src/Tools/isac/Interpret/solve-step.sml
author wneuper <Walther.Neuper@jku.at>
Sat, 30 Jul 2022 16:47:45 +0200
changeset 60500 59a3af532717
parent 60477 4ac966aaa785
child 60506 145e45cd7a0f
permissions -rw-r--r--
eliminate global flag Rewrite.trace_on
     1 (* Title:  Specify/solve-step.sml
     2    Author: Walther Neuper
     3    (c) due to copyright terms
     4 
     5 Code for the solve-phase in analogy to structure Specify_Step for the specify-phase.
     6 *)
     7 
     8 signature SOLVE_STEP =
     9 sig
    10   val check: Tactic.input -> Calc.T -> Applicable.T
    11   val add: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    12 
    13   val add_general: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    14   val s_add_general: State_Steps.T ->
    15     Ctree.ctree * Pos.pos' list * Pos.pos' -> Ctree.ctree * Pos.pos' list * Pos.pos'
    16   val add_hard:
    17     theory -> Tactic.T -> Pos.pos' -> Ctree.ctree -> Test_Out.T
    18 
    19   val get_ruleset: 'a -> Pos.pos -> Ctree.ctree ->
    20     string * ThyC.id * Rule_Def.rew_ord' * Rule_Def.rule_set * bool
    21   val get_eval: string -> Pos.pos ->Ctree.ctree ->
    22     string * ThyC.id * (string * Rule_Def.eval_fn)
    23 \<^isac_test>\<open>
    24   val rew_info: Rule_Def.rule_set -> string * Rule_Def.rule_set * Rule_Def.calc list
    25 \<close>
    26 end
    27 
    28 (**)
    29 structure Solve_Step(**): SOLVE_STEP(**) =
    30 struct
    31 (**)
    32 
    33 (** get data from Calc.T **)
    34 
    35 (* the source is the parent node, either a problem or a Rule_Set (with inter_steps) *)
    36 fun rew_info (Rule_Def.Repeat {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    37     (rew_ord', erls, ca)
    38   | rew_info (Rule_Set.Sequence {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    39     (rew_ord', erls, ca)
    40   | rew_info (Rule_Set.Rrls {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    41     (rew_ord', erls, ca)
    42   | rew_info rls = raise ERROR ("rew_info called with '" ^ Rule_Set.id rls ^ "'");
    43 
    44 fun get_ruleset _ p pt = 
    45   let 
    46     val (pbl, p', rls') = Ctree.parent_node pt p
    47   in                                                      
    48     if pbl
    49     then 
    50       let 
    51         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    52         val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')              
    53 	    in ("OK", thy', rew_ord', erls, false) end
    54      else 
    55       let
    56         val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p)
    57 		    val (rew_ord', erls, _) = rew_info rls'
    58 		  in ("OK", thy', rew_ord', erls, false) end
    59   end;
    60 
    61 fun get_eval scrop p pt = 
    62   let
    63     val (pbl, p', rls') =  Ctree.parent_node pt p
    64   in
    65     if pbl
    66     then
    67       let
    68         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    69         val {calc = scr_isa_fns, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')
    70         val opt = assoc (scr_isa_fns, scrop)
    71 	    in
    72 	      case opt of
    73 	        SOME isa_fn => ("OK", thy', isa_fn)
    74 	      | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval_Def.e_evalfn))
    75 	    end
    76     else 
    77 		  let
    78 		    val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p);
    79 		    val (_, _,(*_,*)scr_isa_fns) = rew_info rls'(*rls*)
    80 		  in
    81 		    case assoc (scr_isa_fns, scrop) of
    82 		      SOME isa_fn => ("OK",thy',isa_fn)
    83 		    | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval_Def.e_evalfn))
    84 		  end
    85   end;
    86 
    87 (** Solve_Step.check **)
    88 
    89 (*
    90   check tactics (input by the user, mostly) for applicability
    91   and determine as much of the result of the tactic as possible initially.
