doc-src/TutorialI/Rules/Forward.thy
author paulson
Fri, 12 Jan 2001 16:05:12 +0100
changeset 10877 6417de2029b0
parent 10846 623141a08705
child 10958 fd582f0d649b
permissions -rw-r--r--
general revisions
     1 theory Forward = Primes:
     2 
     3 text{*\noindent
     4 Forward proof material: of, OF, THEN, simplify, rule_format.
     5 *}
     6 
     7 text{*\noindent
     8 SKIP most developments...
     9 *}
    10 
    11 (** Commutativity **)
    12 
    13 lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
    14   apply (auto simp add: is_gcd_def);
    15   done
    16 
    17 lemma gcd_commute: "gcd(m,n) = gcd(n,m)"
    18   apply (rule is_gcd_unique)
    19   apply (rule is_gcd)
    20   apply (subst is_gcd_commute)
    21   apply (simp add: is_gcd)
    22   done
    23 
    24 lemma gcd_1 [simp]: "gcd(m,1) = 1"
    25   apply (simp)
    26   done
    27 
    28 lemma gcd_1_left [simp]: "gcd(1,m) = 1"
    29   apply (simp add: gcd_commute [of 1])
    30   done
    31 
    32 text{*\noindent
    33 as far as HERE.
    34 *}
    35 
    36 
    37 text {*
    38 @{thm[display] gcd_1}
    39 \rulename{gcd_1}
    40 
    41 @{thm[display] gcd_1_left}
    42 \rulename{gcd_1_left}
    43 *};
    44 
    45 text{*\noindent
    46 SKIP THIS PROOF
    47 *}
    48 
    49 lemma gcd_mult_distrib2: "k * gcd(m,n) = gcd(k*m, k*n)"
    50 apply (induct_tac m n rule: gcd.induct)
    51 apply (case_tac "n=0")
    52 apply (simp)
    53 apply (case_tac "k=0")
    54 apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
    55 done
    56 
    57 text {*
    58 @{thm[display] gcd_mult_distrib2}
    59 \rulename{gcd_mult_distrib2}
    60 *};
    61 
    62 text{*\noindent
    63 of, simplified
    64 *}
    65 
    66 
    67 lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1];
    68 lemmas gcd_mult_1 = gcd_mult_0 [simplified];
    69 
    70 text {*
    71 @{thm[display] gcd_mult_distrib2 [of _ 1]}
    72 
    73 @{thm[display] gcd_mult_0}
    74 \rulename{gcd_mult_0}
    75 
    76 @{thm[display] gcd_mult_1}
    77 \rulename{gcd_mult_1}
    78 
    79 @{thm[display] sym}
    80 \rulename{sym}
    81 *};
    82 
    83 lemmas gcd_mult = gcd_mult_1 [THEN sym];
    84 
    85 lemmas gcd_mult = gcd_mult_distrib2 [of k 1, simplified, THEN sym];
    86       (*better in one step!*)
    87 
    88 text {*
    89 more legible
    90 *};
    91 
    92 lemma gcd_mult [simp]: "gcd(k, k*n) = k"
    93 by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])
    94 
    95 
    96 lemmas gcd_self = gcd_mult [of k 1, simplified];
    97 
    98 
    99 text {*
   100 Rules handy with THEN
   101 
   102 @{thm[display] iffD1}
   103 \rulename{iffD1}
   104 
   105 @{thm[display] iffD2}
   106 \rulename{iffD2}
   107 *};
   108 
   109 
   110 text {*
   111 again: more legible
   112 *};
   113 
   114 lemma gcd_self [simp]: "gcd(k,k) = k"
   115 by (rule gcd_mult [of k 1, simplified])
   116 
   117 
   118 lemma relprime_dvd_mult: 
   119       "\<lbrakk> gcd(k,n)=1; k dvd m*n \<rbrakk> \<Longrightarrow> k dvd m";
   120 apply (insert gcd_mult_distrib2 [of m k n])
   121 apply (simp)
   122 apply (erule_tac t="m" in ssubst);
   123 apply (simp)
   124 done
   125 
   126 
   127 text {*
   128 Another example of "insert"
   129 
   130 @{thm[display] mod_div_equality}
   131 \rulename{mod_div_equality}
   132 *};
   133 
   134 lemma div_mult_self_is_m: 
   135       "0<n \<Longrightarrow> (m*n) div n = (m::nat)"
   136 apply (insert mod_div_equality [of "m*n" n])
   137 apply (simp)
   138 done
   139 
   140 lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \<Longrightarrow> (k dvd m*n) = (k dvd m)";
   141 by (blast intro: relprime_dvd_mult dvd_trans)
   142 
   143 
   144 lemma relprime_20_81: "gcd(#20,#81) = 1";
   145 by (simp add: gcd.simps)
   146 
   147 text{*example of arg_cong (NEW)
   148 
   149 @{thm[display] arg_cong[no_vars]}
   150 \rulename{arg_cong}
   151 *}
   152 
   153 
   154 text {*
   155 Examples of 'OF'
   156 
   157 @{thm[display] relprime_dvd_mult}
   158 \rulename{relprime_dvd_mult}
   159 
   160 @{thm[display] relprime_dvd_mult [OF relprime_20_81]}
   161 
   162 @{thm[display] dvd_refl}
   163 \rulename{dvd_refl}
   164 
   165 @{thm[display] dvd_add}
   166 \rulename{dvd_add}
   167 
   168 @{thm[display] dvd_add [OF dvd_refl dvd_refl]}
   169 
   170 @{thm[display] dvd_add [OF _ dvd_refl]}
   171 *};
   172 
   173 lemma "\<lbrakk>(z::int) < #37; #66 < #2*z; z*z \<noteq> #1225; Q(#34); Q(#36)\<rbrakk> \<Longrightarrow> Q(z)";
   174 apply (subgoal_tac "z = #34 \<or> z = #36")
   175 apply blast
   176 apply (subgoal_tac "z \<noteq> #35")
   177 apply arith
   178 apply force
   179 done
   180 
   181 text
   182 {*
   183 proof\ (prove):\ step\ 1\isanewline
   184 \isanewline
   185 goal\ (lemma):\isanewline
   186 \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \ \isasymLongrightarrow \ Q\ z\isanewline
   187 \ 1.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36;\isanewline
   188 \ \ \ \ \ \ \ z\ =\ \#34\ \isasymor \ z\ =\ \#36\isasymrbrakk \isanewline
   189 \ \ \ \ \isasymLongrightarrow \ Q\ z\isanewline
   190 \ 2.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \isanewline
   191 \ \ \ \ \isasymLongrightarrow \ z\ =\ \#34\ \isasymor \ z\ =\ \#36
   192 
   193 
   194 
   195 proof\ (prove):\ step\ 3\isanewline
   196 \isanewline
   197 goal\ (lemma):\isanewline
   198 \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \ \isasymLongrightarrow \ Q\ z\isanewline
   199 \ 1.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36;\isanewline
   200 \ \ \ \ \ \ \ z\ \isasymnoteq \ \#35\isasymrbrakk \isanewline
   201 \ \ \ \ \isasymLongrightarrow \ z\ =\ \#34\ \isasymor \ z\ =\ \#36\isanewline
   202 \ 2.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \isanewline
   203 \ \ \ \ \isasymLongrightarrow \ z\ \isasymnoteq \ \#35
   204 *}
   205 
   206 
   207 end