.discharge thm o T.compose contrapos
   257 end
   258 
   259 
   260 
   261 (* P ==> P == True   or   P ==> P == False *)
   262 local
   263   val iff1 = @{lemma "P ==> P == (~ False)" by simp}
   264   val iff2 = @{lemma "~P ==> P == False" by simp}
   265 in
   266 fun iff_true thm = MetaEq (thm COMP iff1)
   267 fun iff_false thm = MetaEq (thm COMP iff2)
   268 end
   269 
   270 
   271 
   272 (* distributivity of | over & *)
   273 fun distributivity ctxt = Thm o try_apply ctxt [] [
   274   named ctxt "fast" (T.by_tac (Classical.fast_tac HOL_cs))]
   275     (* FIXME: not very well tested *)
   276 
   277 
   278 
   279 (* Tseitin-like axioms *)
   280 
   281 local
   282   val disjI1 = @{lemma "(P ==> Q) ==> ~P | Q" by fast}
   283   val disjI2 = @{lemma "(~P ==> Q) ==> P | Q" by fast}
   284   val disjI3 = @{lemma "(~Q ==> P) ==> P | Q" by fast}
   285   val disjI4 = @{lemma "(Q ==> P) ==> P | ~Q" by fast}
   286 
   287   fun prove' conj1 conj2 ct2 thm =
   288     let val lits = L.true_thm :: L.explode conj1 true (conj1 <> conj2) [] thm
   289     in L.join conj2 (L.make_littab lits) (Thm.term_of ct2) end
   290 
   291   fun prove rule (ct1, conj1) (ct2, conj2) =
   292     T.under_assumption (prove' conj1 conj2 ct2) ct1 COMP rule
   293 
   294   fun prove_def_axiom ct =
   295     let val (ct1, ct2) = Thm.dest_binop (Thm.dest_arg ct)
   296     in
   297       (case Thm.term_of ct1 of
   298         @{term Not} $ (@{term HOL.conj} $ _ $ _) =>
   299           prove disjI1 (Thm.dest_arg ct1, true) (ct2, true)
   300       | @{term HOL.conj} $ _ $ _ =>
   301           prove disjI3 (Thm.capply @{cterm Not} ct2, false) (ct1, true)
   302       | @{term Not} $ (@{term HOL.disj} $ _ $ _) =>
   303           prove disjI3 (Thm.capply @{cterm Not} ct2, false) (ct1, false)
   304       | @{term HOL.disj} $ _ $ _ =>
   305           prove disjI2 (Thm.capply @{cterm Not} ct1, false) (ct2, true)
   306       | Const (@{const_name SMT.distinct}, _) $ _ =>
   307           let
   308             fun dis_conv cv = Conv.arg_conv (Conv.arg1_conv cv)
   309             fun prv cu =
   310               let val (cu1, cu2) = Thm.dest_binop (Thm.dest_arg cu)
   311               in prove disjI4 (Thm.dest_arg cu2, true) (cu1, true) end
   312           in T.with_conv (dis_conv T.unfold_distinct_conv) prv ct end
   313       | @{term Not} $ (Const (@{const_name SMT.distinct}, _) $ _) =>
   314           let
   315             fun dis_conv cv = Conv.arg_conv (Conv.arg1_conv (Conv.arg_conv cv))
   316             fun prv cu =
   317               let val (cu1, cu2) = Thm.dest_binop (Thm.dest_arg cu)
   318               in prove disjI1 (Thm.dest_arg cu1, true) (cu2, true) end
   319           in T.with_conv (dis_conv T.unfold_distinct_conv) prv ct end
   320       | _ => raise CTERM ("prove_def_axiom", [ct]))
   321     end
   322 in
   323 fun def_axiom ctxt = Thm o try_apply ctxt [] [
   324   named ctxt "conj/disj/distinct" prove_def_axiom,
   325   T.by_abstraction (true, false) ctxt [] (fn ctxt' =>
   326     named ctxt' "simp+fast" (T.by_tac simp_fast_tac))]
