src/HOL/Library/Polynomial.thy
author huffman
Tue, 01 Jul 2014 21:57:08 -0700
changeset 58824 60459c3853af
parent 57886 b60d5d119489
child 58854 cc97b347b301
permissions -rw-r--r--
add lemmas: polynomial div/mod distribute over addition
     1 (*  Title:      HOL/Library/Polynomial.thy
     2     Author:     Brian Huffman
     3     Author:     Clemens Ballarin
     4     Author:     Florian Haftmann
     5 *)
     6 
     7 header {* Polynomials as type over a ring structure *}
     8 
     9 theory Polynomial
    10 imports Main GCD
    11 begin
    12 
    13 subsection {* Auxiliary: operations for lists (later) representing coefficients *}
    14 
    15 definition strip_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list"
    16 where
    17   "strip_while P = rev \<circ> dropWhile P \<circ> rev"
    18 
    19 lemma strip_while_Nil [simp]:
    20   "strip_while P [] = []"
    21   by (simp add: strip_while_def)
    22 
    23 lemma strip_while_append [simp]:
    24   "\<not> P x \<Longrightarrow> strip_while P (xs @ [x]) = xs @ [x]"
    25   by (simp add: strip_while_def)
    26 
    27 lemma strip_while_append_rec [simp]:
    28   "P x \<Longrightarrow> strip_while P (xs @ [x]) = strip_while P xs"
    29   by (simp add: strip_while_def)
    30 
    31 lemma strip_while_Cons [simp]:
    32   "\<not> P x \<Longrightarrow> strip_while P (x # xs) = x # strip_while P xs"
    33   by (induct xs rule: rev_induct) (simp_all add: strip_while_def)
    34 
    35 lemma strip_while_eq_Nil [simp]:
    36   "strip_while P xs = [] \<longleftrightarrow> (\<forall>x\<in>set xs. P x)"
    37   by (simp add: strip_while_def)
    38 
    39 lemma strip_while_eq_Cons_rec:
    40   "strip_while P (x # xs) = x # strip_while P xs \<longleftrightarrow> \<not> (P x \<and> (\<forall>x\<in>set xs. P x))"
    41   by (induct xs rule: rev_induct) (simp_all add: strip_while_def)
    42 
    43 lemma strip_while_not_last [simp]:
    44   "\<not> P (last xs) \<Longrightarrow> strip_while P xs = xs"
    45   by (cases xs rule: rev_cases) simp_all
    46 
    47 lemma split_strip_while_append:
    48   fixes xs :: "'a list"
    49   obtains ys zs :: "'a list"
    50   where "strip_while P xs = ys" and "\<forall>x\<in>set zs. P x" and "xs = ys @ zs"
    51 proof (rule that)
    52   show "strip_while P xs = strip_while P xs" ..
    53   show "\<forall>x\<in>set (rev (takeWhile P (rev xs))). P x" by (simp add: takeWhile_eq_all_conv [symmetric])
    54   have "rev xs = rev (strip_while P xs @ rev (takeWhile P (rev xs)))"
    55     by (simp add: strip_while_def)
    56   then show "xs = strip_while P xs @ rev (takeWhile P (rev xs))"
    57     by (simp only: rev_is_rev_conv)
    58 qed
    59 
    60 
    61 definition nth_default :: "'a \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a"
    62 where
    63   "nth_default x xs n = (if n < length xs then xs ! n else x)"
    64 
    65 lemma nth_default_Nil [simp]:
    66   "nth_default y [] n = y"
    67   by (simp add: nth_default_def)
    68 
    69 lemma nth_default_Cons_0 [simp]:
    70   "nth_default y (x # xs) 0 = x"
    71   by (simp add: nth_default_def)
    72 
    73 lemma nth_default_Cons_Suc [simp]:
    74   "nth_default y (x # xs) (Suc n) = nth_default y xs n"
    75   by (simp add: nth_default_def)
    76 
    77 lemma nth_default_map_eq:
    78   "f y = x \<Longrightarrow> nth_default x (map f xs) n = f (nth_default y xs n)"
    79   by (simp add: nth_default_def)
    80 
    81 lemma nth_default_strip_while_eq [simp]:
    82   "nth_default x (strip_while (HOL.eq x) xs) n = nth_default x xs n"
    83 proof -
    84   from split_strip_while_append obtain ys zs
    85     where "strip_while (HOL.eq x) xs = ys" and "\<forall>z\<in>set zs. x = z" and "xs = ys @ zs" by blast
    86   then show ?thesis by (simp add: nth_default_def not_less nth_append)
    87 qed
    88 
    89 
    90 definition cCons :: "'a::zero \<Rightarrow> 'a list \<Rightarrow> 'a list"  (infixr "##" 65)
    91 where
    92   "x ## xs = (if xs = [] \<and> x = 0 then [] else x # xs)"
    93 
    94 lemma cCons_0_Nil_eq [simp]:
    95   "0 ## [] = []"
    96   by (simp add: cCons_def)
    97 
    98 lemma cCons_Cons_eq [simp]:
    99   "x ## y # ys = x # y # ys"
   100   by (simp add: cCons_def)
   101 
   102 lemma cCons_append_Cons_eq [simp]:
   103   "x ## xs @ y # ys = x # xs @ y # ys"
   104   by (simp add: cCons_def)
   105 
   106 lemma cCons_not_0_eq [simp]:
   107   "x \<noteq> 0 \<Longrightarrow> x ## xs = x # xs"
   108   by (simp add: cCons_def)
   109 
   110 lemma strip_while_not_0_Cons_eq [simp]:
   111   "strip_while (\<lambda>x. x = 0) (x # xs) = x ## strip_while (\<lambda>x. x = 0) xs"
   112 proof (cases "x = 0")
   113   case False then show ?thesis by simp
   114 next
   115   case True show ?thesis
   116   proof (induct xs rule: rev_induct)
   117     case Nil with True show ?case by simp
   118   next
   119     case (snoc y ys) then show ?case
   120       by (cases "y = 0") (simp_all add: append_Cons [symmetric] del: append_Cons)
   121   qed
   122 qed
   123 
   124 lemma tl_cCons [simp]:
   125   "tl (x ## xs) = xs"
   126   by (simp add: cCons_def)
   127 
   128 
   129 subsection {* Almost everywhere zero functions *}
   130 
   131 definition almost_everywhere_zero :: "(nat \<Rightarrow> 'a::zero) \<Rightarrow> bool"
   132 where
   133   "almost_everywhere_zero f \<longleftrightarrow> (\<exists>n. \<forall>i>n. f i = 0)"
   134 
   135 lemma almost_everywhere_zeroI:
   136   "(\<And>i. i > n \<Longrightarrow> f i = 0) \<Longrightarrow> almost_everywhere_zero f"
   137   by (auto simp add: almost_everywhere_zero_def)
   138 
   139 lemma almost_everywhere_zeroE:
   140   assumes "almost_everywhere_zero f"
   141   obtains n where "\<And>i. i > n \<Longrightarrow> f i = 0"
   142 proof -
   143   from assms have "\<exists>n. \<forall>i>n. f i = 0" by (simp add: almost_everywhere_zero_def)
   144   then obtain n where "\<And>i. i > n \<Longrightarrow> f i = 0" by blast
   145   with that show thesis .
   146 qed
   147 
   148 lemma almost_everywhere_zero_case_nat:
   149   assumes "almost_everywhere_zero f"
   150   shows "almost_everywhere_zero (case_nat a f)"
   151   using assms
   152   by (auto intro!: almost_everywhere_zeroI elim!: almost_everywhere_zeroE split: nat.split)
   153     blast
   154 
   155 lemma almost_everywhere_zero_Suc:
   156   assumes "almost_everywhere_zero f"
   157   shows "almost_everywhere_zero (\<lambda>n. f (Suc n))"
   158 proof -
   159   from assms obtain n where "\<And>i. i > n \<Longrightarrow> f i = 0" by (erule almost_everywhere_zeroE)
   160   then have "\<And>i. i > n \<Longrightarrow> f (Suc i) = 0" by auto
   161   then show ?thesis by (rule almost_everywhere_zeroI)
   162 qed
   163 
   164 
   165 subsection {* Definition of type @{text poly} *}
   166 
   167 typedef 'a poly = "{f :: nat \<Rightarrow> 'a::zero. almost_everywhere_zero f}"
   168   morphisms coeff Abs_poly
   169   unfolding almost_everywhere_zero_def by auto
   170 
   171 setup_lifting (no_code) type_definition_poly
   172 
   173 lemma poly_eq_iff: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
   174   by (simp add: coeff_inject [symmetric] fun_eq_iff)
   175 
   176 lemma poly_eqI: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
   177   by (simp add: poly_eq_iff)
   178 
   179 lemma coeff_almost_everywhere_zero:
   180   "almost_everywhere_zero (coeff p)"
   181   using coeff [of p] by simp
   182 
   183 
   184 subsection {* Degree of a polynomial *}
   185 
   186 definition degree :: "'a::zero poly \<Rightarrow> nat"
   187 where
   188   "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
   189 
   190 lemma coeff_eq_0:
   191   assumes "degree p < n"
   192   shows "coeff p n = 0"
   193 proof -
   194   from coeff_almost_everywhere_zero
   195   have "\<exists>n. \<forall>i>n. coeff p i = 0" by (blast intro: almost_everywhere_zeroE)
   196   then have "\<forall>i>degree p. coeff p i = 0"
   197     unfolding degree_def by (rule LeastI_ex)
   198   with assms show ?thesis by simp
   199 qed
   200 
   201 lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p"
   202   by (erule contrapos_np, rule coeff_eq_0, simp)
   203 
   204 lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n"
   205   unfolding degree_def by (erule Least_le)
   206 
   207 lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0"
   208   unfolding degree_def by (drule not_less_Least, simp)
   209 
   210 
   211 subsection {* The zero polynomial *}
   212 
   213 instantiation poly :: (zero) zero
   214 begin
   215 
   216 lift_definition zero_poly :: "'a poly"
   217   is "\<lambda>_. 0" by (rule almost_everywhere_zeroI) simp
   218 
   219 instance ..
   220 
   221 end
   222 
   223 lemma coeff_0 [simp]:
   224   "coeff 0 n = 0"
   225   by transfer rule
   226 
   227 lemma degree_0 [simp]:
   228   "degree 0 = 0"
   229   by (rule order_antisym [OF degree_le le0]) simp
   230 
   231 lemma leading_coeff_neq_0:
   232   assumes "p \<noteq> 0"
   233   shows "coeff p (degree p) \<noteq> 0"
   234 proof (cases "degree p")
   235   case 0
   236   from `p \<noteq> 0` have "\<exists>n. coeff p n \<noteq> 0"
   237     by (simp add: poly_eq_iff)
   238   then obtain n where "coeff p n \<noteq> 0" ..
