src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Thu, 14 Jul 2011 16:50:05 +0200
changeset 44691 62d64709af3b
parent 44559 b46f5d2d42cc
child 44692 e07a2c4cbad8
permissions -rw-r--r--
added option to control which lambda translation to use (for experiments)
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   datatype locality =
    19     General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
    20     Chained
    21 
    22   datatype order = First_Order | Higher_Order
    23   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    24   datatype type_level =
    25     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    26     No_Types
    27   datatype type_heaviness = Heavyweight | Lightweight
    28 
    29   datatype type_enc =
    30     Simple_Types of order * type_level |
    31     Preds of polymorphism * type_level * type_heaviness |
    32     Tags of polymorphism * type_level * type_heaviness
    33 
    34   val bound_var_prefix : string
    35   val schematic_var_prefix : string
    36   val fixed_var_prefix : string
    37   val tvar_prefix : string
    38   val tfree_prefix : string
    39   val const_prefix : string
    40   val type_const_prefix : string
    41   val class_prefix : string
    42   val skolem_const_prefix : string
    43   val old_skolem_const_prefix : string
    44   val new_skolem_const_prefix : string
    45   val type_decl_prefix : string
    46   val sym_decl_prefix : string
    47   val preds_sym_formula_prefix : string
    48   val lightweight_tags_sym_formula_prefix : string
    49   val fact_prefix : string
    50   val conjecture_prefix : string
    51   val helper_prefix : string
    52   val class_rel_clause_prefix : string
    53   val arity_clause_prefix : string
    54   val tfree_clause_prefix : string
    55   val typed_helper_suffix : string
    56   val untyped_helper_suffix : string
    57   val type_tag_idempotence_helper_name : string
    58   val predicator_name : string
    59   val app_op_name : string
    60   val type_tag_name : string
    61   val type_pred_name : string
    62   val simple_type_prefix : string
    63   val prefixed_predicator_name : string
    64   val prefixed_app_op_name : string
    65   val prefixed_type_tag_name : string
    66   val concealed_lambdasN : string
    67   val lambda_liftingN : string
    68   val combinatorsN : string
    69   val lambdasN : string
    70   val smartN : string
    71   val lambda_translation : string Config.T
    72   val ascii_of : string -> string
    73   val unascii_of : string -> string
    74   val strip_prefix_and_unascii : string -> string -> string option
    75   val proxy_table : (string * (string * (thm * (string * string)))) list
    76   val proxify_const : string -> (string * string) option
    77   val invert_const : string -> string
    78   val unproxify_const : string -> string
    79   val new_skolem_var_name_from_const : string -> string
    80   val num_type_args : theory -> string -> int
    81   val atp_irrelevant_consts : string list
    82   val atp_schematic_consts_of : term -> typ list Symtab.table
    83   val is_locality_global : locality -> bool
    84   val type_enc_from_string : string -> type_enc
    85   val polymorphism_of_type_enc : type_enc -> polymorphism
    86   val level_of_type_enc : type_enc -> type_level
    87   val is_type_enc_virtually_sound : type_enc -> bool
    88   val is_type_enc_fairly_sound : type_enc -> bool
    89   val choose_format : format list -> type_enc -> format * type_enc
    90   val mk_aconns :
    91     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
    92   val unmangled_const : string -> string * (string, 'b) ho_term list
    93   val unmangled_const_name : string -> string
    94   val helper_table : ((string * bool) * thm list) list
    95   val factsN : string
    96   val prepare_atp_problem :
    97     Proof.context -> format -> formula_kind -> formula_kind -> type_enc -> bool
    98     -> bool -> bool -> bool -> term list -> term
    99     -> ((string * locality) * term) list
   100     -> string problem * string Symtab.table * int * int
   101        * (string * locality) list vector * int list * int Symtab.table
   102   val atp_problem_weights : string problem -> (string * real) list
   103 end;
   104 
   105 structure ATP_Translate : ATP_TRANSLATE =
   106 struct
   107 
   108 open ATP_Util
   109 open ATP_Problem
   110 
   111 type name = string * string
   112 
   113 (* experimental *)
   114 val generate_info = false
   115 
   116 fun isabelle_info s =
   117   if generate_info then SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   118   else NONE
   119 
   120 val introN = "intro"
   121 val elimN = "elim"
   122 val simpN = "simp"
   123 
   124 val bound_var_prefix = "B_"
   125 val schematic_var_prefix = "V_"
   126 val fixed_var_prefix = "v_"
   127 
   128 val tvar_prefix = "T_"
   129 val tfree_prefix = "t_"
   130 
   131 val const_prefix = "c_"
   132 val type_const_prefix = "tc_"
   133 val class_prefix = "cl_"
   134 
   135 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   136 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   137 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   138 
   139 val type_decl_prefix = "ty_"
   140 val sym_decl_prefix = "sy_"
   141 val preds_sym_formula_prefix = "psy_"
   142 val lightweight_tags_sym_formula_prefix = "tsy_"
   143 val fact_prefix = "fact_"
   144 val conjecture_prefix = "conj_"
   145 val helper_prefix = "help_"
   146 val class_rel_clause_prefix = "clar_"
   147 val arity_clause_prefix = "arity_"
   148 val tfree_clause_prefix = "tfree_"
   149 
   150 val typed_helper_suffix = "_T"
   151 val untyped_helper_suffix = "_U"
   152 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   153 
   154 val predicator_name = "hBOOL"
   155 val app_op_name = "hAPP"
   156 val type_tag_name = "ti"
   157 val type_pred_name = "is"
   158 val simple_type_prefix = "ty_"
   159 
   160 val prefixed_predicator_name = const_prefix ^ predicator_name
   161 val prefixed_app_op_name = const_prefix ^ app_op_name
   162 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   163 
   164 (* Freshness almost guaranteed! *)
   165 val sledgehammer_weak_prefix = "Sledgehammer:"
   166 
   167 val concealed_lambda_prefix = sledgehammer_weak_prefix ^ "lambda_"
   168 
   169 val concealed_lambdasN = "concealed_lambdas"
   170 val lambda_liftingN = "lambda_lifting"
   171 val combinatorsN = "combinators"
   172 val lambdasN = "lambdas"
   173 val smartN = "smart"
   174 
   175 val lambda_translation =
   176   Attrib.setup_config_string @{binding atp_lambda_translation} (K smartN)
   177 
   178 (*Escaping of special characters.
   179   Alphanumeric characters are left unchanged.
   180   The character _ goes to __
   181   Characters in the range ASCII space to / go to _A to _P, respectively.
   182   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   183 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   184 
   185 fun stringN_of_int 0 _ = ""
   186   | stringN_of_int k n =
   187     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   188 
   189 fun ascii_of_char c =
   190   if Char.isAlphaNum c then
   191     String.str c
   192   else if c = #"_" then
   193     "__"
   194   else if #" " <= c andalso c <= #"/" then
   195     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   196   else
   197     (* fixed width, in case more digits follow *)
   198     "_" ^ stringN_of_int 3 (Char.ord c)
   199 
   200 val ascii_of = String.translate ascii_of_char
   201 
   202 (** Remove ASCII armoring from names in proof files **)
   203 
   204 (* We don't raise error exceptions because this code can run inside a worker
   205    thread. Also, the errors are impossible. *)
   206 val unascii_of =
   207   let
   208     fun un rcs [] = String.implode(rev rcs)
   209       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   210         (* Three types of _ escapes: __, _A to _P, _nnn *)
   211       | un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
   212       | un rcs (#"_" :: c :: cs) =
   213         if #"A" <= c andalso c<= #"P" then
   214           (* translation of #" " to #"/" *)
   215           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   216         else
   217           let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
   218             case Int.fromString (String.implode digits) of
   219               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   220             | NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
   221           end
   222       | un rcs (c :: cs) = un (c :: rcs) cs
   223   in un [] o String.explode end
   224 
   225 (* If string s has the prefix s1, return the result of deleting it,
   226    un-ASCII'd. *)
   227 fun strip_prefix_and_unascii s1 s =
   228   if String.isPrefix s1 s then
   229     SOME (unascii_of (String.extract (s, size s1, NONE)))
   230   else
   231     NONE
   232 
   233 val proxy_table =
   234   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   235        ("fFalse", @{const_name ATP.fFalse})))),
   236    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   237        ("fTrue", @{const_name ATP.fTrue})))),
   238    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   239        ("fNot", @{const_name ATP.fNot})))),
   240    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   241        ("fconj", @{const_name ATP.fconj})))),
   242    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   243        ("fdisj", @{const_name ATP.fdisj})))),
   244    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   245        ("fimplies", @{const_name ATP.fimplies})))),
   246    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   247        ("fequal", @{const_name ATP.fequal})))),
   248    ("c_All", (@{const_name All}, (@{thm fAll_def},
   249        ("fAll", @{const_name ATP.fAll})))),
   250    ("c_Ex", (@{const_name Ex}, (@{thm fEx_def},
   251        ("fEx", @{const_name ATP.fEx}))))]
   252 
   253 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   254 
   255 (* Readable names for the more common symbolic functions. Do not mess with the
   256    table unless you know what you are doing. *)
   257 val const_trans_table =
   258   [(@{type_name Product_Type.prod}, "prod"),
   259    (@{type_name Sum_Type.sum}, "sum"),
   260    (@{const_name False}, "False"),
   261    (@{const_name True}, "True"),
   262    (@{const_name Not}, "Not"),
   263    (@{const_name conj}, "conj"),
   264    (@{const_name disj}, "disj"),
   265    (@{const_name implies}, "implies"),
   266    (@{const_name HOL.eq}, "equal"),
   267    (@{const_name All}, "All"),
   268    (@{const_name Ex}, "Ex"),
   269    (@{const_name If}, "If"),
   270    (@{const_name Set.member}, "member"),
   271    (@{const_name Meson.COMBI}, "COMBI"),
   272    (@{const_name Meson.COMBK}, "COMBK"),
   273    (@{const_name Meson.COMBB}, "COMBB"),
   274    (@{const_name Meson.COMBC}, "COMBC"),
   275    (@{const_name Meson.COMBS}, "COMBS")]
   276   |> Symtab.make
   277   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   278 
   279 (* Invert the table of translations between Isabelle and ATPs. *)
   280 val const_trans_table_inv =