   327 end
   328 
   329 
   330 
   331 (* local definitions *)
   332 local
   333   val intro_rules = [
   334     @{lemma "n == P ==> (~n | P) & (n | ~P)" by simp},
   335     @{lemma "n == (if P then s else t) ==> (~P | n = s) & (P | n = t)"
   336       by simp},
   337     @{lemma "n == P ==> n = P" by (rule meta_eq_to_obj_eq)} ]
   338 
   339   val apply_rules = [
   340     @{lemma "(~n | P) & (n | ~P) ==> P == n" by (atomize(full)) fast},
   341     @{lemma "(~P | n = s) & (P | n = t) ==> (if P then s else t) == n"
   342       by (atomize(full)) fastsimp} ]
   343 
   344   val inst_rule = T.match_instantiate Thm.dest_arg
   345 
   346   fun apply_rule ct =
   347     (case get_first (try (inst_rule ct)) intro_rules of
   348       SOME thm => thm
   349     | NONE => raise CTERM ("intro_def", [ct]))
   350 in
   351 fun intro_def ct = T.make_hyp_def (apply_rule ct) #>> Thm
   352 
   353 fun apply_def thm =
   354   get_first (try (fn rule => MetaEq (thm COMP rule))) apply_rules
   355   |> the_default (Thm thm)
   356 end
   357 
   358 
   359 
   360 (* negation normal form *)
   361 
   362 local
   363   val quant_rules1 = ([
   364     @{lemma "(!!x. P x == Q) ==> ALL x. P x == Q" by simp},
   365     @{lemma "(!!x. P x == Q) ==> EX x. P x == Q" by simp}], [
   366     @{lemma "(!!x. P x == Q x) ==> ALL x. P x == ALL x. Q x" by simp},
   367     @{lemma "(!!x. P x == Q x) ==> EX x. P x == EX x. Q x" by simp}])
   368 
   369   val quant_rules2 = ([
   370     @{lemma "(!!x. ~P x == Q) ==> ~(ALL x. P x) == Q" by simp},
   371     @{lemma "(!!x. ~P x == Q) ==> ~(EX x. P x) == Q" by simp}], [
   372     @{lemma "(!!x. ~P x == Q x) ==> ~(ALL x. P x) == EX x. Q x" by simp},
   373     @{lemma "(!!x. ~P x == Q x) ==> ~(EX x. P x) == ALL x. Q x" by simp}])
   374 
   375   fun nnf_quant_tac thm (qs as (qs1, qs2)) i st = (
   376     Tactic.rtac thm ORELSE'
   377     (Tactic.match_tac qs1 THEN' nnf_quant_tac thm qs) ORELSE'
   378     (Tactic.match_tac qs2 THEN' nnf_quant_tac thm qs)) i st
   379 
   380   fun nnf_quant vars qs p ct =
   381     T.as_meta_eq ct
   382     |> T.by_tac (nnf_quant_tac (T.varify vars (meta_eq_of p)) qs)
   383 
   384   fun prove_nnf ctxt = try_apply ctxt [] [
   385     named ctxt "conj/disj" L.prove_conj_disj_eq,
   386     T.by_abstraction (true, false) ctxt [] (fn ctxt' =>
   387       named ctxt' "simp+fast" (T.by_tac simp_fast_tac))]
   388 in
   389 fun nnf ctxt vars ps ct =
   390   (case T.term_of ct of
   391     _ $ (l as Const _ $ Abs _) $ (r as Const _ $ Abs _) =>
   392       if l aconv r
   393       then MetaEq (Thm.reflexive (Thm.dest_arg (Thm.dest_arg ct)))
   394       else MetaEq (nnf_quant vars quant_rules1 (hd ps) ct)
   395   | _ $ (@{term Not} $ (Const _ $ Abs _)) $ (Const _ $ Abs _) =>
   396       MetaEq (nnf_quant vars quant_rules2 (hd ps) ct)
   397   | _ =>
   398       let
   399         val nnf_rewr_conv = Conv.arg_conv (Conv.arg_conv
   400           (T.unfold_eqs ctxt (map (Thm.symmetric o meta_eq_of) ps)))
   401       in Thm (T.with_conv nnf_rewr_conv (prove_nnf ctxt) ct) end)
