src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
author himmelma
Wed, 17 Feb 2010 18:33:45 +0100
changeset 35172 579dd5570f96
parent 35028 108662d50512
child 35820 b57c3afd1484
permissions -rw-r--r--
Added integration to Multivariate-Analysis (upto FTC)
     1 (*  title:      HOL/Library/Topology_Euclidian_Space.thy
     2     Author:     Amine Chaieb, University of Cambridge
     3     Author:     Robert Himmelmann, TU Muenchen
     4 *)
     5 
     6 header {* Elementary topology in Euclidean space. *}
     7 
     8 theory Topology_Euclidean_Space
     9 imports SEQ Euclidean_Space Product_Vector
    10 begin
    11 
    12 subsection{* General notion of a topology *}
    13 
    14 definition "istopology L \<longleftrightarrow> {} \<in> L \<and> (\<forall>S \<in>L. \<forall>T \<in>L. S \<inter> T \<in> L) \<and> (\<forall>K. K \<subseteq>L \<longrightarrow> \<Union> K \<in> L)"
    15 typedef (open) 'a topology = "{L::('a set) set. istopology L}"
    16   morphisms "openin" "topology"
    17   unfolding istopology_def by blast
    18 
    19 lemma istopology_open_in[intro]: "istopology(openin U)"
    20   using openin[of U] by blast
    21 
    22 lemma topology_inverse': "istopology U \<Longrightarrow> openin (topology U) = U"
    23   using topology_inverse[unfolded mem_def Collect_def] .
    24 
    25 lemma topology_inverse_iff: "istopology U \<longleftrightarrow> openin (topology U) = U"
    26   using topology_inverse[of U] istopology_open_in[of "topology U"] by auto
    27 
    28 lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)"
    29 proof-
    30   {assume "T1=T2" hence "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp}
    31   moreover
    32   {assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
    33     hence "openin T1 = openin T2" by (metis mem_def set_ext)
    34     hence "topology (openin T1) = topology (openin T2)" by simp
    35     hence "T1 = T2" unfolding openin_inverse .}
    36   ultimately show ?thesis by blast
    37 qed
    38 
    39 text{* Infer the "universe" from union of all sets in the topology. *}
    40 
    41 definition "topspace T =  \<Union>{S. openin T S}"
    42 
    43 subsection{* Main properties of open sets *}
    44 
    45 lemma openin_clauses:
    46   fixes U :: "'a topology"
    47   shows "openin U {}"
    48   "\<And>S T. openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S\<inter>T)"
    49   "\<And>K. (\<forall>S \<in> K. openin U S) \<Longrightarrow> openin U (\<Union>K)"
    50   using openin[of U] unfolding istopology_def Collect_def mem_def
    51   by (metis mem_def subset_eq)+
    52 
    53 lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U"
    54   unfolding topspace_def by blast
    55 lemma openin_empty[simp]: "openin U {}" by (simp add: openin_clauses)
    56 
    57 lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)"
    58   by (simp add: openin_clauses)
    59 
    60 lemma openin_Union[intro]: "(\<forall>S \<in>K. openin U S) \<Longrightarrow> openin U (\<Union> K)" by (simp add: openin_clauses)
    61 
    62 lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)"
    63   using openin_Union[of "{S,T}" U] by auto
    64 
    65 lemma openin_topspace[intro, simp]: "openin U (topspace U)" by (simp add: openin_Union topspace_def)
    66 
    67 lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)" (is "?lhs \<longleftrightarrow> ?rhs")
    68 proof-
    69   {assume ?lhs then have ?rhs by auto }
    70   moreover
    71   {assume H: ?rhs
    72     then obtain t where t: "\<forall>x\<in>S. openin U (t x) \<and> x \<in> t x \<and> t x \<subseteq> S"
    73       unfolding Ball_def ex_simps(6)[symmetric] choice_iff by blast
    74     from t have th0: "\<forall>x\<in> t`S. openin U x" by auto
    75     have "\<Union> t`S = S" using t by auto
    76     with openin_Union[OF th0] have "openin U S" by simp }
    77   ultimately show ?thesis by blast
    78 qed
    79 
    80 subsection{* Closed sets *}
    81 
    82 definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)"
    83 
    84 lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U" by (metis closedin_def)
    85 lemma closedin_empty[simp]: "closedin U {}" by (simp add: closedin_def)
    86 lemma closedin_topspace[intro,simp]:
    87   "closedin U (topspace U)" by (simp add: closedin_def)
    88 lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)"
    89   by (auto simp add: Diff_Un closedin_def)
    90 
    91 lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union> {A - s|s. s\<in>S}" by auto