   281   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   282 val const_trans_table_unprox =
   283   Symtab.empty
   284   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   285 
   286 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   287 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   288 
   289 fun lookup_const c =
   290   case Symtab.lookup const_trans_table c of
   291     SOME c' => c'
   292   | NONE => ascii_of c
   293 
   294 fun ascii_of_indexname (v, 0) = ascii_of v
   295   | ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
   296 
   297 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   298 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   299 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   300 
   301 fun make_schematic_type_var (x, i) =
   302       tvar_prefix ^ (ascii_of_indexname (unprefix "'" x, i))
   303 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (unprefix "'" x))
   304 
   305 (* "HOL.eq" is mapped to the ATP's equality. *)
   306 fun make_fixed_const @{const_name HOL.eq} = tptp_old_equal
   307   | make_fixed_const c = const_prefix ^ lookup_const c
   308 
   309 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   310 
   311 fun make_type_class clas = class_prefix ^ ascii_of clas
   312 
   313 fun new_skolem_var_name_from_const s =
   314   let val ss = s |> space_explode Long_Name.separator in
   315     nth ss (length ss - 2)
   316   end
   317 
   318 (* The number of type arguments of a constant, zero if it's monomorphic. For
   319    (instances of) Skolem pseudoconstants, this information is encoded in the
   320    constant name. *)
   321 fun num_type_args thy s =
   322   if String.isPrefix skolem_const_prefix s then
   323     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   324   else
   325     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   326 
   327 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   328    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   329 val atp_irrelevant_consts =
   330   [@{const_name False}, @{const_name True}, @{const_name Not},
   331    @{const_name conj}, @{const_name disj}, @{const_name implies},
   332    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   333 
   334 val atp_monomorph_bad_consts =
   335   atp_irrelevant_consts @
   336   (* These are ignored anyway by the relevance filter (unless they appear in
   337      higher-order places) but not by the monomorphizer. *)
   338   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   339    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   340    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   341 
   342 fun add_schematic_const (x as (_, T)) =
   343   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   344 val add_schematic_consts_of =
   345   Term.fold_aterms (fn Const (x as (s, _)) =>
   346                        not (member (op =) atp_monomorph_bad_consts s)
   347                        ? add_schematic_const x
   348                       | _ => I)
   349 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   350 
   351 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   352 
   353 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   354 datatype type_literal =
   355   TyLitVar of name * name |
   356   TyLitFree of name * name
   357 
   358 
   359 (** Isabelle arities **)
   360 
   361 datatype arity_literal =
   362   TConsLit of name * name * name list |
   363   TVarLit of name * name
   364 
   365 fun gen_TVars 0 = []
   366   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   367 
   368 val type_class = the_single @{sort type}
   369 
   370 fun add_packed_sort tvar =
   371   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   372 
   373 type arity_clause =
   374   {name : string,
   375    prem_lits : arity_literal list,
   376    concl_lits : arity_literal}
   377 
   378 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   379 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   380   let
   381     val tvars = gen_TVars (length args)
   382     val tvars_srts = ListPair.zip (tvars, args)
   383   in
   384     {name = name,
   385      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   386      concl_lits = TConsLit (`make_type_class cls,
   387                             `make_fixed_type_const tcons,
   388                             tvars ~~ tvars)}
   389   end
   390 
   391 fun arity_clause _ _ (_, []) = []
   392   | arity_clause seen n (tcons, ("HOL.type", _) :: ars) =  (* ignore *)
   393     arity_clause seen n (tcons, ars)
   394   | arity_clause seen n (tcons, (ar as (class, _)) :: ars) =
   395     if member (op =) seen class then
   396       (* multiple arities for the same (tycon, class) pair *)
   397       make_axiom_arity_clause (tcons,
   398           lookup_const tcons ^ "___" ^ ascii_of class ^ "_" ^ string_of_int n,
   399           ar) ::
   400       arity_clause seen (n + 1) (tcons, ars)
   401     else
   402       make_axiom_arity_clause (tcons, lookup_const tcons ^ "___" ^
   403                                ascii_of class, ar) ::
   404       arity_clause (class :: seen) n (tcons, ars)
   405 
   406 fun multi_arity_clause [] = []
   407   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   408       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   409 
   410 (* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
   411    theory thy provided its arguments have the corresponding sorts. *)
   412 fun type_class_pairs thy tycons classes =
   413   let
   414     val alg = Sign.classes_of thy
   415     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   416     fun add_class tycon class =
   417       cons (class, domain_sorts tycon class)
   418       handle Sorts.CLASS_ERROR _ => I
   419     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   420   in map try_classes tycons end
   421 
   422 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   423 fun iter_type_class_pairs _ _ [] = ([], [])
   424   | iter_type_class_pairs thy tycons classes =
   425       let
   426         fun maybe_insert_class s =
   427           (s <> type_class andalso not (member (op =) classes s))
   428           ? insert (op =) s
   429         val cpairs = type_class_pairs thy tycons classes
   430         val newclasses =
   431           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   432         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   433       in (classes' @ classes, union (op =) cpairs' cpairs) end
   434 
   435 fun make_arity_clauses thy tycons =
   436   iter_type_class_pairs thy tycons ##> multi_arity_clause
   437 
   438 
   439 (** Isabelle class relations **)
   440 
   441 type class_rel_clause =
   442   {name : string,
   443    subclass : name,
   444    superclass : name}
   445 
   446 (* Generate all pairs (sub, super) such that sub is a proper subclass of super
   447    in theory "thy". *)
   448 fun class_pairs _ [] _ = []
   449   | class_pairs thy subs supers =
   450       let
   451         val class_less = Sorts.class_less (Sign.classes_of thy)
   452         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   453         fun add_supers sub = fold (add_super sub) supers
   454       in fold add_supers subs [] end
   455 
   456 fun make_class_rel_clause (sub, super) =
   457   {name = sub ^ "_" ^ super, subclass = `make_type_class sub,
   458    superclass = `make_type_class super}
   459 
   460 fun make_class_rel_clauses thy subs supers =
   461   map make_class_rel_clause (class_pairs thy subs supers)
   462 
   463 datatype combterm =
   464   CombConst of name * typ * typ list |
   465   CombVar of name * typ |
   466   CombApp of combterm * combterm |
   467   CombAbs of (name * typ) * combterm
   468 
   469 fun combtyp_of (CombConst (_, T, _)) = T
   470   | combtyp_of (CombVar (_, T)) = T
   471   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   472   | combtyp_of (CombAbs ((_, T), tm)) = T --> combtyp_of tm
   473 
   474 (*gets the head of a combinator application, along with the list of arguments*)
   475 fun strip_combterm_comb u =
   476   let
   477     fun stripc (CombApp (t, u), ts) = stripc (t, u :: ts)
   478       | stripc x = x
   479   in stripc (u, []) end
   480 
   481 fun atyps_of T = fold_atyps (insert (op =)) T []
   482 
   483 fun new_skolem_const_name s num_T_args =
   484   [new_skolem_const_prefix, s, string_of_int num_T_args]
   485   |> space_implode Long_Name.separator
   486 
   487 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   488    infomation. *)
   489 fun combterm_from_term thy bs (P $ Q) =
   490     let
   491       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   492       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   493     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   494   | combterm_from_term thy _ (Const (c, T)) =
   495     let
   496       val tvar_list =
   497         (if String.isPrefix old_skolem_const_prefix c then
   498            [] |> Term.add_tvarsT T |> map TVar
   499          else
   500            (c, T) |> Sign.const_typargs thy)
   501       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   502     in (c', atyps_of T) end
   503   | combterm_from_term _ _ (Free (v, T)) =
   504     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   505   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   506     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   507        let
   508          val Ts = T |> strip_type |> swap |> op ::
   509          val s' = new_skolem_const_name s (length Ts)
   510        in CombConst (`make_fixed_const s', T, Ts) end
   511      else
   512        CombVar ((make_schematic_var v, s), T), atyps_of T)
   513   | combterm_from_term _ bs (Bound j) =
   514     nth bs j
   515     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   516   | combterm_from_term thy bs (Abs (s, T, t)) =
   517     let
   518       fun vary s = s |> AList.defined (op =) bs s ? vary o Symbol.bump_string
   519       val s = vary s
   520       val (tm, atomic_Ts) = combterm_from_term thy ((s, T) :: bs) t
   521     in
   522       (CombAbs ((`make_bound_var s, T), tm),
   523        union (op =) atomic_Ts (atyps_of T))
   524     end
   525 
   526 datatype locality =
   527   General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
   528   Chained
   529 
   530 (* (quasi-)underapproximation of the truth *)
   531 fun is_locality_global Local = false
   532   | is_locality_global Assum = false
   533   | is_locality_global Chained = false
   534   | is_locality_global _ = true
   535 
   536 datatype order = First_Order | Higher_Order
   537 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   538 datatype type_level =
   539   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   540   No_Types
   541 datatype type_heaviness = Heavyweight | Lightweight
   542 
   543 datatype type_enc =
   544   Simple_Types of order * type_level |
   545   Preds of polymorphism * type_level * type_heaviness |
   546   Tags of polymorphism * type_level * type_heaviness
   547 
   548 fun try_unsuffixes ss s =
   549   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   550 
   551 fun type_enc_from_string s =