    92 *)
    93 fun check (Tactic.Apply_Method mI) (pt, (p, _)) =
    94       let
    95         val (dI, pI, probl, ctxt) = case Ctree.get_obj I pt p of
    96           Ctree.PblObj {origin = (_, (dI, pI, _), _), probl, ctxt, ...} => (dI, pI, probl, ctxt)
    97         | _ => raise ERROR "Specify_Step.check Apply_Method: uncovered case Ctree.get_obj"
    98         val {where_, ...} = Problem.from_store pI
    99         val pres = map (I_Model.environment probl |> subst_atomic) where_
   100         val ctxt = if ContextC.is_empty ctxt (*vvvvvvvvvvvvvv DO THAT EARLIER?!?*)
   101           then ThyC.get_theory dI |> Proof_Context.init_global |> ContextC.insert_assumptions pres
   102           else ctxt
   103       in
   104         Applicable.Yes (Tactic.Apply_Method' (mI, NONE, Istate_Def.empty (*filled later*), ctxt))
   105       end
   106   | check (Tactic.Calculate op_) (cs as (pt, (p, _))) =
   107       let 
   108         val (msg, thy', isa_fn) = get_eval op_ p pt;
   109         val f = Calc.current_formula cs;
   110       in
   111         if msg = "OK"
   112         then
   113     	    case Rewrite.calculate_ (ThyC.id_to_ctxt thy') isa_fn f of
   114     	      SOME (f', (id, thm))
   115     	        => Applicable.Yes (Tactic.Calculate' (thy', op_, f, (f', (id, thm))))
   116     	    | NONE => Applicable.No ("'calculate " ^ op_ ^ "' not applicable") 
   117         else Applicable.No msg                                              
   118       end
   119   | check (Tactic.Check_Postcond pI) (_, _) = (*TODO: only applicable, if evaluating to True*)
   120       Applicable.Yes (Tactic.Check_Postcond' (pI, TermC.empty))
   121   | check (Tactic.Check_elementwise pred) cs =
   122       let 
   123         val f = Calc.current_formula cs;
   124       in
   125         Applicable.Yes (Tactic.Check_elementwise' (f, pred, (f, [])))
   126       end
   127   | check Tactic.Empty_Tac _ = Applicable.No "Empty_Tac is not applicable"
   128   | check (Tactic.Free_Solve) _ = Applicable.Yes (Tactic.Free_Solve')
   129   | check Tactic.Or_to_List cs =
   130        let 
   131         val f = Calc.current_formula cs;
   132         val ls = Prog_Expr.or2list f;
   133       in
   134         Applicable.Yes (Tactic.Or_to_List' (f, ls))
   135       end
   136   | check (Tactic.Rewrite thm) (cs as (pt, (p, _))) = 
   137       let
   138         val (msg, thy', ro, rls', _) = get_ruleset thm p pt;
   139         val thy = ThyC.id_to_ctxt thy';
   140         val f = Calc.current_formula cs;
   141       in
   142         if msg = "OK" 
   143         then
   144           case Rewrite.rewrite_ thy (Rewrite_Ord.assoc_rew_ord ro) rls' false (snd thm) f of
   145             SOME (f',asm) => Applicable.Yes (Tactic.Rewrite' (thy', ro, rls', false, thm, f, (f', asm)))
   146           | NONE => Applicable.No ((thm |> fst |> quote) ^ " not applicable") 
   147         else Applicable.No msg
   148       end
   149   | check (Tactic.Rewrite_Inst (subs, thm)) (cs as (pt, (p, _))) = 
   150       let 
   151         val pp = Ctree.par_pblobj pt p;
   152         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   153         val thy = ThyC.get_theory thy';
   154         val ctxt = Proof_Context.init_global thy;
   155         val {rew_ord' = ro', erls = erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp);
   156         val f = Calc.current_formula cs;
   157         val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   158       in 
   159         case Rewrite.rewrite_inst_ ctxt (Rewrite_Ord.assoc_rew_ord ro') erls false subst (snd thm) f of
   160           SOME (f', asm) =>