   239   hence "n \<le> degree p" by (rule le_degree)
   240   with `coeff p n \<noteq> 0` and `degree p = 0`
   241   show "coeff p (degree p) \<noteq> 0" by simp
   242 next
   243   case (Suc n)
   244   from `degree p = Suc n` have "n < degree p" by simp
   245   hence "\<exists>i>n. coeff p i \<noteq> 0" by (rule less_degree_imp)
   246   then obtain i where "n < i" and "coeff p i \<noteq> 0" by fast
   247   from `degree p = Suc n` and `n < i` have "degree p \<le> i" by simp
   248   also from `coeff p i \<noteq> 0` have "i \<le> degree p" by (rule le_degree)
   249   finally have "degree p = i" .
   250   with `coeff p i \<noteq> 0` show "coeff p (degree p) \<noteq> 0" by simp
   251 qed
   252 
   253 lemma leading_coeff_0_iff [simp]:
   254   "coeff p (degree p) = 0 \<longleftrightarrow> p = 0"
   255   by (cases "p = 0", simp, simp add: leading_coeff_neq_0)
   256 
   257 
   258 subsection {* List-style constructor for polynomials *}
   259 
   260 lift_definition pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
   261   is "\<lambda>a p. case_nat a (coeff p)"
   262   using coeff_almost_everywhere_zero by (rule almost_everywhere_zero_case_nat)
   263 
   264 lemmas coeff_pCons = pCons.rep_eq
   265 
   266 lemma coeff_pCons_0 [simp]:
   267   "coeff (pCons a p) 0 = a"
   268   by transfer simp
   269 
   270 lemma coeff_pCons_Suc [simp]:
   271   "coeff (pCons a p) (Suc n) = coeff p n"
   272   by (simp add: coeff_pCons)
   273 
   274 lemma degree_pCons_le:
   275   "degree (pCons a p) \<le> Suc (degree p)"
   276   by (rule degree_le) (simp add: coeff_eq_0 coeff_pCons split: nat.split)
   277 
   278 lemma degree_pCons_eq:
   279   "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)"
   280   apply (rule order_antisym [OF degree_pCons_le])
   281   apply (rule le_degree, simp)
   282   done
   283 
   284 lemma degree_pCons_0:
   285   "degree (pCons a 0) = 0"
   286   apply (rule order_antisym [OF _ le0])
   287   apply (rule degree_le, simp add: coeff_pCons split: nat.split)
   288   done
   289 
   290 lemma degree_pCons_eq_if [simp]:
   291   "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))"
   292   apply (cases "p = 0", simp_all)
   293   apply (rule order_antisym [OF _ le0])
   294   apply (rule degree_le, simp add: coeff_pCons split: nat.split)
   295   apply (rule order_antisym [OF degree_pCons_le])
   296   apply (rule le_degree, simp)
   297   done
   298 
   299 lemma pCons_0_0 [simp]:
   300   "pCons 0 0 = 0"
   301   by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
   302 
   303 lemma pCons_eq_iff [simp]:
   304   "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q"
   305 proof safe
   306   assume "pCons a p = pCons b q"
   307   then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp
   308   then show "a = b" by simp
   309 next
   310   assume "pCons a p = pCons b q"
   311   then have "\<forall>n. coeff (pCons a p) (Suc n) =
   312                  coeff (pCons b q) (Suc n)" by simp
   313   then show "p = q" by (simp add: poly_eq_iff)
   314 qed
   315 
   316 lemma pCons_eq_0_iff [simp]:
   317   "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0"
   318   using pCons_eq_iff [of a p 0 0] by simp
   319 
   320 lemma pCons_cases [cases type: poly]:
   321   obtains (pCons) a q where "p = pCons a q"
   322 proof
   323   show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))"
   324     by transfer
   325       (simp add: Abs_poly_inverse almost_everywhere_zero_Suc fun_eq_iff split: nat.split)
   326 qed
   327 
   328 lemma pCons_induct [case_names 0 pCons, induct type: poly]:
   329   assumes zero: "P 0"
   330   assumes pCons: "\<And>a p. a \<noteq> 0 \<or> p \<noteq> 0 \<Longrightarrow> P p \<Longrightarrow> P (pCons a p)"
   331   shows "P p"
   332 proof (induct p rule: measure_induct_rule [where f=degree])
   333   case (less p)
   334   obtain a q where "p = pCons a q" by (rule pCons_cases)
   335   have "P q"
   336   proof (cases "q = 0")
   337     case True
   338     then show "P q" by (simp add: zero)
   339   next
   340     case False
   341     then have "degree (pCons a q) = Suc (degree q)"
   342       by (rule degree_pCons_eq)
   343     then have "degree q < degree p"
   344       using `p = pCons a q` by simp
   345     then show "P q"
   346       by (rule less.hyps)
   347   qed
   348   have "P (pCons a q)"
   349   proof (cases "a \<noteq> 0 \<or> q \<noteq> 0")
   350     case True
   351     with `P q` show ?thesis by (auto intro: pCons)
   352   next
   353     case False
   354     with zero show ?thesis by simp
   355   qed
   356   then show ?case
   357     using `p = pCons a q` by simp
   358 qed
   359 
   360 
   361 subsection {* List-style syntax for polynomials *}
   362 
   363 syntax
   364   "_poly" :: "args \<Rightarrow> 'a poly"  ("[:(_):]")
   365 
   366 translations
   367   "[:x, xs:]" == "CONST pCons x [:xs:]"
   368   "[:x:]" == "CONST pCons x 0"
   369   "[:x:]" <= "CONST pCons x (_constrain 0 t)"
   370 
   371 
   372 subsection {* Representation of polynomials by lists of coefficients *}
   373 
   374 primrec Poly :: "'a::zero list \<Rightarrow> 'a poly"
   375 where
   376   [code_post]: "Poly [] = 0"
   377 | [code_post]: "Poly (a # as) = pCons a (Poly as)"
   378 
   379 lemma Poly_replicate_0 [simp]:
   380   "Poly (replicate n 0) = 0"
   381   by (induct n) simp_all
   382 
   383 lemma Poly_eq_0:
   384   "Poly as = 0 \<longleftrightarrow> (\<exists>n. as = replicate n 0)"
   385   by (induct as) (auto simp add: Cons_replicate_eq)
   386 
   387 definition coeffs :: "'a poly \<Rightarrow> 'a::zero list"
   388 where
   389   "coeffs p = (if p = 0 then [] else map (\<lambda>i. coeff p i) [0 ..< Suc (degree p)])"
   390 
   391 lemma coeffs_eq_Nil [simp]:
   392   "coeffs p = [] \<longleftrightarrow> p = 0"
   393   by (simp add: coeffs_def)
   394 
   395 lemma not_0_coeffs_not_Nil:
   396   "p \<noteq> 0 \<Longrightarrow> coeffs p \<noteq> []"
   397   by simp
   398 
   399 lemma coeffs_0_eq_Nil [simp]:
   400   "coeffs 0 = []"
   401   by simp
   402 
   403 lemma coeffs_pCons_eq_cCons [simp]:
   404   "coeffs (pCons a p) = a ## coeffs p"
   405 proof -
   406   { fix ms :: "nat list" and f :: "nat \<Rightarrow> 'a" and x :: "'a"
   407     assume "\<forall>m\<in>set ms. m > 0"
   408     then have "map (case_nat x f) ms = map f (map (\<lambda>n. n - 1) ms)"
   409       by (induct ms) (auto, metis Suc_pred' nat.case(2)) }
   410   note * = this
   411   show ?thesis
   412     by (simp add: coeffs_def * upt_conv_Cons coeff_pCons map_decr_upt One_nat_def del: upt_Suc)
   413 qed
   414 
   415 lemma not_0_cCons_eq [simp]:
   416   "p \<noteq> 0 \<Longrightarrow> a ## coeffs p = a # coeffs p"
   417   by (simp add: cCons_def)
   418 
   419 lemma Poly_coeffs [simp, code abstype]:
   420   "Poly (coeffs p) = p"
   421   by (induct p) auto
   422 
   423 lemma coeffs_Poly [simp]:
   424   "coeffs (Poly as) = strip_while (HOL.eq 0) as"
   425 proof (induct as)
   426   case Nil then show ?case by simp
   427 next
   428   case (Cons a as)
   429   have "(\<forall>n. as \<noteq> replicate n 0) \<longleftrightarrow> (\<exists>a\<in>set as. a \<noteq> 0)"
   430     using replicate_length_same [of as 0] by (auto dest: sym [of _ as])
   431   with Cons show ?case by auto
   432 qed
   433 
   434 lemma last_coeffs_not_0:
   435   "p \<noteq> 0 \<Longrightarrow> last (coeffs p) \<noteq> 0"
   436   by (induct p) (auto simp add: cCons_def)
   437 
   438 lemma strip_while_coeffs [simp]:
   439   "strip_while (HOL.eq 0) (coeffs p) = coeffs p"
   440   by (cases "p = 0") (auto dest: last_coeffs_not_0 intro: strip_while_not_last)
   441 
   442 lemma coeffs_eq_iff:
   443   "p = q \<longleftrightarrow> coeffs p = coeffs q" (is "?P \<longleftrightarrow> ?Q")
   444 proof
   445   assume ?P then show ?Q by simp
   446 next
   447   assume ?Q
   448   then have "Poly (coeffs p) = Poly (coeffs q)" by simp
   449   then show ?P by simp
   450 qed
   451 
   452 lemma coeff_Poly_eq:
   453   "coeff (Poly xs) n = nth_default 0 xs n"
   454   apply (induct xs arbitrary: n) apply simp_all
   455   by (metis nat.case not0_implies_Suc nth_default_Cons_0 nth_default_Cons_Suc pCons.rep_eq)
   456 
   457 lemma nth_default_coeffs_eq:
   458   "nth_default 0 (coeffs p) = coeff p"
   459   by (simp add: fun_eq_iff coeff_Poly_eq [symmetric])
   460 
   461 lemma [code]:
   462   "coeff p = nth_default 0 (coeffs p)"
   463   by (simp add: nth_default_coeffs_eq)
   464 
   465 lemma coeffs_eqI:
   466   assumes coeff: "\<And>n. coeff p n = nth_default 0 xs n"
   467   assumes zero: "xs \<noteq> [] \<Longrightarrow> last xs \<noteq> 0"
   468   shows "coeffs p = xs"
   469 proof -
   470   from coeff have "p = Poly xs" by (simp add: poly_eq_iff coeff_Poly_eq)
   471   with zero show ?thesis by simp (cases xs, simp_all)
   472 qed
   473 
   474 lemma degree_eq_length_coeffs [code]:
   475   "degree p = length (coeffs p) - 1"
   476   by (simp add: coeffs_def)
   477 
   478 lemma length_coeffs_degree:
   479   "p \<noteq> 0 \<Longrightarrow> length (coeffs p) = Suc (degree p)"
   480   by (induct p) (auto simp add: cCons_def)
   481 
   482 lemma [code abstract]:
   483   "coeffs 0 = []"
   484   by (fact coeffs_0_eq_Nil)
   485 
   486 lemma [code abstract]:
   487   "coeffs (pCons a p) = a ## coeffs p"
   488   by (fact coeffs_pCons_eq_cCons)
   489 
   490 instantiation poly :: ("{zero, equal}") equal
   491 begin
   492 
   493 definition
   494   [code]: "HOL.equal (p::'a poly) q \<longleftrightarrow> HOL.equal (coeffs p) (coeffs q)"