   402 end
   403 
   404 
   405 
   406 (** equality proof rules **)
   407 
   408 (* |- t = t *)
   409 fun refl ct = MetaEq (Thm.reflexive (Thm.dest_arg (Thm.dest_arg ct)))
   410 
   411 
   412 
   413 (* s = t ==> t = s *)
   414 local
   415   val symm_rule = @{lemma "s = t ==> t == s" by simp}
   416 in
   417 fun symm (MetaEq thm) = MetaEq (Thm.symmetric thm)
   418   | symm p = MetaEq (thm_of p COMP symm_rule)
   419 end
   420 
   421 
   422 
   423 (* s = t ==> t = u ==> s = u *)
   424 local
   425   val trans1 = @{lemma "s == t ==> t =  u ==> s == u" by simp}
   426   val trans2 = @{lemma "s =  t ==> t == u ==> s == u" by simp}
   427   val trans3 = @{lemma "s =  t ==> t =  u ==> s == u" by simp}
   428 in
   429 fun trans (MetaEq thm1) (MetaEq thm2) = MetaEq (Thm.transitive thm1 thm2)
   430   | trans (MetaEq thm) q = MetaEq (thm_of q COMP (thm COMP trans1))
   431   | trans p (MetaEq thm) = MetaEq (thm COMP (thm_of p COMP trans2))
   432   | trans p q = MetaEq (thm_of q COMP (thm_of p COMP trans3))
   433 end
   434 
   435 
   436 
   437 (* t1 = s1 ==> ... ==> tn = sn ==> f t1 ... tn = f s1 .. sn
   438    (reflexive antecendents are droppped) *)
   439 local
   440   exception MONO
   441 
   442   fun prove_refl (ct, _) = Thm.reflexive ct
   443   fun prove_comb f g cp =
   444     let val ((ct1, ct2), (cu1, cu2)) = pairself Thm.dest_comb cp
   445     in Thm.combination (f (ct1, cu1)) (g (ct2, cu2)) end
   446   fun prove_arg f = prove_comb prove_refl f
   447 
   448   fun prove f cp = prove_comb (prove f) f cp handle CTERM _ => prove_refl cp
   449 
   450   fun prove_nary is_comb f =
   451     let
   452       fun prove (cp as (ct, _)) = f cp handle MONO =>
   453         if is_comb (Thm.term_of ct)
   454         then prove_comb (prove_arg prove) prove cp
   455         else prove_refl cp
   456     in prove end
   457 
   458   fun prove_list f n cp =
   459     if n = 0 then prove_refl cp
   460     else prove_comb (prove_arg f) (prove_list f (n-1)) cp
   461 
   462   fun with_length f (cp as (cl, _)) =
   463     f (length (HOLogic.dest_list (Thm.term_of cl))) cp
   464 
   465   fun prove_distinct f = prove_arg (with_length (prove_list f))
   466 
   467   fun prove_eq exn lookup cp =
   468     (case lookup (Logic.mk_equals (pairself Thm.term_of cp)) of
   469       SOME eq => eq
   470     | NONE => if exn then raise MONO else prove_refl cp)
   471   
   472   val prove_eq_exn = prove_eq true
   473   and prove_eq_safe = prove_eq false
   474 
   475   fun mono f (cp as (cl, _)) =
   476     (case Term.head_of (Thm.term_of cl) of
   477       @{term HOL.conj} => prove_nary L.is_conj (prove_eq_exn f)
   478     | @{term HOL.disj} => prove_nary L.is_disj (prove_eq_exn f)
   479     | Const (@{const_name SMT.distinct}, _) => prove_distinct (prove_eq_safe f)
   480     | _ => prove (prove_eq_safe f)) cp
   481 in
   482 fun monotonicity eqs ct =
   483   let
   484     val lookup = AList.lookup (op aconv) (map (`Thm.prop_of o meta_eq_of) eqs)
   485     val cp = Thm.dest_binop (Thm.dest_arg ct)
