src/ZF/UNITY/SubstAx.thy
author wenzelm
Sun, 15 May 2011 17:45:53 +0200
changeset 43685 5af15f1e2ef6
parent 43665 88bee9f6eec7
child 47694 57bf0cecb366
permissions -rw-r--r--
simplified/unified method_setup/attribute_setup;
     1 (*  Title:      ZF/UNITY/SubstAx.thy
     2     Author:     Sidi O Ehmety, Computer Laboratory
     3     Copyright   2001  University of Cambridge
     4 
     5 Theory ported from HOL.
     6 *)
     7 
     8 header{*Weak LeadsTo relation (restricted to the set of reachable states)*}
     9 
    10 theory SubstAx
    11 imports WFair Constrains 
    12 begin
    13 
    14 definition
    15   (* The definitions below are not `conventional', but yield simpler rules *)
    16   Ensures :: "[i,i] => i"            (infixl "Ensures" 60)  where
    17   "A Ensures B == {F:program. F : (reachable(F) Int A) ensures (reachable(F) Int B) }"
    18 
    19 definition
    20   LeadsTo :: "[i, i] => i"            (infixl "LeadsTo" 60)  where
    21   "A LeadsTo B == {F:program. F:(reachable(F) Int A) leadsTo (reachable(F) Int B)}"
    22 
    23 notation (xsymbols)
    24   LeadsTo  (infixl " \<longmapsto>w " 60)
    25 
    26 
    27 
    28 (*Resembles the previous definition of LeadsTo*)
    29 
    30 (* Equivalence with the HOL-like definition *)
    31 lemma LeadsTo_eq: 
    32 "st_set(B)==> A LeadsTo B = {F \<in> program. F:(reachable(F) Int A) leadsTo B}"
    33 apply (unfold LeadsTo_def)
    34 apply (blast dest: psp_stable2 leadsToD2 constrainsD2 intro: leadsTo_weaken)
    35 done
    36 
    37 lemma LeadsTo_type: "A LeadsTo B <=program"
    38 by (unfold LeadsTo_def, auto)
    39 
    40 (*** Specialized laws for handling invariants ***)
    41 
    42 (** Conjoining an Always property **)
    43 lemma Always_LeadsTo_pre: "F \<in> Always(I) ==> (F:(I Int A) LeadsTo A') <-> (F \<in> A LeadsTo A')"
    44 by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2 Int_assoc [symmetric] leadsToD2)
    45 
    46 lemma Always_LeadsTo_post: "F \<in> Always(I) ==> (F \<in> A LeadsTo (I Int A')) <-> (F \<in> A LeadsTo A')"
    47 apply (unfold LeadsTo_def)
    48 apply (simp add: Always_eq_includes_reachable Int_absorb2 Int_assoc [symmetric] leadsToD2)
    49 done
    50 
    51 (* Like 'Always_LeadsTo_pre RS iffD1', but with premises in the good order *)
    52 lemma Always_LeadsToI: "[| F \<in> Always(C); F \<in> (C Int A) LeadsTo A' |] ==> F \<in> A LeadsTo A'"
    53 by (blast intro: Always_LeadsTo_pre [THEN iffD1])
    54 
    55 (* Like 'Always_LeadsTo_post RS iffD2', but with premises in the good order *)
    56 lemma Always_LeadsToD: "[| F \<in> Always(C);  F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (C Int A')"
    57 by (blast intro: Always_LeadsTo_post [THEN iffD2])
    58 
    59 (*** Introduction rules \<in> Basis, Trans, Union ***)
    60 
    61 lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A LeadsTo B"
    62 by (auto simp add: Ensures_def LeadsTo_def)
    63 
    64 lemma LeadsTo_Trans:
    65      "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |] ==> F \<in> A LeadsTo C"
    66 apply (simp (no_asm_use) add: LeadsTo_def)
    67 apply (blast intro: leadsTo_Trans)
    68 done
    69 
    70 lemma LeadsTo_Union:
    71 "[|(!!A. A \<in> S ==> F \<in> A LeadsTo B); F \<in> program|]==>F \<in> Union(S) LeadsTo B"
    72 apply (simp add: LeadsTo_def)
    73 apply (subst Int_Union_Union2)
    74 apply (rule leadsTo_UN, auto)
    75 done
    76 
    77 (*** Derived rules ***)
    78 
    79 lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B"
    80 apply (frule leadsToD2, clarify)
    81 apply (simp (no_asm_simp) add: LeadsTo_eq)
    82 apply (blast intro: leadsTo_weaken_L)
    83 done
    84 
    85 (*Useful with cancellation, disjunction*)
    86 lemma LeadsTo_Un_duplicate: "F \<in> A LeadsTo (A' Un A') ==> F \<in> A LeadsTo A'"
    87 by (simp add: Un_ac)
    88 
    89 lemma LeadsTo_Un_duplicate2:
    90      "F \<in> A LeadsTo (A' Un C Un C) ==> F \<in> A LeadsTo (A' Un C)"
    91 by (simp add: Un_ac)
    92 
    93 lemma LeadsTo_UN:
    94     "[|(!!i. i \<in> I ==> F \<in> A(i) LeadsTo B); F \<in> program|]
    95      ==>F:(\<Union>i \<in> I. A(i)) LeadsTo B"
    96 apply (simp add: LeadsTo_def)
    97 apply (simp (no_asm_simp) del: UN_simps add: Int_UN_distrib)
    98 apply (rule leadsTo_UN, auto)
    99 done
   100 
   101 (*Binary union introduction rule*)
   102 lemma LeadsTo_Un:
   103      "[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A Un B) LeadsTo C"
   104 apply (subst Un_eq_Union)
   105 apply (rule LeadsTo_Union)
   106 apply (auto dest: LeadsTo_type [THEN subsetD])
   107 done
   108 
   109 (*Lets us look at the starting state*)
   110 lemma single_LeadsTo_I: 
   111     "[|(!!s. s \<in> A ==> F:{s} LeadsTo B); F \<in> program|]==>F \<in> A LeadsTo B"
   112 apply (subst UN_singleton [symmetric], rule LeadsTo_UN, auto)
   113 done
   114 
   115 lemma subset_imp_LeadsTo: "[| A <= B; F \<in> program |] ==> F \<in> A LeadsTo B"
   116 apply (simp (no_asm_simp) add: LeadsTo_def)
   117 apply (blast intro: subset_imp_leadsTo)
   118 done
   119 
   120 lemma empty_LeadsTo: "F:0 LeadsTo A <-> F \<in> program"
   121 by (auto dest: LeadsTo_type [THEN subsetD]
   122             intro: empty_subsetI [THEN subset_imp_LeadsTo])
   123 declare empty_LeadsTo [iff]
   124 
   125 lemma LeadsTo_state: "F \<in> A LeadsTo state <-> F \<in> program"
   126 by (auto dest: LeadsTo_type [THEN subsetD] simp add: LeadsTo_eq)
   127 declare LeadsTo_state [iff]
   128 
   129 lemma LeadsTo_weaken_R: "[| F \<in> A LeadsTo A';  A'<=B'|] ==> F \<in> A LeadsTo B'"
   130 apply (unfold LeadsTo_def)
   131 apply (auto intro: leadsTo_weaken_R)
   132 done
   133 
   134 lemma LeadsTo_weaken_L: "[| F \<in> A LeadsTo A'; B <= A |] ==> F \<in> B LeadsTo A'"
   135 apply (unfold LeadsTo_def)
   136 apply (auto intro: leadsTo_weaken_L)
   137 done
   138 
   139 lemma LeadsTo_weaken: "[| F \<in> A LeadsTo A'; B<=A; A'<=B' |] ==> F \<in> B LeadsTo B'"
   140 by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)
   141 
   142 lemma Always_LeadsTo_weaken: 
   143 "[| F \<in> Always(C);  F \<in> A LeadsTo A'; C Int B <= A;   C Int A' <= B' |]  
   144       ==> F \<in> B LeadsTo B'"
   145 apply (blast dest: Always_LeadsToI intro: LeadsTo_weaken Always_LeadsToD)
   146 done
   147 
   148 (** Two theorems for "proof lattices" **)
   149 
   150 lemma LeadsTo_Un_post: "F \<in> A LeadsTo B ==> F:(A Un B) LeadsTo B"
   151 by (blast dest: LeadsTo_type [THEN subsetD]