   161             Applicable.Yes (Tactic.Rewrite_Inst' (thy', ro', erls, false, subst, thm, f, (f', asm)))
   162         | NONE => Applicable.No (fst thm ^ " not applicable")
   163       end
   164   | check (Tactic.Rewrite_Set rls) (cs as (pt, (p, _))) =
   165       let 
   166         val pp = Ctree.par_pblobj pt p; 
   167         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   168         val f = Calc.current_formula cs;
   169       in
   170         case Rewrite.rewrite_set_ (ThyC.id_to_ctxt thy') false (assoc_rls rls) f of
   171           SOME (f', asm)
   172             => Applicable.Yes (Tactic.Rewrite_Set' (thy', false, assoc_rls rls, f, (f', asm)))
   173           | NONE => Applicable.No (rls ^ " not applicable")
   174       end
   175   | check (Tactic.Rewrite_Set_Inst (subs, rls)) (cs as (pt, (p, _))) =
   176       let 
   177         val pp = Ctree.par_pblobj pt p;
   178         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   179         val thy = ThyC.get_theory thy';
   180         val ctxt = Proof_Context.init_global thy;
   181         val f = Calc.current_formula cs;
   182     	  val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   183       in 
   184         case Rewrite.rewrite_set_inst_ ctxt false subst (assoc_rls rls) f of
   185           SOME (f', asm)
   186             => Applicable.Yes (Tactic.Rewrite_Set_Inst' (thy', false, subst, assoc_rls rls, f, (f', asm)))
   187         | NONE => Applicable.No (rls ^ " not applicable")
   188       end
   189   | check (Tactic.Subproblem (domID, pblID)) (_, _) = 
   190       Applicable.Yes (Tactic.Subproblem' ((domID, pblID, MethodC.id_empty), [], 
   191 			  TermC.empty, [], ContextC.empty, Auto_Prog.subpbl domID pblID))
   192   | check (Tactic.Substitute sube) (cs as (pt, (p, _))) =
   193       let
   194         val pp = Ctree.par_pblobj pt p
   195         val thy = ThyC.get_theory (Ctree.get_obj Ctree.g_domID pt pp)
   196         val ctxt = Proof_Context.init_global thy;
   197         val f = Calc.current_formula cs;
   198 		    val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp)
   199 		    val subte = Subst.input_to_terms sube (*TODO: input requires parse _: _ -> _ option*)
   200 		    val subst = Subst.T_from_string_eqs thy sube
   201 		    val ro = Rewrite_Ord.assoc_rew_ord rew_ord'
   202 		  in
   203 		    if foldl and_ (true, map TermC.contains_Var subte)
   204 		    then (*1*)
   205 		      let val f' = subst_atomic subst f
   206 		      in if f = f'
   207 		        then Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   208 		        else Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   209 		      end
   210 		    else (*2*)
   211 		      case Rewrite.rewrite_terms_ ctxt ro erls subte f of
   212 		        SOME (f', _) =>  Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   213 		      | NONE => Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   214 		  end
   215   | check (Tactic.Tac id) (cs as (pt, (p, _))) =
   216       let 
   217         val pp = Ctree.par_pblobj pt p; 
   218         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   219         val thy = ThyC.get_theory thy';
   220         val f = Calc.current_formula cs;
   221       in
   222         Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, UnparseC.term f))
   223       end
   224   | check (Tactic.Take str) _ = Applicable.Yes (Tactic.Take' (TermC.str2term str)) (* always applicable ?*)
   225   | check (Tactic.Begin_Trans) cs =
   226       Applicable.Yes (Tactic.Begin_Trans' (Calc.current_formula cs))
   227   | check (Tactic.End_Trans) (pt, (p, p_)) = (*TODO: check parent branches*)
   228     if p_ = Pos.Res 