   552   (case try (unprefix "poly_") s of
   553      SOME s => (SOME Polymorphic, s)
   554    | NONE =>
   555      case try (unprefix "mono_") s of
   556        SOME s => (SOME Monomorphic, s)
   557      | NONE =>
   558        case try (unprefix "mangled_") s of
   559          SOME s => (SOME Mangled_Monomorphic, s)
   560        | NONE => (NONE, s))
   561   ||> (fn s =>
   562           (* "_query" and "_bang" are for the ASCII-challenged Metis and
   563              Mirabelle. *)
   564           case try_unsuffixes ["?", "_query"] s of
   565             SOME s => (Noninf_Nonmono_Types, s)
   566           | NONE =>
   567             case try_unsuffixes ["!", "_bang"] s of
   568               SOME s => (Fin_Nonmono_Types, s)
   569             | NONE => (All_Types, s))
   570   ||> apsnd (fn s =>
   571                 case try (unsuffix "_heavy") s of
   572                   SOME s => (Heavyweight, s)
   573                 | NONE => (Lightweight, s))
   574   |> (fn (poly, (level, (heaviness, core))) =>
   575          case (core, (poly, level, heaviness)) of
   576            ("simple", (NONE, _, Lightweight)) =>
   577            Simple_Types (First_Order, level)
   578          | ("simple_higher", (NONE, _, Lightweight)) =>
   579            if level = Noninf_Nonmono_Types then raise Same.SAME
   580            else Simple_Types (Higher_Order, level)
   581          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   582          | ("tags", (SOME Polymorphic, _, _)) =>
   583            Tags (Polymorphic, level, heaviness)
   584          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   585          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   586            Preds (poly, Const_Arg_Types, Lightweight)
   587          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   588            Preds (Polymorphic, No_Types, Lightweight)
   589          | _ => raise Same.SAME)
   590   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   591 
   592 fun is_type_enc_higher_order (Simple_Types (Higher_Order, _)) = true
   593   | is_type_enc_higher_order _ = false
   594 
   595 fun polymorphism_of_type_enc (Simple_Types _) = Mangled_Monomorphic
   596   | polymorphism_of_type_enc (Preds (poly, _, _)) = poly
   597   | polymorphism_of_type_enc (Tags (poly, _, _)) = poly
   598 
   599 fun level_of_type_enc (Simple_Types (_, level)) = level
   600   | level_of_type_enc (Preds (_, level, _)) = level
   601   | level_of_type_enc (Tags (_, level, _)) = level
   602 
   603 fun heaviness_of_type_enc (Simple_Types _) = Heavyweight
   604   | heaviness_of_type_enc (Preds (_, _, heaviness)) = heaviness
   605   | heaviness_of_type_enc (Tags (_, _, heaviness)) = heaviness
   606 
   607 fun is_type_level_virtually_sound level =
   608   level = All_Types orelse level = Noninf_Nonmono_Types
   609 val is_type_enc_virtually_sound =
   610   is_type_level_virtually_sound o level_of_type_enc
   611 
   612 fun is_type_level_fairly_sound level =
   613   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   614 val is_type_enc_fairly_sound = is_type_level_fairly_sound o level_of_type_enc
   615 
   616 fun effective_lambda_translation ctxt type_enc =
   617   Config.get ctxt lambda_translation
   618   |> (fn trans =>
   619          if trans = smartN then
   620            if is_type_enc_higher_order type_enc then lambdasN else combinatorsN
   621          else
   622            trans)
   623 
   624 fun choose_format formats (Simple_Types (order, level)) =
   625     if member (op =) formats THF then
   626       (THF, Simple_Types (order, level))
   627     else if member (op =) formats TFF then
   628       (TFF, Simple_Types (First_Order, level))
   629     else
   630       choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   631   | choose_format formats type_enc =
   632     (case hd formats of
   633        CNF_UEQ =>
   634        (CNF_UEQ, case type_enc of
   635                    Preds stuff =>
   636                    (if is_type_enc_fairly_sound type_enc then Tags else Preds)
   637                        stuff
   638                  | _ => type_enc)
   639      | format => (format, type_enc))
   640 
   641 type translated_formula =
   642   {name : string,
   643    locality : locality,
   644    kind : formula_kind,
   645    combformula : (name, typ, combterm) formula,
   646    atomic_types : typ list}
   647 
   648 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   649                           : translated_formula) =
   650   {name = name, locality = locality, kind = kind, combformula = f combformula,
   651    atomic_types = atomic_types} : translated_formula
   652 
   653 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   654 
   655 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   656 
   657 fun insert_type ctxt get_T x xs =
   658   let val T = get_T x in
   659     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   660     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   661   end
   662 
   663 (* The Booleans indicate whether all type arguments should be kept. *)
   664 datatype type_arg_policy =
   665   Explicit_Type_Args of bool |
   666   Mangled_Type_Args of bool |
   667   No_Type_Args
   668 
   669 fun should_drop_arg_type_args (Simple_Types _) =
   670     false (* since TFF doesn't support overloading *)
   671   | should_drop_arg_type_args type_enc =
   672     level_of_type_enc type_enc = All_Types andalso
   673     heaviness_of_type_enc type_enc = Heavyweight
   674 
   675 fun type_arg_policy type_enc s =
   676   if s = type_tag_name then
   677     (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   678        Mangled_Type_Args
   679      else
   680        Explicit_Type_Args) false
   681   else case type_enc of
   682     Tags (_, All_Types, Heavyweight) => No_Type_Args
   683   | _ =>
   684     if level_of_type_enc type_enc = No_Types orelse
   685        s = @{const_name HOL.eq} orelse
   686        (s = app_op_name andalso
   687         level_of_type_enc type_enc = Const_Arg_Types) then
   688       No_Type_Args
   689     else
   690       should_drop_arg_type_args type_enc
   691       |> (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   692             Mangled_Type_Args
   693           else
   694             Explicit_Type_Args)
   695 
   696 (* Make literals for sorted type variables. *)
   697 fun generic_add_sorts_on_type (_, []) = I
   698   | generic_add_sorts_on_type ((x, i), s :: ss) =
   699     generic_add_sorts_on_type ((x, i), ss)
   700     #> (if s = the_single @{sort HOL.type} then
   701           I
   702         else if i = ~1 then
   703           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   704         else
   705           insert (op =) (TyLitVar (`make_type_class s,
   706                                    (make_schematic_type_var (x, i), x))))
   707 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   708   | add_sorts_on_tfree _ = I
   709 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   710   | add_sorts_on_tvar _ = I
   711 
   712 fun type_literals_for_types type_enc add_sorts_on_typ Ts =
   713   [] |> level_of_type_enc type_enc <> No_Types ? fold add_sorts_on_typ Ts
   714 
   715 fun mk_aconns c phis =
   716   let val (phis', phi') = split_last phis in
   717     fold_rev (mk_aconn c) phis' phi'
   718   end
   719 fun mk_ahorn [] phi = phi
   720   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   721 fun mk_aquant _ [] phi = phi
   722   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   723     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   724   | mk_aquant q xs phi = AQuant (q, xs, phi)
   725 
   726 fun close_universally atom_vars phi =
   727   let
   728     fun formula_vars bounds (AQuant (_, xs, phi)) =
   729         formula_vars (map fst xs @ bounds) phi
   730       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   731       | formula_vars bounds (AAtom tm) =
   732         union (op =) (atom_vars tm []
   733                       |> filter_out (member (op =) bounds o fst))
   734   in mk_aquant AForall (formula_vars [] phi []) phi end
   735 
   736 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   737   | combterm_vars (CombConst _) = I
   738   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   739   | combterm_vars (CombAbs (_, tm)) = combterm_vars tm
   740 fun close_combformula_universally phi = close_universally combterm_vars phi
   741 
   742 fun term_vars bounds (ATerm (name as (s, _), tms)) =
   743     (is_tptp_variable s andalso not (member (op =) bounds name))
   744     ? insert (op =) (name, NONE) #> fold (term_vars bounds) tms
   745   | term_vars bounds (AAbs ((name, _), tm)) = term_vars (name :: bounds) tm
   746 fun close_formula_universally phi = close_universally (term_vars []) phi
   747 
   748 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   749 val homo_infinite_type = Type (homo_infinite_type_name, [])
   750 
   751 fun ho_term_from_typ format type_enc =
   752   let
   753     fun term (Type (s, Ts)) =
   754       ATerm (case (is_type_enc_higher_order type_enc, s) of
   755                (true, @{type_name bool}) => `I tptp_bool_type
   756              | (true, @{type_name fun}) => `I tptp_fun_type
   757              | _ => if s = homo_infinite_type_name andalso
   758                        (format = TFF orelse format = THF) then
   759                       `I tptp_individual_type
   760                     else
   761                       `make_fixed_type_const s,
   762              map term Ts)
   763     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   764     | term (TVar ((x as (s, _)), _)) =
   765       ATerm ((make_schematic_type_var x, s), [])
   766   in term end
   767 
   768 fun ho_term_for_type_arg format type_enc T =
   769   if T = dummyT then NONE else SOME (ho_term_from_typ format type_enc T)
   770 
   771 (* This shouldn't clash with anything else. *)
   772 val mangled_type_sep = "\000"
   773 
   774 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   775   | generic_mangled_type_name f (ATerm (name, tys)) =
   776     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   777     ^ ")"
   778   | generic_mangled_type_name _ _ = raise Fail "unexpected type abstraction"
   779 
   780 val bool_atype = AType (`I tptp_bool_type)
   781 
   782 fun make_simple_type s =
   783   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   784      s = tptp_individual_type then
   785     s
   786   else
   787     simple_type_prefix ^ ascii_of s
   788 
   789 fun ho_type_from_ho_term type_enc pred_sym ary =
   790   let
   791     fun to_atype ty =
   792       AType ((make_simple_type (generic_mangled_type_name fst ty),
   793               generic_mangled_type_name snd ty))
   794     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   795     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   796       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   797       | to_fo _ _ = raise Fail "unexpected type abstraction"
   798     fun to_ho (ty as ATerm ((s, _), tys)) =
   799         if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   800       | to_ho _ = raise Fail "unexpected type abstraction"