   495 
   496 instance proof
   497 qed (simp add: equal equal_poly_def coeffs_eq_iff)
   498 
   499 end
   500 
   501 lemma [code nbe]:
   502   "HOL.equal (p :: _ poly) p \<longleftrightarrow> True"
   503   by (fact equal_refl)
   504 
   505 definition is_zero :: "'a::zero poly \<Rightarrow> bool"
   506 where
   507   [code]: "is_zero p \<longleftrightarrow> List.null (coeffs p)"
   508 
   509 lemma is_zero_null [code_abbrev]:
   510   "is_zero p \<longleftrightarrow> p = 0"
   511   by (simp add: is_zero_def null_def)
   512 
   513 
   514 subsection {* Fold combinator for polynomials *}
   515 
   516 definition fold_coeffs :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b"
   517 where
   518   "fold_coeffs f p = foldr f (coeffs p)"
   519 
   520 lemma fold_coeffs_0_eq [simp]:
   521   "fold_coeffs f 0 = id"
   522   by (simp add: fold_coeffs_def)
   523 
   524 lemma fold_coeffs_pCons_eq [simp]:
   525   "f 0 = id \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
   526   by (simp add: fold_coeffs_def cCons_def fun_eq_iff)
   527 
   528 lemma fold_coeffs_pCons_0_0_eq [simp]:
   529   "fold_coeffs f (pCons 0 0) = id"
   530   by (simp add: fold_coeffs_def)
   531 
   532 lemma fold_coeffs_pCons_coeff_not_0_eq [simp]:
   533   "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
   534   by (simp add: fold_coeffs_def)
   535 
   536 lemma fold_coeffs_pCons_not_0_0_eq [simp]:
   537   "p \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
   538   by (simp add: fold_coeffs_def)
   539 
   540 
   541 subsection {* Canonical morphism on polynomials -- evaluation *}
   542 
   543 definition poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a"
   544 where
   545   "poly p = fold_coeffs (\<lambda>a f x. a + x * f x) p (\<lambda>x. 0)" -- {* The Horner Schema *}
   546 
   547 lemma poly_0 [simp]:
   548   "poly 0 x = 0"
   549   by (simp add: poly_def)
   550 
   551 lemma poly_pCons [simp]:
   552   "poly (pCons a p) x = a + x * poly p x"
   553   by (cases "p = 0 \<and> a = 0") (auto simp add: poly_def)
   554 
   555 
   556 subsection {* Monomials *}
   557 
   558 lift_definition monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly"
   559   is "\<lambda>a m n. if m = n then a else 0"
   560   by (auto intro!: almost_everywhere_zeroI)
   561 
   562 lemma coeff_monom [simp]:
   563   "coeff (monom a m) n = (if m = n then a else 0)"
   564   by transfer rule
   565 
   566 lemma monom_0:
   567   "monom a 0 = pCons a 0"
   568   by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
   569 
   570 lemma monom_Suc:
   571   "monom a (Suc n) = pCons 0 (monom a n)"
   572   by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
   573 
   574 lemma monom_eq_0 [simp]: "monom 0 n = 0"
   575   by (rule poly_eqI) simp
   576 
   577 lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0"
   578   by (simp add: poly_eq_iff)
   579 
   580 lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b"
   581   by (simp add: poly_eq_iff)
   582 
   583 lemma degree_monom_le: "degree (monom a n) \<le> n"
   584   by (rule degree_le, simp)
   585 
   586 lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n"
   587   apply (rule order_antisym [OF degree_monom_le])
   588   apply (rule le_degree, simp)
   589   done
   590 
   591 lemma coeffs_monom [code abstract]:
   592   "coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])"
   593   by (induct n) (simp_all add: monom_0 monom_Suc)
   594 
   595 lemma fold_coeffs_monom [simp]:
   596   "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (monom a n) = f 0 ^^ n \<circ> f a"
   597   by (simp add: fold_coeffs_def coeffs_monom fun_eq_iff)
   598 
   599 lemma poly_monom:
   600   fixes a x :: "'a::{comm_semiring_1}"
   601   shows "poly (monom a n) x = a * x ^ n"
   602   by (cases "a = 0", simp_all)
   603     (induct n, simp_all add: mult.left_commute poly_def)
   604 
   605 
   606 subsection {* Addition and subtraction *}
   607 
   608 instantiation poly :: (comm_monoid_add) comm_monoid_add
   609 begin
   610 
   611 lift_definition plus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
   612   is "\<lambda>p q n. coeff p n + coeff q n"
   613 proof (rule almost_everywhere_zeroI) 
   614   fix q p :: "'a poly" and i
   615   assume "max (degree q) (degree p) < i"
   616   then show "coeff p i + coeff q i = 0"
   617     by (simp add: coeff_eq_0)
   618 qed
   619 
   620 lemma coeff_add [simp]:
   621   "coeff (p + q) n = coeff p n + coeff q n"
   622   by (simp add: plus_poly.rep_eq)
   623 
   624 instance proof
   625   fix p q r :: "'a poly"
   626   show "(p + q) + r = p + (q + r)"
   627     by (simp add: poly_eq_iff add_assoc)
   628   show "p + q = q + p"
   629     by (simp add: poly_eq_iff add_commute)
   630   show "0 + p = p"
   631     by (simp add: poly_eq_iff)
   632 qed
   633 
   634 end
   635 
   636 instance poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add
   637 proof
   638   fix p q r :: "'a poly"
   639   assume "p + q = p + r" thus "q = r"
   640     by (simp add: poly_eq_iff)
   641 qed
   642 
   643 instantiation poly :: (ab_group_add) ab_group_add
   644 begin
   645 
   646 lift_definition uminus_poly :: "'a poly \<Rightarrow> 'a poly"
   647   is "\<lambda>p n. - coeff p n"
   648 proof (rule almost_everywhere_zeroI)
   649   fix p :: "'a poly" and i
   650   assume "degree p < i"
   651   then show "- coeff p i = 0"
   652     by (simp add: coeff_eq_0)
   653 qed
   654 
   655 lift_definition minus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
   656   is "\<lambda>p q n. coeff p n - coeff q n"
   657 proof (rule almost_everywhere_zeroI) 
   658   fix q p :: "'a poly" and i
   659   assume "max (degree q) (degree p) < i"
   660   then show "coeff p i - coeff q i = 0"
   661     by (simp add: coeff_eq_0)
   662 qed
   663 
   664 lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n"
   665   by (simp add: uminus_poly.rep_eq)
   666 
   667 lemma coeff_diff [simp]:
   668   "coeff (p - q) n = coeff p n - coeff q n"
   669   by (simp add: minus_poly.rep_eq)
   670 
   671 instance proof
   672   fix p q :: "'a poly"
   673   show "- p + p = 0"
   674     by (simp add: poly_eq_iff)
   675   show "p - q = p + - q"
   676     by (simp add: poly_eq_iff)
   677 qed
   678 
   679 end
   680 
   681 lemma add_pCons [simp]:
   682   "pCons a p + pCons b q = pCons (a + b) (p + q)"
   683   by (rule poly_eqI, simp add: coeff_pCons split: nat.split)
   684 
   685 lemma minus_pCons [simp]:
   686   "- pCons a p = pCons (- a) (- p)"
   687   by (rule poly_eqI, simp add: coeff_pCons split: nat.split)
   688 
   689 lemma diff_pCons [simp]:
   690   "pCons a p - pCons b q = pCons (a - b) (p - q)"
   691   by (rule poly_eqI, simp add: coeff_pCons split: nat.split)
   692 
   693 lemma degree_add_le_max: "degree (p + q) \<le> max (degree p) (degree q)"
   694   by (rule degree_le, auto simp add: coeff_eq_0)
   695 
   696 lemma degree_add_le:
   697   "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p + q) \<le> n"
   698   by (auto intro: order_trans degree_add_le_max)
   699 
   700 lemma degree_add_less:
   701   "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p + q) < n"
   702   by (auto intro: le_less_trans degree_add_le_max)
   703 
   704 lemma degree_add_eq_right:
   705   "degree p < degree q \<Longrightarrow> degree (p + q) = degree q"
   706   apply (cases "q = 0", simp)
   707   apply (rule order_antisym)
   708   apply (simp add: degree_add_le)
   709   apply (rule le_degree)
   710   apply (simp add: coeff_eq_0)
   711   done
   712 
   713 lemma degree_add_eq_left:
   714   "degree q < degree p \<Longrightarrow> degree (p + q) = degree p"
   715   using degree_add_eq_right [of q p]
   716   by (simp add: add_commute)
   717 
   718 lemma degree_minus [simp]: "degree (- p) = degree p"
   719   unfolding degree_def by simp
   720 
   721 lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)"
   722   using degree_add_le [where p=p and q="-q"]
   723   by simp
   724 
   725 lemma degree_diff_le:
   726   "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p - q) \<le> n"
   727   using degree_add_le [of p n "- q"] by simp
   728 
   729 lemma degree_diff_less:
   730   "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p - q) < n"
   731   using degree_add_less [of p n "- q"] by simp
   732 
   733 lemma add_monom: "monom a n + monom b n = monom (a + b) n"
   734   by (rule poly_eqI) simp
   735 
   736 lemma diff_monom: "monom a n - monom b n = monom (a - b) n"
   737   by (rule poly_eqI) simp
   738 
   739 lemma minus_monom: "- monom a n = monom (-a) n"
   740   by (rule poly_eqI) simp
   741 
   742 lemma coeff_setsum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)"
   743   by (cases "finite A", induct set: finite, simp_all)
   744 
   745 lemma monom_setsum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)"
   746   by (rule poly_eqI) (simp add: coeff_setsum)
   747 
   748 fun plus_coeffs :: "'a::comm_monoid_add list \<Rightarrow> 'a list \<Rightarrow> 'a list"
   749 where
   750   "plus_coeffs xs [] = xs"
   751 | "plus_coeffs [] ys = ys"
   752 | "plus_coeffs (x # xs) (y # ys) = (x + y) ## plus_coeffs xs ys"
   753 
   754 lemma coeffs_plus_eq_plus_coeffs [code abstract]:
   755   "coeffs (p + q) = plus_coeffs (coeffs p) (coeffs q)"
   756 proof -
   757   { fix xs ys :: "'a list" and n
   758     have "nth_default 0 (plus_coeffs xs ys) n = nth_default 0 xs n + nth_default 0 ys n"