   229 	  then Applicable.Yes (Tactic.End_Trans' (Ctree.get_obj Ctree.g_result pt p))
   230     else Applicable.No "'End_Trans' is not applicable at the beginning of a transitive sequence"
   231   | check Tactic.End_Proof' _ = Applicable.Yes Tactic.End_Proof''
   232   | check m _ = raise ERROR ("Solve_Step.check called for " ^ Tactic.input_to_string m);
   233 
   234 
   235 (** Solve_Step.add **)
   236 
   237 fun add (Tactic.Apply_Method' (_, topt, is, _)) (_, ctxt) (pt, pos as (p, _)) = 
   238     (case topt of 
   239       SOME t => 
   240         let val (pt, c) = Ctree.cappend_form pt p (is, ctxt) t
   241         in (pos, c, Test_Out.EmptyMout, pt) end
   242     | NONE => (pos, [], Test_Out.EmptyMout, pt))
   243   | add (Tactic.Take' t) l (pt, (p, _)) = (* val (Take' t) = m; *)
   244     let
   245       val p =
   246         let val (ps, p') = split_last p (* no connex to prev.ppobj *)
   247 	      in if p' = 0 then ps @ [1] else p end
   248       val (pt, c) = Ctree.cappend_form pt p l t
   249     in
   250       ((p, Pos.Frm), c, Test_Out.FormKF (UnparseC.term t), pt)
   251     end
   252   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Frm)) =
   253     let
   254       val (pt, c) = Ctree.cappend_form pt p l t
   255       val pt = Ctree.update_branch pt p Ctree.TransitiveB (*040312*)
   256       (* replace the old PrfOjb ~~~~~ *)
   257       val p = (Pos.lev_on o Pos.lev_dn (* starts with [...,0] *)) p
   258       val (pt, c') = Ctree.cappend_form pt p l t (*FIXME.0402 same istate ???*)
   259     in
   260       ((p, Pos.Frm), c @ c', Test_Out.FormKF (UnparseC.term t), pt)
   261     end
   262   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Res)) = 
   263     (*append after existing PrfObj    vvvvvvvvvvvvv*)
   264     add (Tactic.Begin_Trans' t) l (pt, (Pos.lev_on p, Pos.Frm))
   265   | add (Tactic.End_Trans' tasm) l (pt, (p, _)) =
   266     let
   267       val p' = Pos.lev_up p
   268       val (pt, c) = Ctree.append_result pt p' l tasm Ctree.Complete
   269     in
   270       ((p', Pos.Res), c, Test_Out.FormKF "DUMMY" (*term2str t ..ERROR (t) has not been declared*), pt)
   271     end
   272   | add (Tactic.Rewrite_Inst' (_, _, _, _, subs', thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   273     let
   274       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f
   275         (Tactic.Rewrite_Inst (Subst.T_to_input subs', thm')) (f',asm) Ctree.Complete;
   276       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   277     in
   278       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   279     end
   280  | add (Tactic.Rewrite' (_, _, _, _, thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   281    let
   282      val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f (Tactic.Rewrite thm') (f', asm) Ctree.Complete
   283      val pt = Ctree.update_branch pt p Ctree.TransitiveB
   284    in
   285     ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   286    end
   287   | add (Tactic.Rewrite_Set_Inst' (_, _, subs', rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   288     let
   289       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   290         (Tactic.Rewrite_Set_Inst (Subst.T_to_input subs', Rule_Set.id rls')) (f', asm) Ctree.Complete
   291       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   292     in
   293       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   294     end
   295   | add (Tactic.Rewrite_Set' (_, _, rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   296     let
   297       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   298         (Tactic.Rewrite_Set (Rule_Set.id rls')) (f', asm) Ctree.Complete
