src/HOLCF/Bifinite.thy
author huffman
Mon, 14 Jan 2008 19:26:01 +0100
changeset 25903 5e59af604d4f
child 25909 6b96b9392873
permissions -rw-r--r--
new theory of bifinite domains
     1 (*  Title:      HOLCF/Bifinite.thy
     2     ID:         $Id$
     3     Author:     Brian Huffman
     4 *)
     5 
     6 header {* Bifinite domains and approximation *}
     7 
     8 theory Bifinite
     9 imports Cfun
    10 begin
    11 
    12 subsection {* Bifinite domains *}
    13 
    14 axclass approx < pcpo
    15 
    16 consts approx :: "nat \<Rightarrow> 'a::approx \<rightarrow> 'a"
    17 
    18 axclass bifinite < approx
    19   chain_approx_app: "chain (\<lambda>i. approx i\<cdot>x)"
    20   lub_approx_app [simp]: "(\<Squnion>i. approx i\<cdot>x) = x"
    21   approx_idem: "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
    22   finite_fixes_approx: "finite {x. approx i\<cdot>x = x}"
    23 
    24 lemma finite_range_imp_finite_fixes:
    25   "finite {x. \<exists>y. x = f y} \<Longrightarrow> finite {x. f x = x}"
    26 apply (subgoal_tac "{x. f x = x} \<subseteq> {x. \<exists>y. x = f y}")
    27 apply (erule (1) finite_subset)
    28 apply (clarify, erule subst, rule exI, rule refl)
    29 done
    30 
    31 lemma chain_approx [simp]:
    32   "chain (approx :: nat \<Rightarrow> 'a::bifinite \<rightarrow> 'a)"
    33 apply (rule chainI)
    34 apply (rule less_cfun_ext)
    35 apply (rule chainE)
    36 apply (rule chain_approx_app)
    37 done
    38 
    39 lemma lub_approx [simp]: "(\<Squnion>i. approx i) = (\<Lambda>(x::'a::bifinite). x)"
    40 by (rule ext_cfun, simp add: contlub_cfun_fun)
    41 
    42 lemma approx_less: "approx i\<cdot>x \<sqsubseteq> (x::'a::bifinite)"
    43 apply (subgoal_tac "approx i\<cdot>x \<sqsubseteq> (\<Squnion>i. approx i\<cdot>x)", simp)
    44 apply (rule is_ub_thelub, simp)
    45 done
    46 
    47 lemma approx_strict [simp]: "approx i\<cdot>(\<bottom>::'a::bifinite) = \<bottom>"
    48 by (rule UU_I, rule approx_less)
    49 
    50 lemma approx_approx1:
    51   "i \<le> j \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx i\<cdot>(x::'a::bifinite)"
    52 apply (rule antisym_less)
    53 apply (rule monofun_cfun_arg [OF approx_less])
    54 apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
    55 apply (rule monofun_cfun_arg)
    56 apply (rule monofun_cfun_fun)
    57 apply (erule chain_mono3 [OF chain_approx])
    58 done
    59 
    60 lemma approx_approx2:
    61   "j \<le> i \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx j\<cdot>(x::'a::bifinite)"
    62 apply (rule antisym_less)
    63 apply (rule approx_less)
    64 apply (rule sq_ord_eq_less_trans [OF approx_idem [symmetric]])
    65 apply (rule monofun_cfun_fun)
    66 apply (erule chain_mono3 [OF chain_approx])
    67 done
    68 
    69 lemma approx_approx [simp]:
    70   "approx i\<cdot>(approx j\<cdot>x) = approx (min i j)\<cdot>(x::'a::bifinite)"
    71 apply (rule_tac x=i and y=j in linorder_le_cases)
    72 apply (simp add: approx_approx1 min_def)
    73 apply (simp add: approx_approx2 min_def)
    74 done
    75 
    76 lemma idem_fixes_eq_range:
    77   "\<forall>x. f (f x) = f x \<Longrightarrow> {x. f x = x} = {y. \<exists>x. y = f x}"
    78 by (auto simp add: eq_sym_conv)
    79 
    80 lemma finite_approx: "finite {y::'a::bifinite. \<exists>x. y = approx n\<cdot>x}"
    81 using finite_fixes_approx by (simp add: idem_fixes_eq_range)
    82 
    83 lemma finite_range_approx:
    84   "finite (range (\<lambda>x::'a::bifinite. approx n\<cdot>x))"
    85 by (simp add: image_def finite_approx)
    86 
    87 lemma compact_approx [simp]:
    88   fixes x :: "'a::bifinite"
    89   shows "compact (approx n\<cdot>x)"
    90 proof (rule compactI2)
    91   fix Y::"nat \<Rightarrow> 'a"
    92   assume Y: "chain Y"
    93   have "finite_chain (\<lambda>i. approx n\<cdot>(Y i))"
    94   proof (rule finite_range_imp_finch)
    95     show "chain (\<lambda>i. approx n\<cdot>(Y i))"
    96       using Y by simp
    97     have "range (\<lambda>i. approx n\<cdot>(Y i)) \<subseteq> {x. approx n\<cdot>x = x}"
    98       by clarsimp
    99     thus "finite (range (\<lambda>i. approx n\<cdot>(Y i)))"
   100       using finite_fixes_approx by (rule finite_subset)
   101   qed
   102   hence "\<exists>j. (\<Squnion>i. approx n\<cdot>(Y i)) = approx n\<cdot>(Y j)"
   103     by (simp add: finite_chain_def maxinch_is_thelub Y)
   104   then obtain j where j: "(\<Squnion>i. approx n\<cdot>(Y i)) = approx n\<cdot>(Y j)" ..
