doc-src/TutorialI/Rules/Forward.thy
author paulson
Fri, 30 Aug 2002 16:42:45 +0200
changeset 13550 5a176b8dda84
parent 12390 2fa13b499975
child 14403 32d1526d3237
permissions -rw-r--r--
removal of blast.overloaded
     1 theory Forward = Primes:
     2 
     3 text{*\noindent
     4 Forward proof material: of, OF, THEN, simplify, rule_format.
     5 *}
     6 
     7 text{*\noindent
     8 SKIP most developments...
     9 *}
    10 
    11 (** Commutativity **)
    12 
    13 lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
    14 apply (auto simp add: is_gcd_def);
    15 done
    16 
    17 lemma gcd_commute: "gcd(m,n) = gcd(n,m)"
    18 apply (rule is_gcd_unique)
    19 apply (rule is_gcd)
    20 apply (subst is_gcd_commute)
    21 apply (simp add: is_gcd)
    22 done
    23 
    24 lemma gcd_1 [simp]: "gcd(m, Suc 0) = Suc 0"
    25 apply simp
    26 done
    27 
    28 lemma gcd_1_left [simp]: "gcd(Suc 0, m) = Suc 0"
    29 apply (simp add: gcd_commute [of "Suc 0"])
    30 done
    31 
    32 text{*\noindent
    33 as far as HERE.
    34 *}
    35 
    36 text{*\noindent
    37 SKIP THIS PROOF
    38 *}
    39 
    40 lemma gcd_mult_distrib2: "k * gcd(m,n) = gcd(k*m, k*n)"
    41 apply (induct_tac m n rule: gcd.induct)
    42 apply (case_tac "n=0")
    43 apply simp
    44 apply (case_tac "k=0")
    45 apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
    46 done
    47 
    48 text {*
    49 @{thm[display] gcd_mult_distrib2}
    50 \rulename{gcd_mult_distrib2}
    51 *};
    52 
    53 text{*\noindent
    54 of, simplified
    55 *}
    56 
    57 
    58 lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1];
    59 lemmas gcd_mult_1 = gcd_mult_0 [simplified];
    60 
    61 text {*
    62 @{thm[display] gcd_mult_distrib2 [of _ 1]}
    63 
    64 @{thm[display] gcd_mult_0}
    65 \rulename{gcd_mult_0}
    66 
    67 @{thm[display] gcd_mult_1}
    68 \rulename{gcd_mult_1}
    69 
    70 @{thm[display] sym}
    71 \rulename{sym}
    72 *};
    73 
    74 lemmas gcd_mult0 = gcd_mult_1 [THEN sym];
    75       (*not quite right: we need ?k but this gives k*)
    76 
    77 lemmas gcd_mult0' = gcd_mult_distrib2 [of k 1, simplified, THEN sym];
    78       (*better in one step!*)
    79 
    80 text {*
    81 more legible, and variables properly generalized
    82 *};
    83 
    84 lemma gcd_mult [simp]: "gcd(k, k*n) = k"
    85 by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])
    86 
    87 
    88 lemmas gcd_self0 = gcd_mult [of k 1, simplified];
    89 
    90 
    91 text {*
    92 Rules handy with THEN
    93 
    94 @{thm[display] iffD1}
    95 \rulename{iffD1}
    96 
    97 @{thm[display] iffD2}
    98 \rulename{iffD2}
    99 *};
   100 
   101 
   102 text {*
   103 again: more legible, and variables properly generalized
   104 *};
   105 
   106 lemma gcd_self [simp]: "gcd(k,k) = k"
   107 by (rule gcd_mult [of k 1, simplified])
   108 
   109 
   110 text{*
   111 NEXT SECTION: Methods for Forward Proof
   112 
   113 NEW
   114 
   115 theorem arg_cong, useful in forward steps
   116 @{thm[display] arg_cong[no_vars]}
   117 \rulename{arg_cong}
   118 *}
   119 
   120 lemma "2 \<le> u \<Longrightarrow> u*m \<noteq> Suc(u*n)"
   121 apply (intro notI)
   122 txt{*
   123 before using arg_cong
   124 @{subgoals[display,indent=0,margin=65]}
   125 *};
   126 apply (drule_tac f="\<lambda>x. x mod u" in arg_cong)
   127 txt{*
   128 after using arg_cong
   129 @{subgoals[display,indent=0,margin=65]}
   130 *};
   131 apply (simp add: mod_Suc)
   132 done
   133 
   134 text{*
   135 have just used this rule:
   136 @{thm[display] mod_Suc[no_vars]}
   137 \rulename{mod_Suc}
   138 
   139 @{thm[display] mult_le_mono1[no_vars]}
   140 \rulename{mult_le_mono1}
   141 *}
   142 
   143 
   144 text{*
   145 example of "insert"
   146 *}
   147 
   148 lemma relprime_dvd_mult: 
   149       "\<lbrakk> gcd(k,n)=1; k dvd m*n \<rbrakk> \<Longrightarrow> k dvd m"
   150 apply (insert gcd_mult_distrib2 [of m k n])
   151 apply simp
   152 apply (erule_tac t="m" in ssubst);
   153 apply simp
   154 done
   155 
   156 
   157 text {*
   158 Another example of "insert"
   159 
   160 @{thm[display] mod_div_equality}
   161 \rulename{mod_div_equality}
   162 *};
   163 
   164 (*MOVED to Force.thy, which now depends only on Divides.thy
   165 lemma div_mult_self_is_m: "0<n \<Longrightarrow> (m*n) div n = (m::nat)"
   166 *)
   167 
   168 lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \<Longrightarrow> (k dvd m*n) = (k dvd m)";
   169 by (blast intro: relprime_dvd_mult dvd_trans)
   170 
   171 
   172 lemma relprime_20_81: "gcd(20,81) = 1";
   173 by (simp add: gcd.simps)
   174 
   175 text {*
   176 Examples of 'OF'
   177 
   178 @{thm[display] relprime_dvd_mult}
   179 \rulename{relprime_dvd_mult}
   180 
   181 @{thm[display] relprime_dvd_mult [OF relprime_20_81]}
   182 
   183 @{thm[display] dvd_refl}
   184 \rulename{dvd_refl}
   185 
   186 @{thm[display] dvd_add}
   187 \rulename{dvd_add}
   188 
   189 @{thm[display] dvd_add [OF dvd_refl dvd_refl]}
   190 
   191 @{thm[display] dvd_add [OF _ dvd_refl]}
   192 *};
   193 
   194 lemma "\<lbrakk>(z::int) < 37; 66 < 2*z; z*z \<noteq> 1225; Q(34); Q(36)\<rbrakk> \<Longrightarrow> Q(z)";
   195 apply (subgoal_tac "z = 34 \<or> z = 36")
   196 txt{*
   197 the tactic leaves two subgoals:
   198 @{subgoals[display,indent=0,margin=65]}
   199 *};
   200 apply blast
   201 apply (subgoal_tac "z \<noteq> 35")
   202 txt{*
   203 the tactic leaves two subgoals:
   204 @{subgoals[display,indent=0,margin=65]}
   205 *};
   206 apply arith
   207 apply force
   208 done
   209 
   210 
   211 end