   486   in MetaEq (prove_eq_exn lookup cp handle MONO => mono lookup cp) end
   487 end
   488 
   489 
   490 
   491 (* |- f a b = f b a (where f is equality) *)
   492 local
   493   val rule = @{lemma "a = b == b = a" by (atomize(full)) (rule eq_commute)}
   494 in
   495 fun commutativity ct = MetaEq (T.match_instantiate I (T.as_meta_eq ct) rule)
   496 end
   497 
   498 
   499 
   500 (** quantifier proof rules **)
   501 
   502 (* P ?x = Q ?x ==> (ALL x. P x) = (ALL x. Q x)
   503    P ?x = Q ?x ==> (EX x. P x) = (EX x. Q x)    *)
   504 local
   505   val rules = [
   506     @{lemma "(!!x. P x == Q x) ==> (ALL x. P x) == (ALL x. Q x)" by simp},
   507     @{lemma "(!!x. P x == Q x) ==> (EX x. P x) == (EX x. Q x)" by simp}]
   508 in
   509 fun quant_intro vars p ct =
   510   let
   511     val thm = meta_eq_of p
   512     val rules' = T.varify vars thm :: rules
   513     val cu = T.as_meta_eq ct
   514   in MetaEq (T.by_tac (REPEAT_ALL_NEW (Tactic.match_tac rules')) cu) end
   515 end
   516 
   517 
   518 
   519 (* |- ((ALL x. P x) | Q) = (ALL x. P x | Q) *)
   520 fun pull_quant ctxt = Thm o try_apply ctxt [] [
   521   named ctxt "fast" (T.by_tac (Classical.fast_tac HOL_cs))]
   522     (* FIXME: not very well tested *)
   523 
   524 
   525 
   526 (* |- (ALL x. P x & Q x) = ((ALL x. P x) & (ALL x. Q x)) *)
   527 fun push_quant ctxt = Thm o try_apply ctxt [] [
   528   named ctxt "fast" (T.by_tac (Classical.fast_tac HOL_cs))]
   529     (* FIXME: not very well tested *)
   530 
   531 
   532 
   533 (* |- (ALL x1 ... xn y1 ... yn. P x1 ... xn) = (ALL x1 ... xn. P x1 ... xn) *)
   534 local
   535   val elim_all = @{lemma "(ALL x. P) == P" by simp}
   536   val elim_ex = @{lemma "(EX x. P) == P" by simp}
   537 
   538   fun elim_unused_conv ctxt =
   539     Conv.params_conv ~1 (K (Conv.arg_conv (Conv.arg1_conv
   540       (Conv.rewrs_conv [elim_all, elim_ex])))) ctxt
   541 
   542   fun elim_unused_tac ctxt =
   543     REPEAT_ALL_NEW (
   544       Tactic.match_tac [@{thm refl}, @{thm iff_allI}, @{thm iff_exI}]
   545       ORELSE' CONVERSION (elim_unused_conv ctxt))
   546 in
   547 fun elim_unused_vars ctxt = Thm o T.by_tac (elim_unused_tac ctxt)
   548 end
   549 
   550 
   551 
   552 (* |- (ALL x1 ... xn. ~(x1 = t1 & ... xn = tn) | P x1 ... xn) = P t1 ... tn *)
   553 fun dest_eq_res ctxt = Thm o try_apply ctxt [] [
   554   named ctxt "fast" (T.by_tac (Classical.fast_tac HOL_cs))]
   555     (* FIXME: not very well tested *)
   556 
   557 
   558 
   559 (* |- ~(ALL x1...xn. P x1...xn) | P a1...an *)
   560 local
   561   val rule = @{lemma "~ P x | Q ==> ~(ALL x. P x) | Q" by fast}
   562 in
   563 val quant_inst = Thm o T.by_tac (
   564   REPEAT_ALL_NEW (Tactic.match_tac [rule])
   565   THEN' Tactic.rtac @{thm excluded_middle})
   566 end
   567 
   568 
   569 
   570 (* c = SOME x. P x |- (EX x. P x) = P c
   571    c = SOME x. ~ P x |- ~(ALL x. P x) = ~ P c *)
   572 local
   573   val elim_ex = @{lemma "EX x. P == P" by simp}
   574   val elim_all = @{lemma "~ (ALL x. P) == ~P" by simp}