   152              intro: LeadsTo_Un subset_imp_LeadsTo)
   153 
   154 lemma LeadsTo_Trans_Un: "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |]  
   155       ==> F \<in> (A Un B) LeadsTo C"
   156 apply (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans dest: LeadsTo_type [THEN subsetD])
   157 done
   158 
   159 (** Distributive laws **)
   160 lemma LeadsTo_Un_distrib: "(F \<in> (A Un B) LeadsTo C)  <-> (F \<in> A LeadsTo C & F \<in> B LeadsTo C)"
   161 by (blast intro: LeadsTo_Un LeadsTo_weaken_L)
   162 
   163 lemma LeadsTo_UN_distrib: "(F \<in> (\<Union>i \<in> I. A(i)) LeadsTo B) <->  (\<forall>i \<in> I. F \<in> A(i) LeadsTo B) & F \<in> program"
   164 by (blast dest: LeadsTo_type [THEN subsetD]
   165              intro: LeadsTo_UN LeadsTo_weaken_L)
   166 
   167 lemma LeadsTo_Union_distrib: "(F \<in> Union(S) LeadsTo B)  <->  (\<forall>A \<in> S. F \<in> A LeadsTo B) & F \<in> program"
   168 by (blast dest: LeadsTo_type [THEN subsetD]
   169              intro: LeadsTo_Union LeadsTo_weaken_L)
   170 
   171 (** More rules using the premise "Always(I)" **)
   172 
   173 lemma EnsuresI: "[| F:(A-B) Co (A Un B);  F \<in> transient (A-B) |] ==> F \<in> A Ensures B"
   174 apply (simp add: Ensures_def Constrains_eq_constrains)
   175 apply (blast intro: ensuresI constrains_weaken transient_strengthen dest: constrainsD2)
   176 done
   177 
   178 lemma Always_LeadsTo_Basis: "[| F \<in> Always(I); F \<in> (I Int (A-A')) Co (A Un A');  
   179          F \<in> transient (I Int (A-A')) |]    
   180   ==> F \<in> A LeadsTo A'"
   181 apply (rule Always_LeadsToI, assumption)
   182 apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen)
   183 done
   184 
   185 (*Set difference: maybe combine with leadsTo_weaken_L??
   186   This is the most useful form of the "disjunction" rule*)
   187 lemma LeadsTo_Diff:
   188      "[| F \<in> (A-B) LeadsTo C;  F \<in> (A Int B) LeadsTo C |] ==> F \<in> A LeadsTo C"
   189 by (blast intro: LeadsTo_Un LeadsTo_weaken)
   190 
   191 lemma LeadsTo_UN_UN:  
   192      "[|(!!i. i \<in> I ==> F \<in> A(i) LeadsTo A'(i)); F \<in> program |]  
   193       ==> F \<in> (\<Union>i \<in> I. A(i)) LeadsTo (\<Union>i \<in> I. A'(i))"
   194 apply (rule LeadsTo_Union, auto) 
   195 apply (blast intro: LeadsTo_weaken_R)
   196 done
   197 
   198 (*Binary union version*)
   199 lemma LeadsTo_Un_Un:
   200   "[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |] ==> F:(A Un B) LeadsTo (A' Un B')"
   201 by (blast intro: LeadsTo_Un LeadsTo_weaken_R)
   202 
   203 (** The cancellation law **)
   204 
   205 lemma LeadsTo_cancel2: "[| F \<in> A LeadsTo(A' Un B); F \<in> B LeadsTo B' |] ==> F \<in> A LeadsTo (A' Un B')"
   206 by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans dest: LeadsTo_type [THEN subsetD])
   207 
   208 lemma Un_Diff: "A Un (B - A) = A Un B"
   209 by auto
   210 
   211 lemma LeadsTo_cancel_Diff2: "[| F \<in> A LeadsTo (A' Un B); F \<in> (B-A') LeadsTo B' |] ==> F \<in> A LeadsTo (A' Un B')"
   212 apply (rule LeadsTo_cancel2)
   213 prefer 2 apply assumption
   214 apply (simp (no_asm_simp) add: Un_Diff)
   215 done
   216 
   217 lemma LeadsTo_cancel1: "[| F \<in> A LeadsTo (B Un A'); F \<in> B LeadsTo B' |] ==> F \<in> A LeadsTo (B' Un A')"