   759     proof (induct xs ys arbitrary: n rule: plus_coeffs.induct)
   760       case (3 x xs y ys n) then show ?case by (cases n) (auto simp add: cCons_def)
   761     qed simp_all }
   762   note * = this
   763   { fix xs ys :: "'a list"
   764     assume "xs \<noteq> [] \<Longrightarrow> last xs \<noteq> 0" and "ys \<noteq> [] \<Longrightarrow> last ys \<noteq> 0"
   765     moreover assume "plus_coeffs xs ys \<noteq> []"
   766     ultimately have "last (plus_coeffs xs ys) \<noteq> 0"
   767     proof (induct xs ys rule: plus_coeffs.induct)
   768       case (3 x xs y ys) then show ?case by (auto simp add: cCons_def) metis
   769     qed simp_all }
   770   note ** = this
   771   show ?thesis
   772     apply (rule coeffs_eqI)
   773     apply (simp add: * nth_default_coeffs_eq)
   774     apply (rule **)
   775     apply (auto dest: last_coeffs_not_0)
   776     done
   777 qed
   778 
   779 lemma coeffs_uminus [code abstract]:
   780   "coeffs (- p) = map (\<lambda>a. - a) (coeffs p)"
   781   by (rule coeffs_eqI)
   782     (simp_all add: not_0_coeffs_not_Nil last_map last_coeffs_not_0 nth_default_map_eq nth_default_coeffs_eq)
   783 
   784 lemma [code]:
   785   fixes p q :: "'a::ab_group_add poly"
   786   shows "p - q = p + - q"
   787   by (fact ab_add_uminus_conv_diff)
   788 
   789 lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x"
   790   apply (induct p arbitrary: q, simp)
   791   apply (case_tac q, simp, simp add: algebra_simps)
   792   done
   793 
   794 lemma poly_minus [simp]:
   795   fixes x :: "'a::comm_ring"
   796   shows "poly (- p) x = - poly p x"
   797   by (induct p) simp_all
   798 
   799 lemma poly_diff [simp]:
   800   fixes x :: "'a::comm_ring"
   801   shows "poly (p - q) x = poly p x - poly q x"
   802   using poly_add [of p "- q" x] by simp
   803 
   804 lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
   805   by (induct A rule: infinite_finite_induct) simp_all
   806 
   807 
   808 subsection {* Multiplication by a constant, polynomial multiplication and the unit polynomial *}
   809 
   810 lift_definition smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
   811   is "\<lambda>a p n. a * coeff p n"
   812 proof (rule almost_everywhere_zeroI)
   813   fix a :: 'a and p :: "'a poly" and i
   814   assume "degree p < i"
   815   then show "a * coeff p i = 0"
   816     by (simp add: coeff_eq_0)
   817 qed
   818 
   819 lemma coeff_smult [simp]:
   820   "coeff (smult a p) n = a * coeff p n"
   821   by (simp add: smult.rep_eq)
   822 
   823 lemma degree_smult_le: "degree (smult a p) \<le> degree p"
   824   by (rule degree_le, simp add: coeff_eq_0)
   825 
   826 lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p"
   827   by (rule poly_eqI, simp add: mult_assoc)
   828 
   829 lemma smult_0_right [simp]: "smult a 0 = 0"
   830   by (rule poly_eqI, simp)
   831 
   832 lemma smult_0_left [simp]: "smult 0 p = 0"
   833   by (rule poly_eqI, simp)
   834 
   835 lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p"
   836   by (rule poly_eqI, simp)
   837 
   838 lemma smult_add_right:
   839   "smult a (p + q) = smult a p + smult a q"
   840   by (rule poly_eqI, simp add: algebra_simps)
   841 
   842 lemma smult_add_left:
   843   "smult (a + b) p = smult a p + smult b p"
   844   by (rule poly_eqI, simp add: algebra_simps)
   845 
   846 lemma smult_minus_right [simp]:
   847   "smult (a::'a::comm_ring) (- p) = - smult a p"
   848   by (rule poly_eqI, simp)
   849 
   850 lemma smult_minus_left [simp]:
   851   "smult (- a::'a::comm_ring) p = - smult a p"
   852   by (rule poly_eqI, simp)
   853 
   854 lemma smult_diff_right:
   855   "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q"
   856   by (rule poly_eqI, simp add: algebra_simps)
   857 
   858 lemma smult_diff_left:
   859   "smult (a - b::'a::comm_ring) p = smult a p - smult b p"
   860   by (rule poly_eqI, simp add: algebra_simps)
   861 
   862 lemmas smult_distribs =
   863   smult_add_left smult_add_right
   864   smult_diff_left smult_diff_right
   865 
   866 lemma smult_pCons [simp]:
   867   "smult a (pCons b p) = pCons (a * b) (smult a p)"
   868   by (rule poly_eqI, simp add: coeff_pCons split: nat.split)
   869 
   870 lemma smult_monom: "smult a (monom b n) = monom (a * b) n"
   871   by (induct n, simp add: monom_0, simp add: monom_Suc)
   872 
   873 lemma degree_smult_eq [simp]:
   874   fixes a :: "'a::idom"
   875   shows "degree (smult a p) = (if a = 0 then 0 else degree p)"
   876   by (cases "a = 0", simp, simp add: degree_def)
   877 
   878 lemma smult_eq_0_iff [simp]:
   879   fixes a :: "'a::idom"
   880   shows "smult a p = 0 \<longleftrightarrow> a = 0 \<or> p = 0"
   881   by (simp add: poly_eq_iff)
   882 
   883 lemma coeffs_smult [code abstract]:
   884   fixes p :: "'a::idom poly"
   885   shows "coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))"
   886   by (rule coeffs_eqI)
   887     (auto simp add: not_0_coeffs_not_Nil last_map last_coeffs_not_0 nth_default_map_eq nth_default_coeffs_eq)
   888 
   889 instantiation poly :: (comm_semiring_0) comm_semiring_0
   890 begin
   891 
   892 definition
   893   "p * q = fold_coeffs (\<lambda>a p. smult a q + pCons 0 p) p 0"
   894 
   895 lemma mult_poly_0_left: "(0::'a poly) * q = 0"
   896   by (simp add: times_poly_def)
   897 
   898 lemma mult_pCons_left [simp]:
   899   "pCons a p * q = smult a q + pCons 0 (p * q)"
   900   by (cases "p = 0 \<and> a = 0") (auto simp add: times_poly_def)
   901 
   902 lemma mult_poly_0_right: "p * (0::'a poly) = 0"
   903   by (induct p) (simp add: mult_poly_0_left, simp)
   904 
   905 lemma mult_pCons_right [simp]:
   906   "p * pCons a q = smult a p + pCons 0 (p * q)"
   907   by (induct p) (simp add: mult_poly_0_left, simp add: algebra_simps)
   908 
   909 lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
   910 
   911 lemma mult_smult_left [simp]:
   912   "smult a p * q = smult a (p * q)"
   913   by (induct p) (simp add: mult_poly_0, simp add: smult_add_right)
   914 
   915 lemma mult_smult_right [simp]:
   916   "p * smult a q = smult a (p * q)"
   917   by (induct q) (simp add: mult_poly_0, simp add: smult_add_right)
   918 
   919 lemma mult_poly_add_left:
   920   fixes p q r :: "'a poly"
   921   shows "(p + q) * r = p * r + q * r"
   922   by (induct r) (simp add: mult_poly_0, simp add: smult_distribs algebra_simps)
   923 
   924 instance proof
   925   fix p q r :: "'a poly"
   926   show 0: "0 * p = 0"
   927     by (rule mult_poly_0_left)
   928   show "p * 0 = 0"
   929     by (rule mult_poly_0_right)
   930   show "(p + q) * r = p * r + q * r"
   931     by (rule mult_poly_add_left)
   932   show "(p * q) * r = p * (q * r)"
   933     by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left)
   934   show "p * q = q * p"
   935     by (induct p, simp add: mult_poly_0, simp)
   936 qed
   937 
   938 end
   939 
   940 instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
   941 
   942 lemma coeff_mult:
   943   "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
   944 proof (induct p arbitrary: n)
   945   case 0 show ?case by simp
   946 next
   947   case (pCons a p n) thus ?case
   948     by (cases n, simp, simp add: setsum_atMost_Suc_shift
   949                             del: setsum_atMost_Suc)
   950 qed
   951 
   952 lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
   953 apply (rule degree_le)
   954 apply (induct p)
   955 apply simp
   956 apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
   957 done
   958 
   959 lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
   960   by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
   961 
   962 instantiation poly :: (comm_semiring_1) comm_semiring_1
   963 begin
   964 
   965 definition one_poly_def:
   966   "1 = pCons 1 0"
   967 
   968 instance proof
   969   fix p :: "'a poly" show "1 * p = p"
   970     unfolding one_poly_def by simp
   971 next
   972   show "0 \<noteq> (1::'a poly)"
   973     unfolding one_poly_def by simp
   974 qed
   975 
   976 end
   977 
   978 instance poly :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
   979 
   980 instance poly :: (comm_ring) comm_ring ..
   981 
   982 instance poly :: (comm_ring_1) comm_ring_1 ..
   983 
   984 lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)"
   985   unfolding one_poly_def
   986   by (simp add: coeff_pCons split: nat.split)
   987 
   988 lemma degree_1 [simp]: "degree 1 = 0"
   989   unfolding one_poly_def
   990   by (rule degree_pCons_0)
   991 
   992 lemma coeffs_1_eq [simp, code abstract]:
   993   "coeffs 1 = [1]"
   994   by (simp add: one_poly_def)
   995 
   996 lemma degree_power_le:
   997   "degree (p ^ n) \<le> degree p * n"
   998   by (induct n) (auto intro: order_trans degree_mult_le)
   999 
  1000 lemma poly_smult [simp]:
  1001   "poly (smult a p) x = a * poly p x"
  1002   by (induct p, simp, simp add: algebra_simps)
  1003 
  1004 lemma poly_mult [simp]:
  1005   "poly (p * q) x = poly p x * poly q x"
  1006   by (induct p, simp_all, simp add: algebra_simps)
  1007 
  1008 lemma poly_1 [simp]:
  1009   "poly 1 x = 1"
  1010   by (simp add: one_poly_def)
  1011 
  1012 lemma poly_power [simp]:
  1013   fixes p :: "'a::{comm_semiring_1} poly"
  1014   shows "poly (p ^ n) x = poly p x ^ n"
  1015   by (induct n) simp_all
  1016 
  1017 
  1018 subsection {* Lemmas about divisibility *}
  1019 
  1020 lemma dvd_smult: "p dvd q \<Longrightarrow> p dvd smult a q"
  1021 proof -
  1022   assume "p dvd q"
  1023   then obtain k where "q = p * k" ..