   801   in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
   802 
   803 fun ho_type_from_typ format type_enc pred_sym ary =
   804   ho_type_from_ho_term type_enc pred_sym ary
   805   o ho_term_from_typ format type_enc
   806 
   807 fun mangled_const_name format type_enc T_args (s, s') =
   808   let
   809     val ty_args = T_args |> map_filter (ho_term_for_type_arg format type_enc)
   810     fun type_suffix f g =
   811       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   812                 o generic_mangled_type_name f) ty_args ""
   813   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   814 
   815 val parse_mangled_ident =
   816   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   817 
   818 fun parse_mangled_type x =
   819   (parse_mangled_ident
   820    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   821                     [] >> ATerm) x
   822 and parse_mangled_types x =
   823   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   824 
   825 fun unmangled_type s =
   826   s |> suffix ")" |> raw_explode
   827     |> Scan.finite Symbol.stopper
   828            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   829                                                 quote s)) parse_mangled_type))
   830     |> fst
   831 
   832 val unmangled_const_name = space_explode mangled_type_sep #> hd
   833 fun unmangled_const s =
   834   let val ss = space_explode mangled_type_sep s in
   835     (hd ss, map unmangled_type (tl ss))
   836   end
   837 
   838 fun introduce_proxies type_enc =
   839   let
   840     fun intro top_level (CombApp (tm1, tm2)) =
   841         CombApp (intro top_level tm1, intro false tm2)
   842       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   843         (case proxify_const s of
   844            SOME proxy_base =>
   845            if top_level orelse is_type_enc_higher_order type_enc then
   846              case (top_level, s) of
   847                (_, "c_False") => (`I tptp_false, [])
   848              | (_, "c_True") => (`I tptp_true, [])
   849              | (false, "c_Not") => (`I tptp_not, [])
   850              | (false, "c_conj") => (`I tptp_and, [])
   851              | (false, "c_disj") => (`I tptp_or, [])
   852              | (false, "c_implies") => (`I tptp_implies, [])
   853              | (false, "c_All") => (`I tptp_ho_forall, [])
   854              | (false, "c_Ex") => (`I tptp_ho_exists, [])
   855              | (false, s) =>
   856                if is_tptp_equal s then (`I tptp_equal, [])
   857                else (proxy_base |>> prefix const_prefix, T_args)
   858              | _ => (name, [])
   859            else
   860              (proxy_base |>> prefix const_prefix, T_args)
   861           | NONE => (name, T_args))
   862         |> (fn (name, T_args) => CombConst (name, T, T_args))
   863       | intro _ (CombAbs (bound, tm)) = CombAbs (bound, intro false tm)
   864       | intro _ tm = tm
   865   in intro true end
   866 
   867 fun combformula_from_prop thy type_enc eq_as_iff =
   868   let
   869     fun do_term bs t atomic_types =
   870       combterm_from_term thy bs (Envir.eta_contract t)
   871       |>> (introduce_proxies type_enc #> AAtom)
   872       ||> union (op =) atomic_types
   873     fun do_quant bs q s T t' =
   874       let val s = singleton (Name.variant_list (map fst bs)) s in
   875         do_formula ((s, T) :: bs) t'
   876         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   877       end
   878     and do_conn bs c t1 t2 =
   879       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   880     and do_formula bs t =
   881       case t of
   882         @{const Trueprop} $ t1 => do_formula bs t1
   883       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   884       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   885         do_quant bs AForall s T t'
   886       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   887         do_quant bs AExists s T t'
   888       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   889       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   890       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   891       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   892         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   893       | _ => do_term bs t
   894   in do_formula [] end
   895 
   896 fun presimplify_term _ [] t = t
   897   | presimplify_term ctxt presimp_consts t =
   898     t |> exists_Const (member (op =) presimp_consts o fst) t
   899          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   900             #> Meson.presimplify ctxt
   901             #> prop_of)
   902 
   903 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   904 fun conceal_bounds Ts t =
   905   subst_bounds (map (Free o apfst concealed_bound_name)
   906                     (0 upto length Ts - 1 ~~ Ts), t)
   907 fun reveal_bounds Ts =
   908   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   909                     (0 upto length Ts - 1 ~~ Ts))
   910 
   911 fun is_fun_equality (@{const_name HOL.eq},
   912                      Type (_, [Type (@{type_name fun}, _), _])) = true
   913   | is_fun_equality _ = false
   914 
   915 fun extensionalize_term ctxt t =
   916   if exists_Const is_fun_equality t then
   917     let val thy = Proof_Context.theory_of ctxt in
   918       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   919         |> prop_of |> Logic.dest_equals |> snd
   920     end
   921   else
   922     t
   923 
   924 fun conceal_lambdas Ts (t1 $ t2) = conceal_lambdas Ts t1 $ conceal_lambdas Ts t2
   925   | conceal_lambdas Ts (Abs (_, T, t)) =
   926     Free (concealed_lambda_prefix ^ string_of_int (hash_term t),
   927           T --> fastype_of1 (Ts, t))
   928   | conceal_lambdas _ t = t
   929 
   930 fun process_abstractions_in_term ctxt type_enc kind t =
   931   let val thy = Proof_Context.theory_of ctxt in
   932     if Meson.is_fol_term thy t then
   933       t
   934     else
   935       let
   936         fun aux Ts t =
   937           case t of
   938             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   939           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   940             t0 $ Abs (s, T, aux (T :: Ts) t')
   941           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   942             aux Ts (t0 $ eta_expand Ts t1 1)
   943           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   944             t0 $ Abs (s, T, aux (T :: Ts) t')
   945           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   946             aux Ts (t0 $ eta_expand Ts t1 1)
   947           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   948           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   949           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   950           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   951               $ t1 $ t2 =>
   952             t0 $ aux Ts t1 $ aux Ts t2
   953           | _ =>
   954             if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   955               t
   956             else
   957               let
   958                 val trans = effective_lambda_translation ctxt type_enc
   959                 val t = t |> Envir.eta_contract
   960               in
   961                 if trans = concealed_lambdasN then
   962                   t |> conceal_lambdas []
   963                 else if trans = lambda_liftingN then
   964                   t (* TODO: implement *)
   965                 else if trans = combinatorsN then
   966                   t |> conceal_bounds Ts
   967                     |> cterm_of thy
   968                     |> Meson_Clausify.introduce_combinators_in_cterm
   969                     |> prop_of |> Logic.dest_equals |> snd
   970                     |> reveal_bounds Ts
   971                 else if trans = lambdasN then
   972                   t
   973                 else
   974                   error ("Unknown lambda translation: " ^ quote trans ^ ".")
   975               end
   976         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   977       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   978       handle THM _ =>
   979              (* A type variable of sort "{}" will make abstraction fail. *)
   980              if kind = Conjecture then HOLogic.false_const
   981              else HOLogic.true_const
   982   end
   983 
   984 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   985    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   986 fun freeze_term t =
   987   let
   988     fun aux (t $ u) = aux t $ aux u
   989       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   990       | aux (Var ((s, i), T)) =
   991         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   992       | aux t = t
   993   in t |> exists_subterm is_Var t ? aux end
   994 
   995 fun preprocess_prop ctxt type_enc presimp_consts kind t =
   996   let
   997     val thy = Proof_Context.theory_of ctxt
   998     val t = t |> Envir.beta_eta_contract
   999               |> transform_elim_prop
  1000               |> Object_Logic.atomize_term thy
  1001     val need_trueprop = (fastype_of t = @{typ bool})
  1002   in
  1003     t |> need_trueprop ? HOLogic.mk_Trueprop
  1004       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
  1005       |> extensionalize_term ctxt
  1006       |> presimplify_term ctxt presimp_consts
  1007       |> perhaps (try (HOLogic.dest_Trueprop))
  1008       |> process_abstractions_in_term ctxt type_enc kind
  1009   end
  1010 
  1011 (* making fact and conjecture formulas *)
  1012 fun make_formula thy type_enc eq_as_iff name loc kind t =
  1013   let
  1014     val (combformula, atomic_types) =
  1015       combformula_from_prop thy type_enc eq_as_iff t []
  1016   in
  1017     {name = name, locality = loc, kind = kind, combformula = combformula,
  1018      atomic_types = atomic_types}
  1019   end
  1020 
  1021 fun make_fact ctxt format type_enc eq_as_iff preproc presimp_consts
  1022               ((name, loc), t) =
  1023   let val thy = Proof_Context.theory_of ctxt in
  1024     case t |> preproc ? preprocess_prop ctxt type_enc presimp_consts Axiom
  1025            |> make_formula thy type_enc (eq_as_iff andalso format <> CNF) name
  1026                            loc Axiom of
  1027       formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...} =>
  1028       if s = tptp_true then NONE else SOME formula
  1029     | formula => SOME formula
  1030   end
  1031 
  1032 fun make_conjecture ctxt format prem_kind type_enc preproc presimp_consts ts =
  1033   let
  1034     val thy = Proof_Context.theory_of ctxt
  1035     val last = length ts - 1
  1036   in
  1037     map2 (fn j => fn t =>
  1038              let
  1039                val (kind, maybe_negate) =
  1040                  if j = last then
  1041                    (Conjecture, I)
  1042                  else
  1043                    (prem_kind,
  1044                     if prem_kind = Conjecture then update_combformula mk_anot
  1045                     else I)
  1046               in
  1047                 t |> preproc ?