   218 apply (simp add: Un_commute)
   219 apply (blast intro!: LeadsTo_cancel2)
   220 done
   221 
   222 lemma Diff_Un2: "(B - A) Un A = B Un A"
   223 by auto
   224 
   225 lemma LeadsTo_cancel_Diff1: "[| F \<in> A LeadsTo (B Un A'); F \<in> (B-A') LeadsTo B' |] ==> F \<in> A LeadsTo (B' Un A')"
   226 apply (rule LeadsTo_cancel1)
   227 prefer 2 apply assumption
   228 apply (simp (no_asm_simp) add: Diff_Un2)
   229 done
   230 
   231 (** The impossibility law **)
   232 
   233 (*The set "A" may be non-empty, but it contains no reachable states*)
   234 lemma LeadsTo_empty: "F \<in> A LeadsTo 0 ==> F \<in> Always (state -A)"
   235 apply (simp (no_asm_use) add: LeadsTo_def Always_eq_includes_reachable)
   236 apply (cut_tac reachable_type)
   237 apply (auto dest!: leadsTo_empty)
   238 done
   239 
   240 (** PSP \<in> Progress-Safety-Progress **)
   241 
   242 (*Special case of PSP \<in> Misra's "stable conjunction"*)
   243 lemma PSP_Stable: "[| F \<in> A LeadsTo A';  F \<in> Stable(B) |]==> F:(A Int B) LeadsTo (A' Int B)"
   244 apply (simp add: LeadsTo_def Stable_eq_stable, clarify)
   245 apply (drule psp_stable, assumption)
   246 apply (simp add: Int_ac)
   247 done
   248 
   249 lemma PSP_Stable2: "[| F \<in> A LeadsTo A'; F \<in> Stable(B) |] ==> F \<in> (B Int A) LeadsTo (B Int A')"
   250 apply (simp (no_asm_simp) add: PSP_Stable Int_ac)
   251 done
   252 
   253 lemma PSP: "[| F \<in> A LeadsTo A'; F \<in> B Co B'|]==> F \<in> (A Int B') LeadsTo ((A' Int B) Un (B' - B))"
   254 apply (simp (no_asm_use) add: LeadsTo_def Constrains_eq_constrains)
   255 apply (blast dest: psp intro: leadsTo_weaken)
   256 done
   257 
   258 lemma PSP2: "[| F \<in> A LeadsTo A'; F \<in> B Co B' |]==> F:(B' Int A) LeadsTo ((B Int A') Un (B' - B))"
   259 by (simp (no_asm_simp) add: PSP Int_ac)
   260 
   261 lemma PSP_Unless: 
   262 "[| F \<in> A LeadsTo A'; F \<in> B Unless B'|]==> F:(A Int B) LeadsTo ((A' Int B) Un B')"
   263 apply (unfold op_Unless_def)
   264 apply (drule PSP, assumption)
   265 apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
   266 done
   267 
   268 (*** Induction rules ***)
   269 
   270 (** Meta or object quantifier ????? **)
   271 lemma LeadsTo_wf_induct: "[| wf(r);      
   272          \<forall>m \<in> I. F \<in> (A Int f-``{m}) LeadsTo                      
   273                             ((A Int f-``(converse(r) `` {m})) Un B);  
   274          field(r)<=I; A<=f-``I; F \<in> program |]  
   275       ==> F \<in> A LeadsTo B"
   276 apply (simp (no_asm_use) add: LeadsTo_def)
   277 apply auto
   278 apply (erule_tac I = I and f = f in leadsTo_wf_induct, safe)
   279 apply (drule_tac [2] x = m in bspec, safe)
   280 apply (rule_tac [2] A' = "reachable (F) Int (A Int f -`` (converse (r) ``{m}) Un B) " in leadsTo_weaken_R)
   281 apply (auto simp add: Int_assoc) 
   282 done
   283 
   284 
   285 lemma LessThan_induct: "[| \<forall>m \<in> nat. F:(A Int f-``{m}) LeadsTo ((A Int f-``m) Un B);  
   286       A<=f-``nat; F \<in> program |] ==> F \<in> A LeadsTo B"
   287 apply (rule_tac A1 = nat and f1 = "%x. x" in wf_measure [THEN LeadsTo_wf_induct])
   288 apply (simp_all add: nat_measure_field)
   289 apply (simp add: ltI Image_inverse_lessThan vimage_def [symmetric])