   575   val sk_ex = @{lemma "c == SOME x. P x ==> EX x. P x == P c"
   576     by simp (intro eq_reflection some_eq_ex[symmetric])}
   577   val sk_all = @{lemma "c == SOME x. ~ P x ==> ~(ALL x. P x) == ~ P c"
   578     by (simp only: not_all) (intro eq_reflection some_eq_ex[symmetric])}
   579   val sk_ex_rule = ((sk_ex, I), elim_ex)
   580   and sk_all_rule = ((sk_all, Thm.dest_arg), elim_all)
   581 
   582   fun dest f sk_rule = 
   583     Thm.dest_comb (f (Thm.dest_arg (Thm.dest_arg (Thm.cprop_of sk_rule))))
   584   fun type_of f sk_rule = Thm.ctyp_of_term (snd (dest f sk_rule))
   585   fun pair2 (a, b) (c, d) = [(a, c), (b, d)]
   586   fun inst_sk (sk_rule, f) p c =
   587     Thm.instantiate ([(type_of f sk_rule, Thm.ctyp_of_term c)], []) sk_rule
   588     |> (fn sk' => Thm.instantiate ([], (pair2 (dest f sk') (p, c))) sk')
   589     |> Conv.fconv_rule (Thm.beta_conversion true)
   590 
   591   fun kind (Const (@{const_name Ex}, _) $ _) = (sk_ex_rule, I, I)
   592     | kind (@{term Not} $ (Const (@{const_name All}, _) $ _)) =
   593         (sk_all_rule, Thm.dest_arg, Thm.capply @{cterm Not})
   594     | kind t = raise TERM ("skolemize", [t])
   595 
   596   fun dest_abs_type (Abs (_, T, _)) = T
   597     | dest_abs_type t = raise TERM ("dest_abs_type", [t])
   598 
   599   fun bodies_of thy lhs rhs =
   600     let
   601       val (rule, dest, make) = kind (Thm.term_of lhs)
   602 
   603       fun dest_body idx cbs ct =
   604         let
   605           val cb = Thm.dest_arg (dest ct)
   606           val T = dest_abs_type (Thm.term_of cb)
   607           val cv = Thm.cterm_of thy (Var (("x", idx), T))
   608           val cu = make (Drule.beta_conv cb cv)
   609           val cbs' = (cv, cb) :: cbs
   610         in
   611           (snd (Thm.first_order_match (cu, rhs)), rev cbs')
   612           handle Pattern.MATCH => dest_body (idx+1) cbs' cu
   613         end
   614     in (rule, dest_body 1 [] lhs) end
   615 
   616   fun transitive f thm = Thm.transitive thm (f (Thm.rhs_of thm))
   617 
   618   fun sk_step (rule, elim) (cv, mct, cb) ((is, thm), ctxt) =
   619     (case mct of
   620       SOME ct =>
   621         ctxt
   622         |> T.make_hyp_def (inst_sk rule (Thm.instantiate_cterm ([], is) cb) ct)
   623         |>> pair ((cv, ct) :: is) o Thm.transitive thm
   624     | NONE => ((is, transitive (Conv.rewr_conv elim) thm), ctxt))
   625 in
   626 fun skolemize ct ctxt =
   627   let
   628     val (lhs, rhs) = Thm.dest_binop (Thm.dest_arg ct)
   629     val (rule, (ctab, cbs)) = bodies_of (ProofContext.theory_of ctxt) lhs rhs
   630     fun lookup_var (cv, cb) = (cv, AList.lookup (op aconvc) ctab cv, cb)
   631   in
   632     (([], Thm.reflexive lhs), ctxt)
   633     |> fold (sk_step rule) (map lookup_var cbs)
   634     |>> MetaEq o snd
   635   end
   636 end
   637 
   638 
   639 
   640 (** theory proof rules **)
   641 
   642 (* theory lemmas: linear arithmetic, arrays *)
   643 
   644 fun th_lemma ctxt simpset thms = Thm o try_apply ctxt thms [
   645   T.by_abstraction (false, true) ctxt thms (fn ctxt' => T.by_tac (