   105 
   106   assume "approx n\<cdot>x \<sqsubseteq> (\<Squnion>i. Y i)"
   107   hence "approx n\<cdot>(approx n\<cdot>x) \<sqsubseteq> approx n\<cdot>(\<Squnion>i. Y i)"
   108     by (rule monofun_cfun_arg)
   109   hence "approx n\<cdot>x \<sqsubseteq> (\<Squnion>i. approx n\<cdot>(Y i))"
   110     by (simp add: contlub_cfun_arg Y)
   111   hence "approx n\<cdot>x \<sqsubseteq> approx n\<cdot>(Y j)"
   112     using j by simp
   113   hence "approx n\<cdot>x \<sqsubseteq> Y j"
   114     using approx_less by (rule trans_less)
   115   thus "\<exists>j. approx n\<cdot>x \<sqsubseteq> Y j" ..
   116 qed
   117 
   118 lemma bifinite_compact_eq_approx:
   119   fixes x :: "'a::bifinite"
   120   assumes x: "compact x"
   121   shows "\<exists>i. approx i\<cdot>x = x"
   122 proof -
   123   have chain: "chain (\<lambda>i. approx i\<cdot>x)" by simp
   124   have less: "x \<sqsubseteq> (\<Squnion>i. approx i\<cdot>x)" by simp
   125   obtain i where i: "x \<sqsubseteq> approx i\<cdot>x"
   126     using compactD2 [OF x chain less] ..
   127   with approx_less have "approx i\<cdot>x = x"
   128     by (rule antisym_less)
   129   thus "\<exists>i. approx i\<cdot>x = x" ..
   130 qed
   131 
   132 lemma bifinite_compact_iff:
   133   "compact (x::'a::bifinite) = (\<exists>n. approx n\<cdot>x = x)"
   134  apply (rule iffI)
   135   apply (erule bifinite_compact_eq_approx)
   136  apply (erule exE)
   137  apply (erule subst)
   138  apply (rule compact_approx)
   139 done
   140 
   141 lemma approx_induct:
   142   assumes adm: "adm P" and P: "\<And>n x. P (approx n\<cdot>x)"
   143   shows "P (x::'a::bifinite)"
   144 proof -
   145   have "P (\<Squnion>n. approx n\<cdot>x)"
   146     by (rule admD [OF adm], simp, simp add: P)
   147   thus "P x" by simp
   148 qed
   149 
   150 lemma bifinite_less_ext:
   151   fixes x y :: "'a::bifinite"
   152   shows "(\<And>i. approx i\<cdot>x \<sqsubseteq> approx i\<cdot>y) \<Longrightarrow> x \<sqsubseteq> y"
   153 apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> (\<Squnion>i. approx i\<cdot>y)", simp)
   154 apply (rule lub_mono [rule_format], simp, simp, simp)
   155 done
   156 
   157 subsection {* Instance for continuous function space *}
   158 
   159 lemma finite_range_lemma:
   160   fixes h :: "'a::cpo \<rightarrow> 'b::cpo"
   161   fixes k :: "'c::cpo \<rightarrow> 'd::cpo"
   162   shows "\<lbrakk>finite {y. \<exists>x. y = h\<cdot>x}; finite {y. \<exists>x. y = k\<cdot>x}\<rbrakk>
   163     \<Longrightarrow> finite {g. \<exists>f. g = (\<Lambda> x. k\<cdot>(f\<cdot>(h\<cdot>x)))}"
   164  apply (rule_tac f="\<lambda>g. {(h\<cdot>x, y) |x y. y = g\<cdot>x}" in finite_imageD)
   165   apply (rule_tac B="Pow ({y. \<exists>x. y = h\<cdot>x} \<times> {y. \<exists>x. y = k\<cdot>x})"
   166            in finite_subset)
   167    apply (rule image_subsetI)
   168    apply (clarsimp, fast)
   169   apply simp
   170  apply (rule inj_onI)
   171  apply (clarsimp simp add: expand_set_eq)
   172  apply (rule ext_cfun, simp)
   173  apply (drule_tac x="h\<cdot>x" in spec)
   174  apply (drule_tac x="k\<cdot>(f\<cdot>(h\<cdot>x))" in spec)
   175  apply (drule iffD1, fast)
   176  apply clarsimp
   177 done
   178 
   179 instance "->" :: (bifinite, bifinite) approx ..
   180 
   181 defs (overloaded)
   182   approx_cfun_def:
   183     "approx \<equiv> \<lambda>n. \<Lambda> f x. approx n\<cdot>(f\<cdot>(approx n\<cdot>x))"
   184 
   185 instance "->" :: (bifinite, bifinite) bifinite
   186  apply (intro_classes, unfold approx_cfun_def)
   187     apply simp
   188    apply (simp add: lub_distribs eta_cfun)
   189   apply simp
   190  apply simp
   191  apply (rule finite_range_imp_finite_fixes)
   192  apply (intro finite_range_lemma finite_approx)
   193 done
   194 
   195 lemma approx_cfun: "approx n\<cdot>f\<cdot>x = approx n\<cdot>(f\<cdot>(approx n\<cdot>x))"
   196 by (simp add: approx_cfun_def)
   197 
   198 end