  1048                      (preprocess_prop ctxt type_enc presimp_consts kind #> freeze_term)
  1049                   |> make_formula thy type_enc (format <> CNF) (string_of_int j)
  1050                                   Local kind
  1051                   |> maybe_negate
  1052               end)
  1053          (0 upto last) ts
  1054   end
  1055 
  1056 (** Finite and infinite type inference **)
  1057 
  1058 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1059   | deep_freeze_atyp T = T
  1060 val deep_freeze_type = map_atyps deep_freeze_atyp
  1061 
  1062 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1063    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1064    proofs. On the other hand, all HOL infinite types can be given the same
  1065    models in first-order logic (via Löwenheim-Skolem). *)
  1066 
  1067 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1068     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1069   | should_encode_type _ _ All_Types _ = true
  1070   | should_encode_type ctxt _ Fin_Nonmono_Types T =
  1071     is_type_surely_finite ctxt false T
  1072   | should_encode_type _ _ _ _ = false
  1073 
  1074 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1075                              should_predicate_on_var T =
  1076     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1077     should_encode_type ctxt nonmono_Ts level T
  1078   | should_predicate_on_type _ _ _ _ _ = false
  1079 
  1080 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
  1081     String.isPrefix bound_var_prefix s
  1082   | is_var_or_bound_var (CombVar _) = true
  1083   | is_var_or_bound_var _ = false
  1084 
  1085 datatype tag_site =
  1086   Top_Level of bool option |
  1087   Eq_Arg of bool option |
  1088   Elsewhere
  1089 
  1090 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1091   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1092                          u T =
  1093     (case heaviness of
  1094        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1095      | Lightweight =>
  1096        case (site, is_var_or_bound_var u) of
  1097          (Eq_Arg pos, true) =>
  1098          (* The first disjunct prevents a subtle soundness issue explained in
  1099             Blanchette's Ph.D. thesis. See also
  1100             "formula_lines_for_lightweight_tags_sym_decl". *)
  1101          (pos <> SOME false andalso poly = Polymorphic andalso
  1102           level <> All_Types andalso heaviness = Lightweight andalso
  1103           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1104          should_encode_type ctxt nonmono_Ts level T
  1105        | _ => false)
  1106   | should_tag_with_type _ _ _ _ _ _ = false
  1107 
  1108 fun homogenized_type ctxt nonmono_Ts level =
  1109   let
  1110     val should_encode = should_encode_type ctxt nonmono_Ts level
  1111     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1112       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1113         homo 0 T1 --> homo (ary - 1) T2
  1114       | homo _ _ = raise Fail "expected function type"
  1115   in homo end
  1116 
  1117 (** "hBOOL" and "hAPP" **)
  1118 
  1119 type sym_info =
  1120   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1121 
  1122 fun add_combterm_syms_to_table ctxt explicit_apply =
  1123   let
  1124     fun consider_var_arity const_T var_T max_ary =
  1125       let
  1126         fun iter ary T =
  1127           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1128              type_instance ctxt (T, var_T) then
  1129             ary
  1130           else
  1131             iter (ary + 1) (range_type T)
  1132       in iter 0 const_T end
  1133     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1134       if explicit_apply = NONE andalso
  1135          (can dest_funT T orelse T = @{typ bool}) then
  1136         let
  1137           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1138           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1139             {pred_sym = pred_sym andalso not bool_vars',
  1140              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1141              max_ary = max_ary, types = types}
  1142           val fun_var_Ts' =
  1143             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1144         in
  1145           if bool_vars' = bool_vars andalso
  1146              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1147             accum
  1148           else
  1149             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1150         end
  1151       else
  1152         accum
  1153     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1154       let val (head, args) = strip_combterm_comb tm in
  1155         (case head of
  1156            CombConst ((s, _), T, _) =>
  1157            if String.isPrefix bound_var_prefix s then
  1158              add_var_or_bound_var T accum
  1159            else
  1160              let val ary = length args in
  1161                ((bool_vars, fun_var_Ts),
  1162                 case Symtab.lookup sym_tab s of
  1163                   SOME {pred_sym, min_ary, max_ary, types} =>
  1164                   let
  1165                     val pred_sym =
  1166                       pred_sym andalso top_level andalso not bool_vars
  1167                     val types' = types |> insert_type ctxt I T
  1168                     val min_ary =
  1169                       if is_some explicit_apply orelse
  1170                          pointer_eq (types', types) then
  1171                         min_ary
  1172                       else
  1173                         fold (consider_var_arity T) fun_var_Ts min_ary
  1174                   in
  1175                     Symtab.update (s, {pred_sym = pred_sym,
  1176                                        min_ary = Int.min (ary, min_ary),
  1177                                        max_ary = Int.max (ary, max_ary),
  1178                                        types = types'})
  1179                                   sym_tab
  1180                   end
  1181                 | NONE =>
  1182                   let
  1183                     val pred_sym = top_level andalso not bool_vars
  1184                     val min_ary =
  1185                       case explicit_apply of
  1186                         SOME true => 0
  1187                       | SOME false => ary
  1188                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1189                   in
  1190                     Symtab.update_new (s, {pred_sym = pred_sym,
  1191                                            min_ary = min_ary, max_ary = ary,
  1192                                            types = [T]})
  1193                                       sym_tab
  1194                   end)
  1195              end
  1196          | CombVar (_, T) => add_var_or_bound_var T accum
  1197          | CombAbs ((_, T), tm) =>
  1198            accum |> add_var_or_bound_var T |> add false tm
  1199          | _ => accum)
  1200         |> fold (add false) args
  1201       end
  1202   in add true end
  1203 fun add_fact_syms_to_table ctxt explicit_apply =
  1204   fact_lift (formula_fold NONE
  1205                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1206 
  1207 val default_sym_tab_entries : (string * sym_info) list =
  1208   (prefixed_predicator_name,
  1209    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1210   ([tptp_false, tptp_true]
  1211    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1212   ([tptp_equal, tptp_old_equal]
  1213    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1214 
  1215 fun sym_table_for_facts ctxt explicit_apply facts =
  1216   ((false, []), Symtab.empty)
  1217   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1218   |> fold Symtab.update default_sym_tab_entries
  1219 
  1220 fun min_arity_of sym_tab s =
  1221   case Symtab.lookup sym_tab s of
  1222     SOME ({min_ary, ...} : sym_info) => min_ary
  1223   | NONE =>
  1224     case strip_prefix_and_unascii const_prefix s of
  1225       SOME s =>
  1226       let val s = s |> unmangled_const_name |> invert_const in
  1227         if s = predicator_name then 1
  1228         else if s = app_op_name then 2
  1229         else if s = type_pred_name then 1
  1230         else 0
  1231       end
  1232     | NONE => 0
  1233 
  1234 (* True if the constant ever appears outside of the top-level position in
  1235    literals, or if it appears with different arities (e.g., because of different
  1236    type instantiations). If false, the constant always receives all of its
  1237    arguments and is used as a predicate. *)
  1238 fun is_pred_sym sym_tab s =
  1239   case Symtab.lookup sym_tab s of
  1240     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1241     pred_sym andalso min_ary = max_ary
  1242   | NONE => false
  1243 
  1244 val predicator_combconst =
  1245   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1246 fun predicator tm = CombApp (predicator_combconst, tm)
  1247 
  1248 fun introduce_predicators_in_combterm sym_tab tm =
  1249   case strip_combterm_comb tm of
  1250     (CombConst ((s, _), _, _), _) =>
  1251     if is_pred_sym sym_tab s then tm else predicator tm
  1252   | _ => predicator tm
  1253 
  1254 fun list_app head args = fold (curry (CombApp o swap)) args head
  1255 
  1256 val app_op = `make_fixed_const app_op_name
  1257 
  1258 fun explicit_app arg head =
  1259   let
  1260     val head_T = combtyp_of head
  1261     val (arg_T, res_T) = dest_funT head_T
  1262     val explicit_app =
  1263       CombConst (app_op, head_T --> head_T, [arg_T, res_T])
  1264   in list_app explicit_app [head, arg] end
  1265 fun list_explicit_app head args = fold explicit_app args head
  1266 
  1267 fun introduce_explicit_apps_in_combterm sym_tab =
  1268   let
  1269     fun aux tm =
  1270       case strip_combterm_comb tm of
  1271         (head as CombConst ((s, _), _, _), args) =>
  1272         args |> map aux
  1273              |> chop (min_arity_of sym_tab s)
  1274              |>> list_app head
  1275              |-> list_explicit_app
  1276       | (head, args) => list_explicit_app head (map aux args)
  1277   in aux end
  1278 
  1279 fun chop_fun 0 T = ([], T)
  1280   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1281     chop_fun (n - 1) ran_T |>> cons dom_T
  1282   | chop_fun _ _ = raise Fail "unexpected non-function"
  1283 
  1284 fun filter_type_args _ _ _ [] = []
  1285   | filter_type_args thy s arity T_args =
  1286     let
  1287       (* will throw "TYPE" for pseudo-constants *)
  1288       val U = if s = app_op_name then
  1289                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1290               else
  1291                 s |> Sign.the_const_type thy
  1292     in
  1293       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1294         [] => []
  1295       | res_U_vars =>
  1296         let val U_args = (s, U) |> Sign.const_typargs thy in
  1297           U_args ~~ T_args
  1298           |> map (fn (U, T) =>
  1299                      if member (op =) res_U_vars (dest_TVar U) then T
  1300                      else dummyT)
  1301         end
  1302     end
  1303     handle TYPE _ => T_args
  1304 
  1305 fun enforce_type_arg_policy_in_combterm ctxt format type_enc =
  1306   let