   646     NAMED ctxt' "arith" (Arith_Data.arith_tac ctxt')
   647     ORELSE' NAMED ctxt' "simp+arith" (Simplifier.simp_tac simpset THEN_ALL_NEW
   648       Arith_Data.arith_tac ctxt')))]
   649 
   650 
   651 
   652 (* rewriting: prove equalities:
   653      * ACI of conjunction/disjunction
   654      * contradiction, excluded middle
   655      * logical rewriting rules (for negation, implication, equivalence,
   656          distinct)
   657      * normal forms for polynoms (integer/real arithmetic)
   658      * quantifier elimination over linear arithmetic
   659      * ... ? **)
   660 structure Z3_Simps = Named_Thms
   661 (
   662   val name = "z3_simp"
   663   val description = "simplification rules for Z3 proof reconstruction"
   664 )
   665 
   666 local
   667   fun spec_meta_eq_of thm =
   668     (case try (fn th => th RS @{thm spec}) thm of
   669       SOME thm' => spec_meta_eq_of thm'
   670     | NONE => mk_meta_eq thm)
   671 
   672   fun prep (Thm thm) = spec_meta_eq_of thm
   673     | prep (MetaEq thm) = thm
   674     | prep (Literals (thm, _)) = spec_meta_eq_of thm
   675 
   676   fun unfold_conv ctxt ths =
   677     Conv.arg_conv (Conv.binop_conv (T.unfold_eqs ctxt (map prep ths)))
   678 
   679   fun with_conv _ [] prv = prv
   680     | with_conv ctxt ths prv = T.with_conv (unfold_conv ctxt ths) prv
   681 
   682   val unfold_conv =
   683     Conv.arg_conv (Conv.binop_conv (Conv.try_conv T.unfold_distinct_conv))
   684   val prove_conj_disj_eq = T.with_conv unfold_conv L.prove_conj_disj_eq
   685 in
   686 
   687 fun rewrite ctxt simpset ths = Thm o with_conv ctxt ths (try_apply ctxt [] [
   688   named ctxt "conj/disj/distinct" prove_conj_disj_eq,
   689   T.by_abstraction (true, false) ctxt [] (fn ctxt' => T.by_tac (
   690     NAMED ctxt' "simp (logic)" (Simplifier.simp_tac simpset)
   691     THEN_ALL_NEW NAMED ctxt' "fast (logic)" (Classical.fast_tac HOL_cs))),
   692   T.by_abstraction (false, true) ctxt [] (fn ctxt' => T.by_tac (
   693     NAMED ctxt' "simp (theory)" (Simplifier.simp_tac simpset)
   694     THEN_ALL_NEW (
   695       NAMED ctxt' "fast (theory)" (Classical.fast_tac HOL_cs)
   696       ORELSE' NAMED ctxt' "arith (theory)" (Arith_Data.arith_tac ctxt')))),
   697   T.by_abstraction (true, true) ctxt [] (fn ctxt' => T.by_tac (
   698     NAMED ctxt' "simp (full)" (Simplifier.simp_tac simpset)
   699     THEN_ALL_NEW (
   700       NAMED ctxt' "fast (full)" (Classical.fast_tac HOL_cs)
   701       ORELSE' NAMED ctxt' "arith (full)" (Arith_Data.arith_tac ctxt'))))])
   702 
   703 end
   704 
   705 
   706 
   707 (** proof reconstruction **)
   708 
   709 (* tracing and checking *)
   710 
   711 local
   712   fun count_rules ptab =
   713     let
   714       fun count (_, Unproved _) (solved, total) = (solved, total + 1)
   715         | count (_, Proved _) (solved, total) = (solved + 1, total + 1)
   716     in Inttab.fold count ptab (0, 0) end
   717 
   718   fun header idx r (solved, total) = 
   719     "Z3: #" ^ string_of_int idx ^ ": " ^ P.string_of_rule r ^ " (goal " ^