  1024   then have "smult a q = p * smult a k" by simp
  1025   then show "p dvd smult a q" ..
  1026 qed
  1027 
  1028 lemma dvd_smult_cancel:
  1029   fixes a :: "'a::field"
  1030   shows "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q"
  1031   by (drule dvd_smult [where a="inverse a"]) simp
  1032 
  1033 lemma dvd_smult_iff:
  1034   fixes a :: "'a::field"
  1035   shows "a \<noteq> 0 \<Longrightarrow> p dvd smult a q \<longleftrightarrow> p dvd q"
  1036   by (safe elim!: dvd_smult dvd_smult_cancel)
  1037 
  1038 lemma smult_dvd_cancel:
  1039   "smult a p dvd q \<Longrightarrow> p dvd q"
  1040 proof -
  1041   assume "smult a p dvd q"
  1042   then obtain k where "q = smult a p * k" ..
  1043   then have "q = p * smult a k" by simp
  1044   then show "p dvd q" ..
  1045 qed
  1046 
  1047 lemma smult_dvd:
  1048   fixes a :: "'a::field"
  1049   shows "p dvd q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> smult a p dvd q"
  1050   by (rule smult_dvd_cancel [where a="inverse a"]) simp
  1051 
  1052 lemma smult_dvd_iff:
  1053   fixes a :: "'a::field"
  1054   shows "smult a p dvd q \<longleftrightarrow> (if a = 0 then q = 0 else p dvd q)"
  1055   by (auto elim: smult_dvd smult_dvd_cancel)
  1056 
  1057 
  1058 subsection {* Polynomials form an integral domain *}
  1059 
  1060 lemma coeff_mult_degree_sum:
  1061   "coeff (p * q) (degree p + degree q) =
  1062    coeff p (degree p) * coeff q (degree q)"
  1063   by (induct p, simp, simp add: coeff_eq_0)
  1064 
  1065 instance poly :: (idom) idom
  1066 proof
  1067   fix p q :: "'a poly"
  1068   assume "p \<noteq> 0" and "q \<noteq> 0"
  1069   have "coeff (p * q) (degree p + degree q) =
  1070         coeff p (degree p) * coeff q (degree q)"
  1071     by (rule coeff_mult_degree_sum)
  1072   also have "coeff p (degree p) * coeff q (degree q) \<noteq> 0"
  1073     using `p \<noteq> 0` and `q \<noteq> 0` by simp
  1074   finally have "\<exists>n. coeff (p * q) n \<noteq> 0" ..
  1075   thus "p * q \<noteq> 0" by (simp add: poly_eq_iff)
  1076 qed
  1077 
  1078 lemma degree_mult_eq:
  1079   fixes p q :: "'a::idom poly"
  1080   shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q"
  1081 apply (rule order_antisym [OF degree_mult_le le_degree])
  1082 apply (simp add: coeff_mult_degree_sum)
  1083 done
  1084 
  1085 lemma dvd_imp_degree_le:
  1086   fixes p q :: "'a::idom poly"
  1087   shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q"
  1088   by (erule dvdE, simp add: degree_mult_eq)
  1089 
  1090 
  1091 subsection {* Polynomials form an ordered integral domain *}
  1092 
  1093 definition pos_poly :: "'a::linordered_idom poly \<Rightarrow> bool"
  1094 where
  1095   "pos_poly p \<longleftrightarrow> 0 < coeff p (degree p)"
  1096 
  1097 lemma pos_poly_pCons:
  1098   "pos_poly (pCons a p) \<longleftrightarrow> pos_poly p \<or> (p = 0 \<and> 0 < a)"
  1099   unfolding pos_poly_def by simp
  1100 
  1101 lemma not_pos_poly_0 [simp]: "\<not> pos_poly 0"
  1102   unfolding pos_poly_def by simp
  1103 
  1104 lemma pos_poly_add: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p + q)"
  1105   apply (induct p arbitrary: q, simp)
  1106   apply (case_tac q, force simp add: pos_poly_pCons add_pos_pos)
  1107   done
  1108 
  1109 lemma pos_poly_mult: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p * q)"
  1110   unfolding pos_poly_def
  1111   apply (subgoal_tac "p \<noteq> 0 \<and> q \<noteq> 0")
  1112   apply (simp add: degree_mult_eq coeff_mult_degree_sum)
  1113   apply auto
  1114   done
  1115 
  1116 lemma pos_poly_total: "p = 0 \<or> pos_poly p \<or> pos_poly (- p)"
  1117 by (induct p) (auto simp add: pos_poly_pCons)
  1118 
  1119 lemma last_coeffs_eq_coeff_degree:
  1120   "p \<noteq> 0 \<Longrightarrow> last (coeffs p) = coeff p (degree p)"
  1121   by (simp add: coeffs_def)
  1122 
  1123 lemma pos_poly_coeffs [code]:
  1124   "pos_poly p \<longleftrightarrow> (let as = coeffs p in as \<noteq> [] \<and> last as > 0)" (is "?P \<longleftrightarrow> ?Q")
  1125 proof
  1126   assume ?Q then show ?P by (auto simp add: pos_poly_def last_coeffs_eq_coeff_degree)
  1127 next
  1128   assume ?P then have *: "0 < coeff p (degree p)" by (simp add: pos_poly_def)
  1129   then have "p \<noteq> 0" by auto
  1130   with * show ?Q by (simp add: last_coeffs_eq_coeff_degree)
  1131 qed
  1132 
  1133 instantiation poly :: (linordered_idom) linordered_idom
  1134 begin
  1135 
  1136 definition
  1137   "x < y \<longleftrightarrow> pos_poly (y - x)"
  1138 
  1139 definition
  1140   "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
  1141 
  1142 definition
  1143   "abs (x::'a poly) = (if x < 0 then - x else x)"
  1144 
  1145 definition
  1146   "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
  1147 
  1148 instance proof
  1149   fix x y :: "'a poly"
  1150   show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
  1151     unfolding less_eq_poly_def less_poly_def
  1152     apply safe
  1153     apply simp
  1154     apply (drule (1) pos_poly_add)
  1155     apply simp
  1156     done
  1157 next
  1158   fix x :: "'a poly" show "x \<le> x"
  1159     unfolding less_eq_poly_def by simp
  1160 next
  1161   fix x y z :: "'a poly"
  1162   assume "x \<le> y" and "y \<le> z" thus "x \<le> z"
  1163     unfolding less_eq_poly_def
  1164     apply safe
  1165     apply (drule (1) pos_poly_add)
  1166     apply (simp add: algebra_simps)
  1167     done
  1168 next
  1169   fix x y :: "'a poly"
  1170   assume "x \<le> y" and "y \<le> x" thus "x = y"
  1171     unfolding less_eq_poly_def
  1172     apply safe
  1173     apply (drule (1) pos_poly_add)
  1174     apply simp
  1175     done
  1176 next
  1177   fix x y z :: "'a poly"
  1178   assume "x \<le> y" thus "z + x \<le> z + y"
  1179     unfolding less_eq_poly_def
  1180     apply safe
  1181     apply (simp add: algebra_simps)
  1182     done
  1183 next
  1184   fix x y :: "'a poly"
  1185   show "x \<le> y \<or> y \<le> x"
  1186     unfolding less_eq_poly_def
  1187     using pos_poly_total [of "x - y"]
  1188     by auto
  1189 next
  1190   fix x y z :: "'a poly"
  1191   assume "x < y" and "0 < z"
  1192   thus "z * x < z * y"
  1193     unfolding less_poly_def
  1194     by (simp add: right_diff_distrib [symmetric] pos_poly_mult)
  1195 next
  1196   fix x :: "'a poly"
  1197   show "\<bar>x\<bar> = (if x < 0 then - x else x)"
  1198     by (rule abs_poly_def)
  1199 next
  1200   fix x :: "'a poly"
  1201   show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
  1202     by (rule sgn_poly_def)
  1203 qed
  1204 
  1205 end
  1206 
  1207 text {* TODO: Simplification rules for comparisons *}
  1208 
  1209 
  1210 subsection {* Synthetic division and polynomial roots *}
  1211 
  1212 text {*
  1213   Synthetic division is simply division by the linear polynomial @{term "x - c"}.
  1214 *}
  1215 
  1216 definition synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a"
  1217 where
  1218   "synthetic_divmod p c = fold_coeffs (\<lambda>a (q, r). (pCons r q, a + c * r)) p (0, 0)"
  1219 
  1220 definition synthetic_div :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
  1221 where
  1222   "synthetic_div p c = fst (synthetic_divmod p c)"
  1223 
  1224 lemma synthetic_divmod_0 [simp]:
  1225   "synthetic_divmod 0 c = (0, 0)"
  1226   by (simp add: synthetic_divmod_def)
  1227 
  1228 lemma synthetic_divmod_pCons [simp]:
  1229   "synthetic_divmod (pCons a p) c = (\<lambda>(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)"
  1230   by (cases "p = 0 \<and> a = 0") (auto simp add: synthetic_divmod_def)
  1231 
  1232 lemma synthetic_div_0 [simp]:
  1233   "synthetic_div 0 c = 0"
  1234   unfolding synthetic_div_def by simp
  1235 
  1236 lemma synthetic_div_unique_lemma: "smult c p = pCons a p \<Longrightarrow> p = 0"
  1237 by (induct p arbitrary: a) simp_all
  1238 
  1239 lemma snd_synthetic_divmod:
  1240   "snd (synthetic_divmod p c) = poly p c"
  1241   by (induct p, simp, simp add: split_def)
  1242 
  1243 lemma synthetic_div_pCons [simp]:
  1244   "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)"
  1245   unfolding synthetic_div_def
  1246   by (simp add: split_def snd_synthetic_divmod)
  1247 
  1248 lemma synthetic_div_eq_0_iff:
  1249   "synthetic_div p c = 0 \<longleftrightarrow> degree p = 0"
  1250   by (induct p, simp, case_tac p, simp)
  1251 
  1252 lemma degree_synthetic_div:
  1253   "degree (synthetic_div p c) = degree p - 1"
  1254   by (induct p, simp, simp add: synthetic_div_eq_0_iff)
  1255 
  1256 lemma synthetic_div_correct:
  1257   "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)"
  1258   by (induct p) simp_all
  1259 
  1260 lemma synthetic_div_unique:
  1261   "p + smult c q = pCons r q \<Longrightarrow> r = poly p c \<and> q = synthetic_div p c"
  1262 apply (induct p arbitrary: q r)
  1263 apply (simp, frule synthetic_div_unique_lemma, simp)
  1264 apply (case_tac q, force)
  1265 done
  1266 
  1267 lemma synthetic_div_correct':
  1268   fixes c :: "'a::comm_ring_1"
  1269   shows "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p"
  1270   using synthetic_div_correct [of p c]
  1271   by (simp add: algebra_simps)
  1272 
  1273 lemma poly_eq_0_iff_dvd:
  1274   fixes c :: "'a::idom"
  1275   shows "poly p c = 0 \<longleftrightarrow> [:-c, 1:] dvd p"
  1276 proof
  1277   assume "poly p c = 0"
  1278   with synthetic_div_correct' [of c p]
  1279   have "p = [:-c, 1:] * synthetic_div p c" by simp
  1280   then show "[:-c, 1:] dvd p" ..