  1307     val thy = Proof_Context.theory_of ctxt
  1308     fun aux arity (CombApp (tm1, tm2)) =
  1309         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1310       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1311         (case strip_prefix_and_unascii const_prefix s of
  1312            NONE => (name, T_args)
  1313          | SOME s'' =>
  1314            let
  1315              val s'' = invert_const s''
  1316              fun filtered_T_args false = T_args
  1317                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1318            in
  1319              case type_arg_policy type_enc s'' of
  1320                Explicit_Type_Args drop_args =>
  1321                (name, filtered_T_args drop_args)
  1322              | Mangled_Type_Args drop_args =>
  1323                (mangled_const_name format type_enc (filtered_T_args drop_args)
  1324                                    name, [])
  1325              | No_Type_Args => (name, [])
  1326            end)
  1327         |> (fn (name, T_args) => CombConst (name, T, T_args))
  1328       | aux _ (CombAbs (bound, tm)) = CombAbs (bound, aux 0 tm)
  1329       | aux _ tm = tm
  1330   in aux 0 end
  1331 
  1332 fun repair_combterm ctxt format type_enc sym_tab =
  1333   not (is_type_enc_higher_order type_enc)
  1334   ? (introduce_explicit_apps_in_combterm sym_tab
  1335      #> introduce_predicators_in_combterm sym_tab)
  1336   #> enforce_type_arg_policy_in_combterm ctxt format type_enc
  1337 fun repair_fact ctxt format type_enc sym_tab =
  1338   update_combformula (formula_map
  1339       (repair_combterm ctxt format type_enc sym_tab))
  1340 
  1341 (** Helper facts **)
  1342 
  1343 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1344 val helper_table =
  1345   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1346    (("COMBK", false), @{thms Meson.COMBK_def}),
  1347    (("COMBB", false), @{thms Meson.COMBB_def}),
  1348    (("COMBC", false), @{thms Meson.COMBC_def}),
  1349    (("COMBS", false), @{thms Meson.COMBS_def}),
  1350    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1351    (("fFalse", true), @{thms True_or_False}),
  1352    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1353    (("fTrue", true), @{thms True_or_False}),
  1354    (("fNot", false),
  1355     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1356            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1357    (("fconj", false),
  1358     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1359         by (unfold fconj_def) fast+}),
  1360    (("fdisj", false),
  1361     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1362         by (unfold fdisj_def) fast+}),
  1363    (("fimplies", false),
  1364     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1365         by (unfold fimplies_def) fast+}),
  1366    (("fequal", true),
  1367     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1368        However, this is done so for backward compatibility: Including the
  1369        equality helpers by default in Metis breaks a few existing proofs. *)
  1370     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1371            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1372    (("fAll", false), []), (*TODO: add helpers*)
  1373    (("fEx", false), []), (*TODO: add helpers*)
  1374    (("If", true), @{thms if_True if_False True_or_False})]
  1375   |> map (apsnd (map zero_var_indexes))
  1376 
  1377 val type_tag = `make_fixed_const type_tag_name
  1378 
  1379 fun type_tag_idempotence_fact () =
  1380   let
  1381     fun var s = ATerm (`I s, [])
  1382     fun tag tm = ATerm (type_tag, [var "T", tm])
  1383     val tagged_a = tag (var "A")
  1384   in
  1385     Formula (type_tag_idempotence_helper_name, Axiom,
  1386              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1387              |> close_formula_universally, isabelle_info simpN, NONE)
  1388   end
  1389 
  1390 fun should_specialize_helper type_enc t =
  1391   polymorphism_of_type_enc type_enc = Mangled_Monomorphic andalso
  1392   level_of_type_enc type_enc <> No_Types andalso
  1393   not (null (Term.hidden_polymorphism t))
  1394 
  1395 fun helper_facts_for_sym ctxt format type_enc (s, {types, ...} : sym_info) =
  1396   case strip_prefix_and_unascii const_prefix s of
  1397     SOME mangled_s =>
  1398     let
  1399       val thy = Proof_Context.theory_of ctxt
  1400       val unmangled_s = mangled_s |> unmangled_const_name
  1401       fun dub needs_fairly_sound j k =
  1402         (unmangled_s ^ "_" ^ string_of_int j ^ "_" ^ string_of_int k ^
  1403          (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1404          (if needs_fairly_sound then typed_helper_suffix
  1405           else untyped_helper_suffix),
  1406          Helper)
  1407       fun dub_and_inst needs_fairly_sound (th, j) =
  1408         let val t = prop_of th in
  1409           if should_specialize_helper type_enc t then
  1410             map (fn T => specialize_type thy (invert_const unmangled_s, T) t)
  1411                 types
  1412           else
  1413             [t]
  1414         end
  1415         |> map (fn (k, t) => (dub needs_fairly_sound j k, t)) o tag_list 1
  1416       val make_facts =
  1417         map_filter (make_fact ctxt format type_enc false false [])
  1418       val fairly_sound = is_type_enc_fairly_sound type_enc
  1419     in
  1420       helper_table
  1421       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1422                   if helper_s <> unmangled_s orelse
  1423                      (needs_fairly_sound andalso not fairly_sound) then
  1424                     []
  1425                   else
  1426                     ths ~~ (1 upto length ths)
  1427                     |> maps (dub_and_inst needs_fairly_sound)
  1428                     |> make_facts)
  1429     end
  1430   | NONE => []
  1431 fun helper_facts_for_sym_table ctxt format type_enc sym_tab =
  1432   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_enc) sym_tab
  1433                   []
  1434 
  1435 (***************************************************************)
  1436 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1437 (***************************************************************)
  1438 
  1439 fun set_insert (x, s) = Symtab.update (x, ()) s
  1440 
  1441 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1442 
  1443 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1444 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1445 
  1446 fun classes_of_terms get_Ts =
  1447   map (map snd o get_Ts)
  1448   #> List.foldl add_classes Symtab.empty
  1449   #> delete_type #> Symtab.keys
  1450 
  1451 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1452 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1453 
  1454 fun fold_type_constrs f (Type (s, Ts)) x =
  1455     fold (fold_type_constrs f) Ts (f (s, x))
  1456   | fold_type_constrs _ _ x = x
  1457 
  1458 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1459 fun add_type_constrs_in_term thy =
  1460   let
  1461     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1462       | add (t $ u) = add t #> add u
  1463       | add (Const (x as (s, _))) =
  1464         if String.isPrefix skolem_const_prefix s then I
  1465         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1466       | add (Abs (_, _, u)) = add u
  1467       | add _ = I
  1468   in add end
  1469 
  1470 fun type_constrs_of_terms thy ts =
  1471   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1472 
  1473 fun translate_formulas ctxt format prem_kind type_enc preproc hyp_ts concl_t
  1474                        facts =
  1475   let
  1476     val thy = Proof_Context.theory_of ctxt
  1477     val fact_ts = facts |> map snd
  1478     val presimp_consts = Meson.presimplified_consts ctxt
  1479     val make_fact = make_fact ctxt format type_enc true preproc presimp_consts
  1480     val (facts, fact_names) =
  1481       facts |> map (fn (name, t) => (name, t) |> make_fact |> rpair name)
  1482             |> map_filter (try (apfst the))
  1483             |> ListPair.unzip
  1484     (* Remove existing facts from the conjecture, as this can dramatically
  1485        boost an ATP's performance (for some reason). *)
  1486     val hyp_ts =
  1487       hyp_ts
  1488       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1489     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1490     val all_ts = goal_t :: fact_ts
  1491     val subs = tfree_classes_of_terms all_ts
  1492     val supers = tvar_classes_of_terms all_ts
  1493     val tycons = type_constrs_of_terms thy all_ts
  1494     val conjs =
  1495       hyp_ts @ [concl_t]
  1496       |> make_conjecture ctxt format prem_kind type_enc preproc presimp_consts
  1497     val (supers', arity_clauses) =
  1498       if level_of_type_enc type_enc = No_Types then ([], [])
  1499       else make_arity_clauses thy tycons supers
  1500     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1501   in
  1502     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1503   end
  1504 
  1505 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1506     (true, ATerm (class, [ATerm (name, [])]))
  1507   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1508     (true, ATerm (class, [ATerm (name, [])]))
  1509 
  1510 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1511 
  1512 val type_pred = `make_fixed_const type_pred_name
  1513 
  1514 fun type_pred_combterm ctxt format type_enc T tm =
  1515   CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
  1516            |> enforce_type_arg_policy_in_combterm ctxt format type_enc, tm)
  1517 
  1518 fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
  1519   | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1520     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1521   | is_var_positively_naked_in_term _ _ _ _ = true
  1522 fun should_predicate_on_var_in_formula pos phi (SOME true) name =
  1523     formula_fold pos (is_var_positively_naked_in_term name) phi false
  1524   | should_predicate_on_var_in_formula _ _ _ _ = true
  1525 
  1526 fun mk_aterm format type_enc name T_args args =
  1527   ATerm (name, map_filter (ho_term_for_type_arg format type_enc) T_args @ args)
  1528 
  1529 fun tag_with_type ctxt format nonmono_Ts type_enc pos T tm =
  1530   CombConst (type_tag, T --> T, [T])
  1531   |> enforce_type_arg_policy_in_combterm ctxt format type_enc
  1532   |> ho_term_from_combterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1533   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm])
  1534        | _ => raise Fail "unexpected lambda-abstraction")
  1535 and ho_term_from_combterm ctxt format nonmono_Ts type_enc =
  1536   let
  1537     fun aux site u =
  1538       let
  1539         val (head, args) = strip_combterm_comb u
  1540         val pos =
  1541           case site of
  1542             Top_Level pos => pos
  1543           | Eq_Arg pos => pos
  1544           | Elsewhere => NONE
  1545         val t =
  1546           case head of
  1547             CombConst (name as (s, _), _, T_args) =>
  1548             let
  1549               val arg_site = if is_tptp_equal s then Eq_Arg pos else Elsewhere
  1550             in
  1551               mk_aterm format type_enc name T_args (map (aux arg_site) args)