   720     string_of_int (solved + 1) ^ " of " ^ string_of_int total ^ ")"
   721 
   722   fun check ctxt idx r ps ct p =
   723     let val thm = thm_of p |> tap (Thm.join_proofs o single)
   724     in
   725       if (Thm.cprop_of thm) aconvc ct then ()
   726       else z3_exn (Pretty.string_of (Pretty.big_list ("proof step failed: " ^
   727         quote (P.string_of_rule r) ^ " (#" ^ string_of_int idx ^ ")")
   728           (pretty_goal ctxt (map (thm_of o fst) ps) (Thm.prop_of thm) @
   729            [Pretty.block [Pretty.str "expected: ",
   730             Syntax.pretty_term ctxt (Thm.term_of ct)]])))
   731     end
   732 in
   733 fun trace_rule idx prove r ps ct (cxp as (ctxt, ptab)) =
   734   let
   735     val _ = SMT_Solver.trace_msg ctxt (header idx r o count_rules) ptab
   736     val result as (p, (ctxt', _)) = prove r ps ct cxp
   737     val _ = if not (Config.get ctxt' SMT_Solver.trace) then ()
   738       else check ctxt' idx r ps ct p
   739   in result end
   740 end
   741 
   742 
   743 (* overall reconstruction procedure *)
   744 
   745 local
   746   fun not_supported r = raise Fail ("Z3: proof rule not implemented: " ^
   747     quote (P.string_of_rule r))
   748 
   749   fun step assms simpset vars r ps ct (cxp as (cx, ptab)) =
   750     (case (r, ps) of
   751       (* core rules *)
   752       (P.TrueAxiom, _) => (Thm L.true_thm, cxp)
   753     | (P.Asserted, _) => (asserted cx assms ct, cxp)
   754     | (P.Goal, _) => (asserted cx assms ct, cxp)
   755     | (P.ModusPonens, [(p, _), (q, _)]) => (mp q (thm_of p), cxp)
   756     | (P.ModusPonensOeq, [(p, _), (q, _)]) => (mp q (thm_of p), cxp)
   757     | (P.AndElim, [(p, i)]) => and_elim (p, i) ct ptab ||> pair cx
   758     | (P.NotOrElim, [(p, i)]) => not_or_elim (p, i) ct ptab ||> pair cx
   759     | (P.Hypothesis, _) => (Thm (Thm.assume ct), cxp)
   760     | (P.Lemma, [(p, _)]) => (lemma (thm_of p) ct, cxp)
   761     | (P.UnitResolution, (p, _) :: ps) =>
   762         (unit_resolution (thm_of p) (map (thm_of o fst) ps) ct, cxp)
   763     | (P.IffTrue, [(p, _)]) => (iff_true (thm_of p), cxp)
   764     | (P.IffFalse, [(p, _)]) => (iff_false (thm_of p), cxp)
   765     | (P.Distributivity, _) => (distributivity cx ct, cxp)
   766     | (P.DefAxiom, _) => (def_axiom cx ct, cxp)
   767     | (P.IntroDef, _) => intro_def ct cx ||> rpair ptab
   768     | (P.ApplyDef, [(p, _)]) => (apply_def (thm_of p), cxp)
   769     | (P.IffOeq, [(p, _)]) => (p, cxp)
   770     | (P.NnfPos, _) => (nnf cx vars (map fst ps) ct, cxp)
   771     | (P.NnfNeg, _) => (nnf cx vars (map fst ps) ct, cxp)
   772 
   773       (* equality rules *)
   774     | (P.Reflexivity, _) => (refl ct, cxp)
   775     | (P.Symmetry, [(p, _)]) => (symm p, cxp)
   776     | (P.Transitivity, [(p, _), (q, _)]) => (trans p q, cxp)
   777     | (P.Monotonicity, _) => (monotonicity (map fst ps) ct, cxp)
   778     | (P.Commutativity, _) => (commutativity ct, cxp)
   779 
   780       (* quantifier rules *)
   781     | (P.QuantIntro, [(p, _)]) => (quant_intro vars p ct, cxp)