  1281 next
  1282   assume "[:-c, 1:] dvd p"
  1283   then obtain k where "p = [:-c, 1:] * k" by (rule dvdE)
  1284   then show "poly p c = 0" by simp
  1285 qed
  1286 
  1287 lemma dvd_iff_poly_eq_0:
  1288   fixes c :: "'a::idom"
  1289   shows "[:c, 1:] dvd p \<longleftrightarrow> poly p (-c) = 0"
  1290   by (simp add: poly_eq_0_iff_dvd)
  1291 
  1292 lemma poly_roots_finite:
  1293   fixes p :: "'a::idom poly"
  1294   shows "p \<noteq> 0 \<Longrightarrow> finite {x. poly p x = 0}"
  1295 proof (induct n \<equiv> "degree p" arbitrary: p)
  1296   case (0 p)
  1297   then obtain a where "a \<noteq> 0" and "p = [:a:]"
  1298     by (cases p, simp split: if_splits)
  1299   then show "finite {x. poly p x = 0}" by simp
  1300 next
  1301   case (Suc n p)
  1302   show "finite {x. poly p x = 0}"
  1303   proof (cases "\<exists>x. poly p x = 0")
  1304     case False
  1305     then show "finite {x. poly p x = 0}" by simp
  1306   next
  1307     case True
  1308     then obtain a where "poly p a = 0" ..
  1309     then have "[:-a, 1:] dvd p" by (simp only: poly_eq_0_iff_dvd)
  1310     then obtain k where k: "p = [:-a, 1:] * k" ..
  1311     with `p \<noteq> 0` have "k \<noteq> 0" by auto
  1312     with k have "degree p = Suc (degree k)"
  1313       by (simp add: degree_mult_eq del: mult_pCons_left)
  1314     with `Suc n = degree p` have "n = degree k" by simp
  1315     then have "finite {x. poly k x = 0}" using `k \<noteq> 0` by (rule Suc.hyps)
  1316     then have "finite (insert a {x. poly k x = 0})" by simp
  1317     then show "finite {x. poly p x = 0}"
  1318       by (simp add: k uminus_add_conv_diff Collect_disj_eq
  1319                del: mult_pCons_left)
  1320   qed
  1321 qed
  1322 
  1323 lemma poly_eq_poly_eq_iff:
  1324   fixes p q :: "'a::{idom,ring_char_0} poly"
  1325   shows "poly p = poly q \<longleftrightarrow> p = q" (is "?P \<longleftrightarrow> ?Q")
  1326 proof
  1327   assume ?Q then show ?P by simp
  1328 next
  1329   { fix p :: "'a::{idom,ring_char_0} poly"
  1330     have "poly p = poly 0 \<longleftrightarrow> p = 0"
  1331       apply (cases "p = 0", simp_all)
  1332       apply (drule poly_roots_finite)
  1333       apply (auto simp add: infinite_UNIV_char_0)
  1334       done
  1335   } note this [of "p - q"]
  1336   moreover assume ?P
  1337   ultimately show ?Q by auto
  1338 qed
  1339 
  1340 lemma poly_all_0_iff_0:
  1341   fixes p :: "'a::{ring_char_0, idom} poly"
  1342   shows "(\<forall>x. poly p x = 0) \<longleftrightarrow> p = 0"
  1343   by (auto simp add: poly_eq_poly_eq_iff [symmetric])
  1344 
  1345 
  1346 subsection {* Long division of polynomials *}
  1347 
  1348 definition pdivmod_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
  1349 where
  1350   "pdivmod_rel x y q r \<longleftrightarrow>
  1351     x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
  1352 
  1353 lemma pdivmod_rel_0:
  1354   "pdivmod_rel 0 y 0 0"
  1355   unfolding pdivmod_rel_def by simp
  1356 
  1357 lemma pdivmod_rel_by_0:
  1358   "pdivmod_rel x 0 0 x"
  1359   unfolding pdivmod_rel_def by simp
  1360 
  1361 lemma eq_zero_or_degree_less:
  1362   assumes "degree p \<le> n" and "coeff p n = 0"
  1363   shows "p = 0 \<or> degree p < n"
  1364 proof (cases n)
  1365   case 0
  1366   with `degree p \<le> n` and `coeff p n = 0`
  1367   have "coeff p (degree p) = 0" by simp
  1368   then have "p = 0" by simp
  1369   then show ?thesis ..
  1370 next
  1371   case (Suc m)
  1372   have "\<forall>i>n. coeff p i = 0"
  1373     using `degree p \<le> n` by (simp add: coeff_eq_0)
  1374   then have "\<forall>i\<ge>n. coeff p i = 0"
  1375     using `coeff p n = 0` by (simp add: le_less)
  1376   then have "\<forall>i>m. coeff p i = 0"
  1377     using `n = Suc m` by (simp add: less_eq_Suc_le)
  1378   then have "degree p \<le> m"
  1379     by (rule degree_le)
  1380   then have "degree p < n"
  1381     using `n = Suc m` by (simp add: less_Suc_eq_le)
  1382   then show ?thesis ..
  1383 qed
  1384 
  1385 lemma pdivmod_rel_pCons:
  1386   assumes rel: "pdivmod_rel x y q r"
  1387   assumes y: "y \<noteq> 0"
  1388   assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)"
  1389   shows "pdivmod_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)"
  1390     (is "pdivmod_rel ?x y ?q ?r")
  1391 proof -
  1392   have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y"
  1393     using assms unfolding pdivmod_rel_def by simp_all
  1394 
  1395   have 1: "?x = ?q * y + ?r"
  1396     using b x by simp
  1397 
  1398   have 2: "?r = 0 \<or> degree ?r < degree y"
  1399   proof (rule eq_zero_or_degree_less)
  1400     show "degree ?r \<le> degree y"
  1401     proof (rule degree_diff_le)
  1402       show "degree (pCons a r) \<le> degree y"
  1403         using r by auto
  1404       show "degree (smult b y) \<le> degree y"
  1405         by (rule degree_smult_le)
  1406     qed
  1407   next
  1408     show "coeff ?r (degree y) = 0"
  1409       using `y \<noteq> 0` unfolding b by simp
  1410   qed
  1411 
  1412   from 1 2 show ?thesis
  1413     unfolding pdivmod_rel_def
  1414     using `y \<noteq> 0` by simp
  1415 qed
  1416 
  1417 lemma pdivmod_rel_exists: "\<exists>q r. pdivmod_rel x y q r"
  1418 apply (cases "y = 0")
  1419 apply (fast intro!: pdivmod_rel_by_0)
  1420 apply (induct x)
  1421 apply (fast intro!: pdivmod_rel_0)
  1422 apply (fast intro!: pdivmod_rel_pCons)
  1423 done
  1424 
  1425 lemma pdivmod_rel_unique:
  1426   assumes 1: "pdivmod_rel x y q1 r1"
  1427   assumes 2: "pdivmod_rel x y q2 r2"
  1428   shows "q1 = q2 \<and> r1 = r2"
  1429 proof (cases "y = 0")
  1430   assume "y = 0" with assms show ?thesis
  1431     by (simp add: pdivmod_rel_def)
  1432 next
  1433   assume [simp]: "y \<noteq> 0"
  1434   from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y"
  1435     unfolding pdivmod_rel_def by simp_all
  1436   from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y"
  1437     unfolding pdivmod_rel_def by simp_all
  1438   from q1 q2 have q3: "(q1 - q2) * y = r2 - r1"
  1439     by (simp add: algebra_simps)
  1440   from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y"
  1441     by (auto intro: degree_diff_less)
  1442 
  1443   show "q1 = q2 \<and> r1 = r2"
  1444   proof (rule ccontr)
  1445     assume "\<not> (q1 = q2 \<and> r1 = r2)"
  1446     with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto
  1447     with r3 have "degree (r2 - r1) < degree y" by simp
  1448     also have "degree y \<le> degree (q1 - q2) + degree y" by simp
  1449     also have "\<dots> = degree ((q1 - q2) * y)"
  1450       using `q1 \<noteq> q2` by (simp add: degree_mult_eq)
  1451     also have "\<dots> = degree (r2 - r1)"
  1452       using q3 by simp
  1453     finally have "degree (r2 - r1) < degree (r2 - r1)" .