  1552             end
  1553           | CombVar (name, _) => mk_aterm format type_enc name [] (map (aux Elsewhere) args)
  1554           | CombAbs ((name, T), tm) =>
  1555             AAbs ((name, ho_type_from_typ format type_enc true 0 T), aux Elsewhere tm)
  1556           | CombApp _ => raise Fail "impossible \"CombApp\""
  1557         val T = combtyp_of u
  1558       in
  1559         t |> (if should_tag_with_type ctxt nonmono_Ts type_enc site u T then
  1560                 tag_with_type ctxt format nonmono_Ts type_enc pos T
  1561               else
  1562                 I)
  1563       end
  1564   in aux end
  1565 and formula_from_combformula ctxt format nonmono_Ts type_enc
  1566                              should_predicate_on_var =
  1567   let
  1568     fun do_term pos =
  1569       ho_term_from_combterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1570     val do_bound_type =
  1571       case type_enc of
  1572         Simple_Types (_, level) =>
  1573         homogenized_type ctxt nonmono_Ts level 0
  1574         #> ho_type_from_typ format type_enc false 0 #> SOME
  1575       | _ => K NONE
  1576     fun do_out_of_bound_type pos phi universal (name, T) =
  1577       if should_predicate_on_type ctxt nonmono_Ts type_enc
  1578              (fn () => should_predicate_on_var pos phi universal name) T then
  1579         CombVar (name, T)
  1580         |> type_pred_combterm ctxt format type_enc T
  1581         |> do_term pos |> AAtom |> SOME
  1582       else
  1583         NONE
  1584     fun do_formula pos (AQuant (q, xs, phi)) =
  1585         let
  1586           val phi = phi |> do_formula pos
  1587           val universal = Option.map (q = AExists ? not) pos
  1588         in
  1589           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1590                                         | SOME T => do_bound_type T)),
  1591                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1592                       (map_filter
  1593                            (fn (_, NONE) => NONE
  1594                              | (s, SOME T) =>
  1595                                do_out_of_bound_type pos phi universal (s, T))
  1596                            xs)
  1597                       phi)
  1598         end
  1599       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1600       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1601   in do_formula end
  1602 
  1603 fun bound_tvars type_enc Ts =
  1604   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1605                 (type_literals_for_types type_enc add_sorts_on_tvar Ts))
  1606 
  1607 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1608    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1609    the remote provers might care. *)
  1610 fun formula_line_for_fact ctxt format prefix encode freshen pos nonmono_Ts
  1611         type_enc (j, {name, locality, kind, combformula, atomic_types}) =
  1612   (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ encode name,
  1613    kind,
  1614    combformula
  1615    |> close_combformula_universally
  1616    |> formula_from_combformula ctxt format nonmono_Ts type_enc
  1617                                should_predicate_on_var_in_formula
  1618                                (if pos then SOME true else NONE)
  1619    |> bound_tvars type_enc atomic_types
  1620    |> close_formula_universally,
  1621    NONE,
  1622    case locality of
  1623      Intro => isabelle_info introN
  1624    | Elim => isabelle_info elimN
  1625    | Simp => isabelle_info simpN
  1626    | _ => NONE)
  1627   |> Formula
  1628 
  1629 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1630                                        : class_rel_clause) =
  1631   let val ty_arg = ATerm (`I "T", []) in
  1632     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1633              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1634                                AAtom (ATerm (superclass, [ty_arg]))])
  1635              |> close_formula_universally, isabelle_info introN, NONE)
  1636   end
  1637 
  1638 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1639     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1640   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1641     (false, ATerm (c, [ATerm (sort, [])]))
  1642 
  1643 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1644                                    : arity_clause) =
  1645   Formula (arity_clause_prefix ^ name, Axiom,
  1646            mk_ahorn (map (formula_from_fo_literal o apfst not
  1647                           o fo_literal_from_arity_literal) prem_lits)
  1648                     (formula_from_fo_literal
  1649                          (fo_literal_from_arity_literal concl_lits))
  1650            |> close_formula_universally, isabelle_info introN, NONE)
  1651 
  1652 fun formula_line_for_conjecture ctxt format nonmono_Ts type_enc
  1653         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1654   Formula (conjecture_prefix ^ name, kind,
  1655            formula_from_combformula ctxt format nonmono_Ts type_enc
  1656                should_predicate_on_var_in_formula (SOME false)
  1657                (close_combformula_universally combformula)
  1658            |> bound_tvars type_enc atomic_types
  1659            |> close_formula_universally, NONE, NONE)
  1660 
  1661 fun free_type_literals type_enc ({atomic_types, ...} : translated_formula) =
  1662   atomic_types |> type_literals_for_types type_enc add_sorts_on_tfree
  1663                |> map fo_literal_from_type_literal
  1664 
  1665 fun formula_line_for_free_type j lit =
  1666   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1667            formula_from_fo_literal lit, NONE, NONE)
  1668 fun formula_lines_for_free_types type_enc facts =
  1669   let
  1670     val litss = map (free_type_literals type_enc) facts
  1671     val lits = fold (union (op =)) litss []
  1672   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1673 
  1674 (** Symbol declarations **)
  1675 
  1676 fun should_declare_sym type_enc pred_sym s =
  1677   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1678   (case type_enc of
  1679      Simple_Types _ => true
  1680    | Tags (_, _, Lightweight) => true
  1681    | _ => not pred_sym)
  1682 
  1683 fun sym_decl_table_for_facts ctxt type_enc repaired_sym_tab (conjs, facts) =
  1684   let
  1685     fun add_combterm in_conj tm =
  1686       let val (head, args) = strip_combterm_comb tm in
  1687         (case head of
  1688            CombConst ((s, s'), T, T_args) =>
  1689            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1690              if should_declare_sym type_enc pred_sym s then
  1691                Symtab.map_default (s, [])
  1692                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1693                                          in_conj))
  1694              else
  1695                I
  1696            end
  1697          | CombAbs (_, tm) => add_combterm in_conj tm
  1698          | _ => I)
  1699         #> fold (add_combterm in_conj) args
  1700       end
  1701     fun add_fact in_conj =
  1702       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1703   in
  1704     Symtab.empty
  1705     |> is_type_enc_fairly_sound type_enc
  1706        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1707   end
  1708 
  1709 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1710    out with monotonicity" paper presented at CADE 2011. *)
  1711 fun add_combterm_nonmonotonic_types _ _ _ _ (SOME false) _ = I
  1712   | add_combterm_nonmonotonic_types ctxt level sound locality _
  1713         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1),
  1714                            tm2)) =
  1715     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1716      (case level of
  1717         Noninf_Nonmono_Types =>
  1718         not (is_locality_global locality) orelse
  1719         not (is_type_surely_infinite ctxt sound T)
  1720       | Fin_Nonmono_Types => is_type_surely_finite ctxt false T
  1721       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1722   | add_combterm_nonmonotonic_types _ _ _ _ _ _ = I
  1723 fun add_fact_nonmonotonic_types ctxt level sound
  1724         ({kind, locality, combformula, ...} : translated_formula) =
  1725   formula_fold (SOME (kind <> Conjecture))
  1726                (add_combterm_nonmonotonic_types ctxt level sound locality)
  1727                combformula
  1728 fun nonmonotonic_types_for_facts ctxt type_enc sound facts =
  1729   let val level = level_of_type_enc type_enc in
  1730     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1731       [] |> fold (add_fact_nonmonotonic_types ctxt level sound) facts
  1732          (* We must add "bool" in case the helper "True_or_False" is added
  1733             later. In addition, several places in the code rely on the list of
  1734             nonmonotonic types not being empty. *)
  1735          |> insert_type ctxt I @{typ bool}
  1736     else
  1737       []
  1738   end
  1739 
  1740 fun decl_line_for_sym ctxt format nonmono_Ts type_enc s
  1741                       (s', T_args, T, pred_sym, ary, _) =
  1742   let
  1743     val (T_arg_Ts, level) =
  1744       case type_enc of
  1745         Simple_Types (_, level) => ([], level)
  1746       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1747   in
  1748     Decl (sym_decl_prefix ^ s, (s, s'),
  1749           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1750           |> ho_type_from_typ format type_enc pred_sym (length T_arg_Ts + ary))
  1751   end
  1752 
  1753 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1754         poly_nonmono_Ts type_enc n s j (s', T_args, T, _, ary, in_conj) =
  1755   let
  1756     val (kind, maybe_negate) =
  1757       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1758       else (Axiom, I)
  1759     val (arg_Ts, res_T) = chop_fun ary T
  1760     val num_args = length arg_Ts
  1761     val bound_names =
  1762       1 upto num_args |> map (`I o make_bound_var o string_of_int)
  1763     val bounds =
  1764       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1765     val sym_needs_arg_types = n > 1 orelse exists (curry (op =) dummyT) T_args
  1766     fun should_keep_arg_type T =
  1767       sym_needs_arg_types orelse
  1768       not (should_predicate_on_type ctxt nonmono_Ts type_enc (K false) T)
  1769     val bound_Ts =
  1770       arg_Ts |> map (fn T => if should_keep_arg_type T then SOME T else NONE)
  1771   in
  1772     Formula (preds_sym_formula_prefix ^ s ^
  1773              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1774              CombConst ((s, s'), T, T_args)
  1775              |> fold (curry (CombApp o swap)) bounds
  1776              |> type_pred_combterm ctxt format type_enc res_T
  1777              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1778              |> formula_from_combformula ctxt format poly_nonmono_Ts type_enc
  1779                                          (K (K (K (K true)))) (SOME true)
  1780              |> n > 1 ? bound_tvars type_enc (atyps_of T)
  1781              |> close_formula_universally
  1782              |> maybe_negate,
  1783              isabelle_info introN, NONE)
  1784   end
  1785 
  1786 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1787         poly_nonmono_Ts type_enc n s