   782     | (P.PullQuant, _) => (pull_quant cx ct, cxp)
   783     | (P.PushQuant, _) => (push_quant cx ct, cxp)
   784     | (P.ElimUnusedVars, _) => (elim_unused_vars cx ct, cxp)
   785     | (P.DestEqRes, _) => (dest_eq_res cx ct, cxp)
   786     | (P.QuantInst, _) => (quant_inst ct, cxp)
   787     | (P.Skolemize, _) => skolemize ct cx ||> rpair ptab
   788 
   789       (* theory rules *)
   790     | (P.ThLemma, _) =>
   791         (th_lemma cx simpset (map (thm_of o fst) ps) ct, cxp)
   792     | (P.Rewrite, _) => (rewrite cx simpset [] ct, cxp)
   793     | (P.RewriteStar, ps) =>
   794         (rewrite cx simpset (map fst ps) ct, cxp)
   795 
   796     | (P.NnfStar, _) => not_supported r
   797     | (P.CnfStar, _) => not_supported r
   798     | (P.TransitivityStar, _) => not_supported r
   799     | (P.PullQuantStar, _) => not_supported r
   800 
   801     | _ => raise Fail ("Z3: proof rule " ^ quote (P.string_of_rule r) ^
   802        " has an unexpected number of arguments."))
   803 
   804   fun prove ctxt assms vars =
   805     let
   806       val simpset = T.make_simpset ctxt (Z3_Simps.get ctxt)
   807  
   808       fun conclude idx rule prop (ps, cxp) =
   809         trace_rule idx (step assms simpset vars) rule ps prop cxp
   810         |-> (fn p => apsnd (Inttab.update (idx, Proved p)) #> pair p)
   811  
   812       fun lookup idx (cxp as (_, ptab)) =
   813         (case Inttab.lookup ptab idx of
   814           SOME (Unproved (P.Proof_Step {rule, prems, prop})) =>
   815             fold_map lookup prems cxp
   816             |>> map2 rpair prems
   817             |> conclude idx rule prop
   818         | SOME (Proved p) => (p, cxp)
   819         | NONE => z3_exn ("unknown proof id: " ^ quote (string_of_int idx)))
   820  
   821       fun result (p, (cx, _)) = (thm_of p, cx)
   822     in
   823       (fn idx => result o lookup idx o pair ctxt o Inttab.map (K Unproved))
   824     end
   825 
   826   fun filter_assms ctxt assms ptab =
   827     let
   828       fun step r ct =
   829         (case r of
   830           P.Asserted => insert (op =) (find_assm ctxt assms ct)
   831         | P.Goal => insert (op =) (find_assm ctxt assms ct)
   832         | _ => I)
   833 
   834       fun lookup idx =
   835         (case Inttab.lookup ptab idx of
   836           SOME (P.Proof_Step {rule, prems, prop}) =>
   837             fold lookup prems #> step rule prop
   838         | NONE => z3_exn ("unknown proof id: " ^ quote (string_of_int idx)))
   839     in lookup end
   840 in
   841 
   842 fun reconstruct ctxt {typs, terms, unfolds, assms} output =
   843   let
   844     val (idx, (ptab, vars, cx)) = P.parse ctxt typs terms output
   845     val assms' = prepare_assms cx unfolds assms
   846   in
   847     if Config.get cx SMT_Solver.filter_only
   848     then ((filter_assms cx assms' ptab idx [], @{thm TrueI}), cx)
   849     else apfst (pair []) (prove cx assms' vars idx ptab)
   850   end
   851 
   852 end
   853 
   854 val setup = z3_rules_setup #> Z3_Simps.setup
   855 
   856 end