  1454     then show "False" by simp
  1455   qed
  1456 qed
  1457 
  1458 lemma pdivmod_rel_0_iff: "pdivmod_rel 0 y q r \<longleftrightarrow> q = 0 \<and> r = 0"
  1459 by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_0)
  1460 
  1461 lemma pdivmod_rel_by_0_iff: "pdivmod_rel x 0 q r \<longleftrightarrow> q = 0 \<and> r = x"
  1462 by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_by_0)
  1463 
  1464 lemmas pdivmod_rel_unique_div = pdivmod_rel_unique [THEN conjunct1]
  1465 
  1466 lemmas pdivmod_rel_unique_mod = pdivmod_rel_unique [THEN conjunct2]
  1467 
  1468 instantiation poly :: (field) ring_div
  1469 begin
  1470 
  1471 definition div_poly where
  1472   "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)"
  1473 
  1474 definition mod_poly where
  1475   "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)"
  1476 
  1477 lemma div_poly_eq:
  1478   "pdivmod_rel x y q r \<Longrightarrow> x div y = q"
  1479 unfolding div_poly_def
  1480 by (fast elim: pdivmod_rel_unique_div)
  1481 
  1482 lemma mod_poly_eq:
  1483   "pdivmod_rel x y q r \<Longrightarrow> x mod y = r"
  1484 unfolding mod_poly_def
  1485 by (fast elim: pdivmod_rel_unique_mod)
  1486 
  1487 lemma pdivmod_rel:
  1488   "pdivmod_rel x y (x div y) (x mod y)"
  1489 proof -
  1490   from pdivmod_rel_exists
  1491     obtain q r where "pdivmod_rel x y q r" by fast
  1492   thus ?thesis
  1493     by (simp add: div_poly_eq mod_poly_eq)
  1494 qed
  1495 
  1496 instance proof
  1497   fix x y :: "'a poly"
  1498   show "x div y * y + x mod y = x"
  1499     using pdivmod_rel [of x y]
  1500     by (simp add: pdivmod_rel_def)
  1501 next
  1502   fix x :: "'a poly"
  1503   have "pdivmod_rel x 0 0 x"
  1504     by (rule pdivmod_rel_by_0)
  1505   thus "x div 0 = 0"
  1506     by (rule div_poly_eq)
  1507 next
  1508   fix y :: "'a poly"
  1509   have "pdivmod_rel 0 y 0 0"
  1510     by (rule pdivmod_rel_0)
  1511   thus "0 div y = 0"
  1512     by (rule div_poly_eq)
  1513 next
  1514   fix x y z :: "'a poly"
  1515   assume "y \<noteq> 0"
  1516   hence "pdivmod_rel (x + z * y) y (z + x div y) (x mod y)"
  1517     using pdivmod_rel [of x y]
  1518     by (simp add: pdivmod_rel_def distrib_right)
  1519   thus "(x + z * y) div y = z + x div y"
  1520     by (rule div_poly_eq)
  1521 next
  1522   fix x y z :: "'a poly"
  1523   assume "x \<noteq> 0"
  1524   show "(x * y) div (x * z) = y div z"
  1525   proof (cases "y \<noteq> 0 \<and> z \<noteq> 0")
  1526     have "\<And>x::'a poly. pdivmod_rel x 0 0 x"
  1527       by (rule pdivmod_rel_by_0)
  1528     then have [simp]: "\<And>x::'a poly. x div 0 = 0"
  1529       by (rule div_poly_eq)
  1530     have "\<And>x::'a poly. pdivmod_rel 0 x 0 0"
  1531       by (rule pdivmod_rel_0)
  1532     then have [simp]: "\<And>x::'a poly. 0 div x = 0"
  1533       by (rule div_poly_eq)
  1534     case False then show ?thesis by auto
  1535   next
  1536     case True then have "y \<noteq> 0" and "z \<noteq> 0" by auto
  1537     with `x \<noteq> 0`
  1538     have "\<And>q r. pdivmod_rel y z q r \<Longrightarrow> pdivmod_rel (x * y) (x * z) q (x * r)"
  1539       by (auto simp add: pdivmod_rel_def algebra_simps)
  1540         (rule classical, simp add: degree_mult_eq)
  1541     moreover from pdivmod_rel have "pdivmod_rel y z (y div z) (y mod z)" .
  1542     ultimately have "pdivmod_rel (x * y) (x * z) (y div z) (x * (y mod z))" .
  1543     then show ?thesis by (simp add: div_poly_eq)
  1544   qed
  1545 qed
  1546 
  1547 end
  1548 
  1549 lemma degree_mod_less:
  1550   "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y"
  1551   using pdivmod_rel [of x y]
  1552   unfolding pdivmod_rel_def by simp
  1553 
  1554 lemma div_poly_less: "degree x < degree y \<Longrightarrow> x div y = 0"
  1555 proof -
  1556   assume "degree x < degree y"
  1557   hence "pdivmod_rel x y 0 x"
  1558     by (simp add: pdivmod_rel_def)
  1559   thus "x div y = 0" by (rule div_poly_eq)
  1560 qed
  1561 
  1562 lemma mod_poly_less: "degree x < degree y \<Longrightarrow> x mod y = x"
  1563 proof -
  1564   assume "degree x < degree y"
  1565   hence "pdivmod_rel x y 0 x"
  1566     by (simp add: pdivmod_rel_def)
  1567   thus "x mod y = x" by (rule mod_poly_eq)
  1568 qed
  1569 
  1570 lemma pdivmod_rel_smult_left:
  1571   "pdivmod_rel x y q r
  1572     \<Longrightarrow> pdivmod_rel (smult a x) y (smult a q) (smult a r)"
  1573   unfolding pdivmod_rel_def by (simp add: smult_add_right)
  1574 
  1575 lemma div_smult_left: "(smult a x) div y = smult a (x div y)"
  1576   by (rule div_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
  1577 
  1578 lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)"
  1579   by (rule mod_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
  1580 
  1581 lemma poly_div_minus_left [simp]:
  1582   fixes x y :: "'a::field poly"
  1583   shows "(- x) div y = - (x div y)"
  1584   using div_smult_left [of "- 1::'a"] by simp
  1585 
  1586 lemma poly_mod_minus_left [simp]:
  1587   fixes x y :: "'a::field poly"
  1588   shows "(- x) mod y = - (x mod y)"
  1589   using mod_smult_left [of "- 1::'a"] by simp
  1590 
  1591 lemma pdivmod_rel_add_left:
  1592   assumes "pdivmod_rel x y q r"
  1593   assumes "pdivmod_rel x' y q' r'"
  1594   shows "pdivmod_rel (x + x') y (q + q') (r + r')"
  1595   using assms unfolding pdivmod_rel_def
  1596   by (auto simp add: distrib degree_add_less)
  1597 
  1598 lemma poly_div_add_left:
  1599   fixes x y z :: "'a::field poly"
  1600   shows "(x + y) div z = x div z + y div z"
  1601   using pdivmod_rel_add_left [OF pdivmod_rel pdivmod_rel]
  1602   by (rule div_poly_eq)
  1603 
  1604 lemma poly_mod_add_left:
  1605   fixes x y z :: "'a::field poly"
  1606   shows "(x + y) mod z = x mod z + y mod z"
  1607   using pdivmod_rel_add_left [OF pdivmod_rel pdivmod_rel]
  1608   by (rule mod_poly_eq)
  1609 
  1610 lemma poly_div_diff_left:
  1611   fixes x y z :: "'a::field poly"
  1612   shows "(x - y) div z = x div z - y div z"
  1613   by (simp only: diff_conv_add_uminus poly_div_add_left poly_div_minus_left)
  1614 
  1615 lemma poly_mod_diff_left:
  1616   fixes x y z :: "'a::field poly"
  1617   shows "(x - y) mod z = x mod z - y mod z"
  1618   by (simp only: diff_conv_add_uminus poly_mod_add_left poly_mod_minus_left)
  1619 
  1620 lemma pdivmod_rel_smult_right:
  1621   "\<lbrakk>a \<noteq> 0; pdivmod_rel x y q r\<rbrakk>
  1622     \<Longrightarrow> pdivmod_rel x (smult a y) (smult (inverse a) q) r"
  1623   unfolding pdivmod_rel_def by simp
  1624 
  1625 lemma div_smult_right:
  1626   "a \<noteq> 0 \<Longrightarrow> x div (smult a y) = smult (inverse a) (x div y)"
  1627   by (rule div_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
  1628 
  1629 lemma mod_smult_right: "a \<noteq> 0 \<Longrightarrow> x mod (smult a y) = x mod y"
  1630   by (rule mod_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
  1631 
  1632 lemma poly_div_minus_right [simp]:
  1633   fixes x y :: "'a::field poly"
  1634   shows "x div (- y) = - (x div y)"
  1635   using div_smult_right [of "- 1::'a"] by (simp add: nonzero_inverse_minus_eq)
  1636 
  1637 lemma poly_mod_minus_right [simp]:
  1638   fixes x y :: "'a::field poly"
  1639   shows "x mod (- y) = x mod y"
  1640   using mod_smult_right [of "- 1::'a"] by simp
  1641 
  1642 lemma pdivmod_rel_mult:
  1643   "\<lbrakk>pdivmod_rel x y q r; pdivmod_rel q z q' r'\<rbrakk>
  1644     \<Longrightarrow> pdivmod_rel x (y * z) q' (y * r' + r)"
  1645 apply (cases "z = 0", simp add: pdivmod_rel_def)
  1646 apply (cases "y = 0", simp add: pdivmod_rel_by_0_iff pdivmod_rel_0_iff)
  1647 apply (cases "r = 0")
  1648 apply (cases "r' = 0")
  1649 apply (simp add: pdivmod_rel_def)
  1650 apply (simp add: pdivmod_rel_def field_simps degree_mult_eq)
  1651 apply (cases "r' = 0")
  1652 apply (simp add: pdivmod_rel_def degree_mult_eq)
  1653 apply (simp add: pdivmod_rel_def field_simps)
  1654 apply (simp add: degree_mult_eq degree_add_less)
  1655 done
  1656 
  1657 lemma poly_div_mult_right:
  1658   fixes x y z :: "'a::field poly"
  1659   shows "x div (y * z) = (x div y) div z"
  1660   by (rule div_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
  1661 
  1662 lemma poly_mod_mult_right:
  1663   fixes x y z :: "'a::field poly"
  1664   shows "x mod (y * z) = y * (x div y mod z) + x mod y"
  1665   by (rule mod_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
  1666 
  1667 lemma mod_pCons:
  1668   fixes a and x
  1669   assumes y: "y \<noteq> 0"
  1670   defines b: "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)"
  1671   shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)"
  1672 unfolding b
  1673 apply (rule mod_poly_eq)
  1674 apply (rule pdivmod_rel_pCons [OF pdivmod_rel y refl])
  1675 done
  1676 
  1677 definition pdivmod :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly"
  1678 where
  1679   "pdivmod p q = (p div q, p mod q)"
  1680 
  1681 lemma div_poly_code [code]: 
  1682   "p div q = fst (pdivmod p q)"
  1683   by (simp add: pdivmod_def)
  1684 
  1685 lemma mod_poly_code [code]:
  1686   "p mod q = snd (pdivmod p q)"
  1687   by (simp add: pdivmod_def)
  1688 
  1689 lemma pdivmod_0:
  1690   "pdivmod 0 q = (0, 0)"
  1691   by (simp add: pdivmod_def)
  1692 
  1693 lemma pdivmod_pCons:
  1694   "pdivmod (pCons a p) q =
  1695     (if q = 0 then (0, pCons a p) else
  1696       (let (s, r) = pdivmod p q;
  1697            b = coeff (pCons a r) (degree q) / coeff q (degree q)
  1698         in (pCons b s, pCons a r - smult b q)))"
  1699   apply (simp add: pdivmod_def Let_def, safe)
  1700   apply (rule div_poly_eq)
  1701   apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
  1702   apply (rule mod_poly_eq)
  1703   apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
  1704   done
  1705 
  1706 lemma pdivmod_fold_coeffs [code]:
  1707   "pdivmod p q = (if q = 0 then (0, p)
  1708     else fold_coeffs (\<lambda>a (s, r).