  1788         (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1789   let
  1790     val ident_base =
  1791       lightweight_tags_sym_formula_prefix ^ s ^
  1792       (if n > 1 then "_" ^ string_of_int j else "")
  1793     val (kind, maybe_negate) =
  1794       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1795       else (Axiom, I)
  1796     val (arg_Ts, res_T) = chop_fun ary T
  1797     val bound_names =
  1798       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1799     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1800     val cst = mk_aterm format type_enc (s, s') T_args
  1801     val atomic_Ts = atyps_of T
  1802     fun eq tms =
  1803       (if pred_sym then AConn (AIff, map AAtom tms)
  1804        else AAtom (ATerm (`I tptp_equal, tms)))
  1805       |> bound_tvars type_enc atomic_Ts
  1806       |> close_formula_universally
  1807       |> maybe_negate
  1808     (* See also "should_tag_with_type". *)
  1809     fun should_encode T =
  1810       should_encode_type ctxt poly_nonmono_Ts All_Types T orelse
  1811       (case type_enc of
  1812          Tags (Polymorphic, level, Lightweight) =>
  1813          level <> All_Types andalso Monomorph.typ_has_tvars T
  1814        | _ => false)
  1815     val tag_with = tag_with_type ctxt format poly_nonmono_Ts type_enc NONE
  1816     val add_formula_for_res =
  1817       if should_encode res_T then
  1818         cons (Formula (ident_base ^ "_res", kind,
  1819                        eq [tag_with res_T (cst bounds), cst bounds],
  1820                        isabelle_info simpN, NONE))
  1821       else
  1822         I
  1823     fun add_formula_for_arg k =
  1824       let val arg_T = nth arg_Ts k in
  1825         if should_encode arg_T then
  1826           case chop k bounds of
  1827             (bounds1, bound :: bounds2) =>
  1828             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1829                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1830                                cst bounds],
  1831                            isabelle_info simpN, NONE))
  1832           | _ => raise Fail "expected nonempty tail"
  1833         else
  1834           I
  1835       end
  1836   in
  1837     [] |> not pred_sym ? add_formula_for_res
  1838        |> fold add_formula_for_arg (ary - 1 downto 0)
  1839   end
  1840 
  1841 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1842 
  1843 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts
  1844                                 poly_nonmono_Ts type_enc (s, decls) =
  1845   case type_enc of
  1846     Simple_Types _ =>
  1847     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_enc s)
  1848   | Preds _ =>
  1849     let
  1850       val decls =
  1851         case decls of
  1852           decl :: (decls' as _ :: _) =>
  1853           let val T = result_type_of_decl decl in
  1854             if forall (curry (type_instance ctxt o swap) T
  1855                        o result_type_of_decl) decls' then
  1856               [decl]
  1857             else
  1858               decls
  1859           end
  1860         | _ => decls
  1861       val n = length decls
  1862       val decls =
  1863         decls |> filter (should_predicate_on_type ctxt poly_nonmono_Ts type_enc
  1864                                                   (K true)
  1865                          o result_type_of_decl)
  1866     in
  1867       (0 upto length decls - 1, decls)
  1868       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1869                    nonmono_Ts poly_nonmono_Ts type_enc n s)
  1870     end
  1871   | Tags (_, _, heaviness) =>
  1872     (case heaviness of
  1873        Heavyweight => []
  1874      | Lightweight =>
  1875        let val n = length decls in
  1876          (0 upto n - 1 ~~ decls)
  1877          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1878                       conj_sym_kind poly_nonmono_Ts type_enc n s)
  1879        end)
  1880 
  1881 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1882                                      poly_nonmono_Ts type_enc sym_decl_tab =
  1883   sym_decl_tab
  1884   |> Symtab.dest
  1885   |> sort_wrt fst
  1886   |> rpair []
  1887   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1888                              nonmono_Ts poly_nonmono_Ts type_enc)
  1889 
  1890 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1891     poly <> Mangled_Monomorphic andalso
  1892     ((level = All_Types andalso heaviness = Lightweight) orelse
  1893      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1894   | needs_type_tag_idempotence _ = false
  1895 
  1896 fun offset_of_heading_in_problem _ [] j = j
  1897   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1898     if heading = needle then j
  1899     else offset_of_heading_in_problem needle problem (j + length lines)
  1900 
  1901 val implicit_declsN = "Should-be-implicit typings"
  1902 val explicit_declsN = "Explicit typings"
  1903 val factsN = "Relevant facts"
  1904 val class_relsN = "Class relationships"
  1905 val aritiesN = "Arities"
  1906 val helpersN = "Helper facts"
  1907 val conjsN = "Conjectures"
  1908 val free_typesN = "Type variables"
  1909 
  1910 val explicit_apply = NONE (* for experimental purposes *)
  1911 
  1912 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_enc sound
  1913         exporter readable_names preproc hyp_ts concl_t facts =
  1914   let
  1915     val (format, type_enc) = choose_format [format] type_enc
  1916     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1917       translate_formulas ctxt format prem_kind type_enc preproc hyp_ts concl_t
  1918                          facts
  1919     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1920     val nonmono_Ts =
  1921       conjs @ facts |> nonmonotonic_types_for_facts ctxt type_enc sound
  1922     val repair = repair_fact ctxt format type_enc sym_tab
  1923     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1924     val repaired_sym_tab =
  1925       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1926     val helpers =
  1927       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_enc
  1928                        |> map repair
  1929     val poly_nonmono_Ts =
  1930       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1931          polymorphism_of_type_enc type_enc <> Polymorphic then
  1932         nonmono_Ts
  1933       else
  1934         [TVar (("'a", 0), HOLogic.typeS)]
  1935     val sym_decl_lines =
  1936       (conjs, helpers @ facts)
  1937       |> sym_decl_table_for_facts ctxt type_enc repaired_sym_tab
  1938       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1939                                                poly_nonmono_Ts type_enc
  1940     val helper_lines =
  1941       0 upto length helpers - 1 ~~ helpers
  1942       |> map (formula_line_for_fact ctxt format helper_prefix I false true
  1943                                     poly_nonmono_Ts type_enc)
  1944       |> (if needs_type_tag_idempotence type_enc then
  1945             cons (type_tag_idempotence_fact ())
  1946           else
  1947             I)
  1948     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1949        FLOTTER hack. *)
  1950     val problem =
  1951       [(explicit_declsN, sym_decl_lines),
  1952        (factsN,
  1953         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1954                                    (not exporter) (not exporter) nonmono_Ts
  1955                                    type_enc)
  1956             (0 upto length facts - 1 ~~ facts)),
  1957        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1958        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1959        (helpersN, helper_lines),
  1960        (conjsN,
  1961         map (formula_line_for_conjecture ctxt format nonmono_Ts type_enc)
  1962             conjs),
  1963        (free_typesN, formula_lines_for_free_types type_enc (facts @ conjs))]
  1964     val problem =
  1965       problem
  1966       |> (case format of
  1967             CNF => ensure_cnf_problem
  1968           | CNF_UEQ => filter_cnf_ueq_problem
  1969           | _ => I)
  1970       |> (if is_format_typed format then
  1971             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1972                                                    implicit_declsN
  1973           else
  1974             I)
  1975     val (problem, pool) = problem |> nice_atp_problem readable_names
  1976     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1977     val typed_helpers =
  1978       map_filter (fn (j, {name, ...}) =>
  1979                      if String.isSuffix typed_helper_suffix name then SOME j
  1980                      else NONE)
  1981                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1982                   ~~ helpers)
  1983     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1984       if min_ary > 0 then
  1985         case strip_prefix_and_unascii const_prefix s of
  1986           SOME s => Symtab.insert (op =) (s, min_ary)
  1987         | NONE => I
  1988       else
  1989         I
  1990   in
  1991     (problem,
  1992      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1993      offset_of_heading_in_problem conjsN problem 0,
  1994      offset_of_heading_in_problem factsN problem 0,
  1995      fact_names |> Vector.fromList,
  1996      typed_helpers,
  1997      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1998   end
  1999 
  2000 (* FUDGE *)
  2001 val conj_weight = 0.0
  2002 val hyp_weight = 0.1
  2003 val fact_min_weight = 0.2
  2004 val fact_max_weight = 1.0
  2005 val type_info_default_weight = 0.8
  2006 
  2007 fun add_term_weights weight (ATerm (s, tms)) =
  2008     is_tptp_user_symbol s ? Symtab.default (s, weight)
  2009     #> fold (add_term_weights weight) tms
  2010   | add_term_weights weight (AAbs (_, tm)) = add_term_weights weight tm
  2011 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  2012     formula_fold NONE (K (add_term_weights weight)) phi
  2013   | add_problem_line_weights _ _ = I
  2014 
  2015 fun add_conjectures_weights [] = I
  2016   | add_conjectures_weights conjs =
  2017     let val (hyps, conj) = split_last conjs in
  2018       add_problem_line_weights conj_weight conj
  2019       #> fold (add_problem_line_weights hyp_weight) hyps
  2020     end
  2021 
  2022 fun add_facts_weights facts =
  2023   let
  2024     val num_facts = length facts
  2025     fun weight_of j =
  2026       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  2027                         / Real.fromInt num_facts
  2028   in
  2029     map weight_of (0 upto num_facts - 1) ~~ facts
  2030     |> fold (uncurry add_problem_line_weights)
  2031   end
  2032 
  2033 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  2034 fun atp_problem_weights problem =
  2035   let val get = these o AList.lookup (op =) problem in
  2036     Symtab.empty
  2037     |> add_conjectures_weights (get free_typesN @ get conjsN)
  2038     |> add_facts_weights (get factsN)
  2039     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  2040             [explicit_declsN, class_relsN, aritiesN]
  2041     |> Symtab.dest
  2042     |> sort (prod_ord Real.compare string_ord o pairself swap)
  2043   end
  2044 
  2045 end;