   290 done
   291 
   292 
   293 (****** 
   294  To be ported ??? I am not sure.
   295 
   296   integ_0_le_induct
   297   LessThan_bounded_induct
   298   GreaterThan_bounded_induct
   299 
   300 *****)
   301 
   302 (*** Completion \<in> Binary and General Finite versions ***)
   303 
   304 lemma Completion: "[| F \<in> A LeadsTo (A' Un C);  F \<in> A' Co (A' Un C);  
   305          F \<in> B LeadsTo (B' Un C);  F \<in> B' Co (B' Un C) |]  
   306       ==> F \<in> (A Int B) LeadsTo ((A' Int B') Un C)"
   307 apply (simp (no_asm_use) add: LeadsTo_def Constrains_eq_constrains Int_Un_distrib)
   308 apply (blast intro: completion leadsTo_weaken)
   309 done
   310 
   311 lemma Finite_completion_aux:
   312      "[| I \<in> Fin(X);F \<in> program |]  
   313       ==> (\<forall>i \<in> I. F \<in> (A(i)) LeadsTo (A'(i) Un C)) -->   
   314           (\<forall>i \<in> I. F \<in> (A'(i)) Co (A'(i) Un C)) -->  
   315           F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo ((\<Inter>i \<in> I. A'(i)) Un C)"
   316 apply (erule Fin_induct)
   317 apply (auto simp del: INT_simps simp add: Inter_0)
   318 apply (rule Completion, auto) 
   319 apply (simp del: INT_simps add: INT_extend_simps)
   320 apply (blast intro: Constrains_INT)
   321 done
   322 
   323 lemma Finite_completion: 
   324      "[| I \<in> Fin(X); !!i. i \<in> I ==> F \<in> A(i) LeadsTo (A'(i) Un C);  
   325          !!i. i \<in> I ==> F \<in> A'(i) Co (A'(i) Un C);  
   326          F \<in> program |]    
   327       ==> F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo ((\<Inter>i \<in> I. A'(i)) Un C)"
   328 by (blast intro: Finite_completion_aux [THEN mp, THEN mp])
   329 
   330 lemma Stable_completion: 
   331      "[| F \<in> A LeadsTo A';  F \<in> Stable(A');    
   332          F \<in> B LeadsTo B';  F \<in> Stable(B') |]  
   333     ==> F \<in> (A Int B) LeadsTo (A' Int B')"
   334 apply (unfold Stable_def)
   335 apply (rule_tac C1 = 0 in Completion [THEN LeadsTo_weaken_R])
   336     prefer 5
   337     apply blast 
   338 apply auto 
   339 done
   340 
   341 lemma Finite_stable_completion: 
   342      "[| I \<in> Fin(X);  
   343          (!!i. i \<in> I ==> F \<in> A(i) LeadsTo A'(i));  
   344          (!!i. i \<in> I ==>F \<in> Stable(A'(i)));   F \<in> program  |]  
   345       ==> F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo (\<Inter>i \<in> I. A'(i))"
   346 apply (unfold Stable_def)
   347 apply (rule_tac C1 = 0 in Finite_completion [THEN LeadsTo_weaken_R], simp_all)
   348 apply (rule_tac [3] subset_refl, auto) 
   349 done
   350 
   351 ML {*
   352 (*proves "ensures/leadsTo" properties when the program is specified*)
   353 fun ensures_tac ctxt sact =
   354   let val ss = simpset_of ctxt in
   355     SELECT_GOAL
   356       (EVERY [REPEAT (Always_Int_tac 1),
   357               etac @{thm Always_LeadsTo_Basis} 1 
   358                   ORELSE   (*subgoal may involve LeadsTo, leadsTo or ensures*)
   359                   REPEAT (ares_tac [@{thm LeadsTo_Basis}, @{thm leadsTo_Basis},
   360                                     @{thm EnsuresI}, @{thm ensuresI}] 1),
   361               (*now there are two subgoals: co & transient*)
   362               simp_tac (ss addsimps (Program_Defs.get ctxt)) 2,
   363               res_inst_tac ctxt [(("act", 0), sact)] @{thm transientI} 2,
   364                  (*simplify the command's domain*)
   365               simp_tac (ss addsimps [@{thm domain_def}]) 3, 
   366               (* proving the domain part *)
   367              clarify_tac ctxt 3, dtac @{thm swap} 3, force_tac ctxt 4,
   368              rtac @{thm ReplaceI} 3, force_tac ctxt 3, force_tac ctxt 4,
   369              asm_full_simp_tac ss 3, rtac @{thm conjI} 3, simp_tac ss 4,
   370              REPEAT (rtac @{thm state_update_type} 3),
   371              constrains_tac ctxt 1,
   372              ALLGOALS (clarify_tac ctxt),
   373              ALLGOALS (asm_full_simp_tac (ss addsimps [@{thm st_set_def}])),
   374                         ALLGOALS (clarify_tac ctxt),
   375             ALLGOALS (asm_lr_simp_tac ss)])
   376   end;
   377 *}
   378 
   379 method_setup ensures = {*
   380     Args.goal_spec -- Scan.lift Args.name_source >>
   381     (fn (quant, s) => fn ctxt => SIMPLE_METHOD'' quant (ensures_tac ctxt s))
   382 *} "for proving progress properties"
   383 
   384 end