   299       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   300     in
   301       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   302     end
   303   | add (Tactic.Check_Postcond' (_, scval)) l (pt, (p, _)) =
   304       let
   305         val (pt, c) = Ctree.append_result pt p l (scval, []) Ctree.Complete
   306       in
   307         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term scval), pt)
   308       end
   309   | add (Tactic.Calculate' (_, op_, f, (f', _))) l (pt, (p, _)) =
   310       let
   311         val (pt,c) = Ctree.cappend_atomic pt p l f (Tactic.Calculate op_) (f', []) Ctree.Complete
   312       in
   313         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   314       end
   315   | add (Tactic.Check_elementwise' (consts, pred, (f', asm))) l (pt, (p, _)) =
   316       let
   317         val (pt,c) = Ctree.cappend_atomic pt p l consts (Tactic.Check_elementwise pred) (f', asm) Ctree.Complete
   318       in
   319         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   320       end
   321   | add (Tactic.Or_to_List' (ors, list)) l (pt, (p, _)) =
   322       let
   323         val (pt,c) = Ctree.cappend_atomic pt p l ors Tactic.Or_to_List (list, []) Ctree.Complete
   324       in
   325         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term list), pt)
   326       end
   327   | add (Tactic.Substitute' (_, _, subte, t, t')) l (pt, (p, _)) =
   328       let
   329         val (pt,c) =
   330           Ctree.cappend_atomic pt p l t (Tactic.Substitute (Subst.eqs_to_input subte)) (t',[]) Ctree.Complete
   331         in ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term t'), pt) 
   332         end
   333   | add (Tactic.Tac_ (_, f, id, f')) l (pt, (p, _)) =
   334       let
   335         val (pt, c) = Ctree.cappend_atomic pt p l (TermC.str2term f) (Tactic.Tac id) (TermC.str2term f', []) Ctree.Complete
   336       in
   337         ((p,Pos.Res), c, Test_Out.FormKF f', pt)
   338       end
   339   | add (Tactic.Subproblem' ((domID, pblID, metID), oris, hdl, fmz_, ctxt_specify, f))
   340       (l as (_, ctxt)) (pt, (p, _)) =
   341       let
   342   	    val (pt, c) = Ctree.cappend_problem pt p l (fmz_, (domID, pblID, metID))
   343   	      (oris, (domID, pblID, metID), hdl, ctxt_specify)
   344   	    val f = Syntax.string_of_term ctxt f
   345       in
   346         ((p, Pos.Pbl), c, Test_Out.FormKF f, pt)
   347       end
   348   | add m' _ (_, pos) =
   349       raise ERROR ("Solve_Step.add: not impl.for " ^ Tactic.string_of m' ^ " at " ^ Pos.pos'2str pos)
   350 
   351 (* LI switches between solve-phase and specify-phase *)
   352 fun add_general tac ic cs =
   353   if Tactic.for_specify' tac
   354   then Specify_Step.add tac ic cs
   355   else add tac ic cs
   356 
   357 (* the order of State_Steps is reversed: insert last element first  *)
   358 fun s_add_general [] ptp = ptp
   359   | s_add_general tacis (pt, c, _) = 
   360     let
   361       val (tacis', (_, tac_, (p, is))) = split_last tacis
   362 	    val (p', c', _, pt') = add_general tac_ is (pt, p)
   363     in
   364       s_add_general tacis' (pt', c@c', p')
   365     end
   366 
   367 (* a still undeveloped concept: do a calculation without LI *)
   368 fun add_hard _(*thy*) m' (p, p_) pt =
   369   let  
   370     val p = case p_ of
   371       Pos.Frm => p | Pos.Res => Pos.lev_on p
   372     | _ => raise ERROR ("generate_hard: call by " ^ Pos.pos'2str (p,p_))
   373   in
   374     add_general m' (Istate_Def.empty, ContextC.empty) (pt, (p, p_))
   375   end
   376 
   377 (**)end(**);