  1709       let b = coeff (pCons a r) (degree q) / coeff q (degree q)
  1710       in (pCons b s, pCons a r - smult b q)
  1711    ) p (0, 0))"
  1712   apply (cases "q = 0")
  1713   apply (simp add: pdivmod_def)
  1714   apply (rule sym)
  1715   apply (induct p)
  1716   apply (simp_all add: pdivmod_0 pdivmod_pCons)
  1717   apply (case_tac "a = 0 \<and> p = 0")
  1718   apply (auto simp add: pdivmod_def)
  1719   done
  1720 
  1721 
  1722 subsection {* Order of polynomial roots *}
  1723 
  1724 definition order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat"
  1725 where
  1726   "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
  1727 
  1728 lemma coeff_linear_power:
  1729   fixes a :: "'a::comm_semiring_1"
  1730   shows "coeff ([:a, 1:] ^ n) n = 1"
  1731 apply (induct n, simp_all)
  1732 apply (subst coeff_eq_0)
  1733 apply (auto intro: le_less_trans degree_power_le)
  1734 done
  1735 
  1736 lemma degree_linear_power:
  1737   fixes a :: "'a::comm_semiring_1"
  1738   shows "degree ([:a, 1:] ^ n) = n"
  1739 apply (rule order_antisym)
  1740 apply (rule ord_le_eq_trans [OF degree_power_le], simp)
  1741 apply (rule le_degree, simp add: coeff_linear_power)
  1742 done
  1743 
  1744 lemma order_1: "[:-a, 1:] ^ order a p dvd p"
  1745 apply (cases "p = 0", simp)
  1746 apply (cases "order a p", simp)
  1747 apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
  1748 apply (drule not_less_Least, simp)
  1749 apply (fold order_def, simp)
  1750 done
  1751 
  1752 lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
  1753 unfolding order_def
  1754 apply (rule LeastI_ex)
  1755 apply (rule_tac x="degree p" in exI)
  1756 apply (rule notI)
  1757 apply (drule (1) dvd_imp_degree_le)
  1758 apply (simp only: degree_linear_power)
  1759 done
  1760 
  1761 lemma order:
  1762   "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
  1763 by (rule conjI [OF order_1 order_2])
  1764 
  1765 lemma order_degree:
  1766   assumes p: "p \<noteq> 0"
  1767   shows "order a p \<le> degree p"
  1768 proof -
  1769   have "order a p = degree ([:-a, 1:] ^ order a p)"
  1770     by (simp only: degree_linear_power)
  1771   also have "\<dots> \<le> degree p"
  1772     using order_1 p by (rule dvd_imp_degree_le)
  1773   finally show ?thesis .
  1774 qed
  1775 
  1776 lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
  1777 apply (cases "p = 0", simp_all)
  1778 apply (rule iffI)
  1779 apply (metis order_2 not_gr0 poly_eq_0_iff_dvd power_0 power_Suc_0 power_one_right)
  1780 unfolding poly_eq_0_iff_dvd
  1781 apply (metis dvd_power dvd_trans order_1)
  1782 done
  1783 
  1784 
  1785 subsection {* GCD of polynomials *}
  1786 
  1787 instantiation poly :: (field) gcd
  1788 begin
  1789 
  1790 function gcd_poly :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
  1791 where
  1792   "gcd (x::'a poly) 0 = smult (inverse (coeff x (degree x))) x"
  1793 | "y \<noteq> 0 \<Longrightarrow> gcd (x::'a poly) y = gcd y (x mod y)"
  1794 by auto
  1795 
  1796 termination "gcd :: _ poly \<Rightarrow> _"
  1797 by (relation "measure (\<lambda>(x, y). if y = 0 then 0 else Suc (degree y))")
  1798    (auto dest: degree_mod_less)
  1799 
  1800 declare gcd_poly.simps [simp del]
  1801 
  1802 instance ..
  1803 
  1804 end
  1805 
  1806 lemma
  1807   fixes x y :: "_ poly"
  1808   shows poly_gcd_dvd1 [iff]: "gcd x y dvd x"
  1809     and poly_gcd_dvd2 [iff]: "gcd x y dvd y"
  1810   apply (induct x y rule: gcd_poly.induct)
  1811   apply (simp_all add: gcd_poly.simps)
  1812   apply (fastforce simp add: smult_dvd_iff dest: inverse_zero_imp_zero)
  1813   apply (blast dest: dvd_mod_imp_dvd)
  1814   done
  1815 
  1816 lemma poly_gcd_greatest:
  1817   fixes k x y :: "_ poly"
  1818   shows "k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd gcd x y"
  1819   by (induct x y rule: gcd_poly.induct)
  1820      (simp_all add: gcd_poly.simps dvd_mod dvd_smult)
  1821 
  1822 lemma dvd_poly_gcd_iff [iff]:
  1823   fixes k x y :: "_ poly"
  1824   shows "k dvd gcd x y \<longleftrightarrow> k dvd x \<and> k dvd y"
  1825   by (blast intro!: poly_gcd_greatest intro: dvd_trans)
  1826 
  1827 lemma poly_gcd_monic:
  1828   fixes x y :: "_ poly"
  1829   shows "coeff (gcd x y) (degree (gcd x y)) =
  1830     (if x = 0 \<and> y = 0 then 0 else 1)"
  1831   by (induct x y rule: gcd_poly.induct)
  1832      (simp_all add: gcd_poly.simps nonzero_imp_inverse_nonzero)
  1833 
  1834 lemma poly_gcd_zero_iff [simp]:
  1835   fixes x y :: "_ poly"
  1836   shows "gcd x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
  1837   by (simp only: dvd_0_left_iff [symmetric] dvd_poly_gcd_iff)
  1838 
  1839 lemma poly_gcd_0_0 [simp]:
  1840   "gcd (0::_ poly) 0 = 0"
  1841   by simp
  1842 
  1843 lemma poly_dvd_antisym:
  1844   fixes p q :: "'a::idom poly"
  1845   assumes coeff: "coeff p (degree p) = coeff q (degree q)"
  1846   assumes dvd1: "p dvd q" and dvd2: "q dvd p" shows "p = q"
  1847 proof (cases "p = 0")
  1848   case True with coeff show "p = q" by simp
  1849 next
  1850   case False with coeff have "q \<noteq> 0" by auto
  1851   have degree: "degree p = degree q"
  1852     using `p dvd q` `q dvd p` `p \<noteq> 0` `q \<noteq> 0`
  1853     by (intro order_antisym dvd_imp_degree_le)
  1854 
  1855   from `p dvd q` obtain a where a: "q = p * a" ..
  1856   with `q \<noteq> 0` have "a \<noteq> 0" by auto
  1857   with degree a `p \<noteq> 0` have "degree a = 0"
  1858     by (simp add: degree_mult_eq)
  1859   with coeff a show "p = q"
  1860     by (cases a, auto split: if_splits)
  1861 qed
  1862 
  1863 lemma poly_gcd_unique:
  1864   fixes d x y :: "_ poly"
  1865   assumes dvd1: "d dvd x" and dvd2: "d dvd y"
  1866     and greatest: "\<And>k. k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd d"
  1867     and monic: "coeff d (degree d) = (if x = 0 \<and> y = 0 then 0 else 1)"
  1868   shows "gcd x y = d"
  1869 proof -
  1870   have "coeff (gcd x y) (degree (gcd x y)) = coeff d (degree d)"
  1871     by (simp_all add: poly_gcd_monic monic)
  1872   moreover have "gcd x y dvd d"
  1873     using poly_gcd_dvd1 poly_gcd_dvd2 by (rule greatest)
  1874   moreover have "d dvd gcd x y"
  1875     using dvd1 dvd2 by (rule poly_gcd_greatest)
  1876   ultimately show ?thesis
  1877     by (rule poly_dvd_antisym)
  1878 qed
  1879 
  1880 interpretation gcd_poly!: abel_semigroup "gcd :: _ poly \<Rightarrow> _"
  1881 proof
  1882   fix x y z :: "'a poly"
  1883   show "gcd (gcd x y) z = gcd x (gcd y z)"
  1884     by (rule poly_gcd_unique) (auto intro: dvd_trans simp add: poly_gcd_monic)
  1885   show "gcd x y = gcd y x"
  1886     by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic)
  1887 qed
  1888 
  1889 lemmas poly_gcd_assoc = gcd_poly.assoc
  1890 lemmas poly_gcd_commute = gcd_poly.commute
  1891 lemmas poly_gcd_left_commute = gcd_poly.left_commute
  1892 
  1893 lemmas poly_gcd_ac = poly_gcd_assoc poly_gcd_commute poly_gcd_left_commute
  1894 
  1895 lemma poly_gcd_1_left [simp]: "gcd 1 y = (1 :: _ poly)"
  1896 by (rule poly_gcd_unique) simp_all
  1897 
  1898 lemma poly_gcd_1_right [simp]: "gcd x 1 = (1 :: _ poly)"
  1899 by (rule poly_gcd_unique) simp_all
  1900 
  1901 lemma poly_gcd_minus_left [simp]: "gcd (- x) y = gcd x (y :: _ poly)"
  1902 by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic)
  1903 
  1904 lemma poly_gcd_minus_right [simp]: "gcd x (- y) = gcd x (y :: _ poly)"
  1905 by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic)
  1906 
  1907 lemma poly_gcd_code [code]:
  1908   "gcd x y = (if y = 0 then smult (inverse (coeff x (degree x))) x else gcd y (x mod (y :: _ poly)))"
  1909   by (simp add: gcd_poly.simps)
  1910 
  1911 
  1912 subsection {* Composition of polynomials *}
  1913 
  1914 definition pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
  1915 where
  1916   "pcompose p q = fold_coeffs (\<lambda>a c. [:a:] + q * c) p 0"
  1917 
  1918 lemma pcompose_0 [simp]:
  1919   "pcompose 0 q = 0"
  1920   by (simp add: pcompose_def)
  1921 
  1922 lemma pcompose_pCons:
  1923   "pcompose (pCons a p) q = [:a:] + q * pcompose p q"
  1924   by (cases "p = 0 \<and> a = 0") (auto simp add: pcompose_def)
  1925 
  1926 lemma poly_pcompose:
  1927   "poly (pcompose p q) x = poly p (poly q x)"
  1928   by (induct p) (simp_all add: pcompose_pCons)
  1929 
  1930 lemma degree_pcompose_le:
  1931   "degree (pcompose p q) \<le> degree p * degree q"
  1932 apply (induct p, simp)
  1933 apply (simp add: pcompose_pCons, clarify)
  1934 apply (rule degree_add_le, simp)
  1935 apply (rule order_trans [OF degree_mult_le], simp)
  1936 done
  1937 
  1938 
  1939 no_notation cCons (infixr "##" 65)
  1940 
  1941 end
  1942