    92 lemma closedin_Inter[intro]: assumes Ke: "K \<noteq> {}" and Kc: "\<forall>S \<in>K. closedin U S"
    93   shows "closedin U (\<Inter> K)"  using Ke Kc unfolding closedin_def Diff_Inter by auto
    94 
    95 lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)"
    96   using closedin_Inter[of "{S,T}" U] by auto
    97 
    98 lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast
    99 lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
   100   apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
   101   apply (metis openin_subset subset_eq)
   102   done
   103 
   104 lemma openin_closedin:  "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
   105   by (simp add: openin_closedin_eq)
   106 
   107 lemma openin_diff[intro]: assumes oS: "openin U S" and cT: "closedin U T" shows "openin U (S - T)"
   108 proof-
   109   have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S]  oS cT
   110     by (auto simp add: topspace_def openin_subset)
   111   then show ?thesis using oS cT by (auto simp add: closedin_def)
   112 qed
   113 
   114 lemma closedin_diff[intro]: assumes oS: "closedin U S" and cT: "openin U T" shows "closedin U (S - T)"
   115 proof-
   116   have "S - T = S \<inter> (topspace U - T)" using closedin_subset[of U S]  oS cT
   117     by (auto simp add: topspace_def )
   118   then show ?thesis using oS cT by (auto simp add: openin_closedin_eq)
   119 qed
   120 
   121 subsection{* Subspace topology. *}
   122 
   123 definition "subtopology U V = topology {S \<inter> V |S. openin U S}"
   124 
   125 lemma istopology_subtopology: "istopology {S \<inter> V |S. openin U S}" (is "istopology ?L")
   126 proof-
   127   have "{} \<in> ?L" by blast
   128   {fix A B assume A: "A \<in> ?L" and B: "B \<in> ?L"
   129     from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V" by blast
   130     have "A\<inter>B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)"  using Sa Sb by blast+
   131     then have "A \<inter> B \<in> ?L" by blast}
   132   moreover
   133   {fix K assume K: "K \<subseteq> ?L"
   134     have th0: "?L = (\<lambda>S. S \<inter> V) ` openin U "
   135       apply (rule set_ext)
   136       apply (simp add: Ball_def image_iff)
   137       by (metis mem_def)
   138     from K[unfolded th0 subset_image_iff]
   139     obtain Sk where Sk: "Sk \<subseteq> openin U" "K = (\<lambda>S. S \<inter> V) ` Sk" by blast
   140     have "\<Union>K = (\<Union>Sk) \<inter> V" using Sk by auto
   141     moreover have "openin U (\<Union> Sk)" using Sk by (auto simp add: subset_eq mem_def)
   142     ultimately have "\<Union>K \<in> ?L" by blast}
   143   ultimately show ?thesis unfolding istopology_def by blast
   144 qed
   145 
   146 lemma openin_subtopology:
   147   "openin (subtopology U V) S \<longleftrightarrow> (\<exists> T. (openin U T) \<and> (S = T \<inter> V))"
   148   unfolding subtopology_def topology_inverse'[OF istopology_subtopology]
   149   by (auto simp add: Collect_def)
   150 
   151 lemma topspace_subtopology: "topspace(subtopology U V) = topspace U \<inter> V"
   152   by (auto simp add: topspace_def openin_subtopology)
   153 
   154 lemma closedin_subtopology:
   155   "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
   156   unfolding closedin_def topspace_subtopology
   157   apply (simp add: openin_subtopology)
   158   apply (rule iffI)
   159   apply clarify
   160   apply (rule_tac x="topspace U - T" in exI)
   161   by auto
   162 
   163 lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U"
   164   unfolding openin_subtopology
   165   apply (rule iffI, clarify)
   166   apply (frule openin_subset[of U])  apply blast
   167   apply (rule exI[where x="topspace U"])
   168   by auto
   169 
   170 lemma subtopology_superset: assumes UV: "topspace U \<subseteq> V"
   171   shows "subtopology U V = U"
   172 proof-
   173   {fix S
   174     {fix T assume T: "openin U T" "S = T \<inter> V"
   175       from T openin_subset[OF T(1)] UV have eq: "S = T" by blast
   176       have "openin U S" unfolding eq using T by blast}
   177     moreover
   178     {assume S: "openin U S"
   179       hence "\<exists>T. openin U T \<and> S = T \<inter> V"
   180         using openin_subset[OF S] UV by auto}
   181     ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S" by blast}
   182   then show ?thesis unfolding topology_eq openin_subtopology by blast
   183 qed
   184 
   185 
   186 lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U"
   187   by (simp add: subtopology_superset)
   188 
   189 lemma subtopology_UNIV[simp]: "subtopology U UNIV = U"
   190   by (simp add: subtopology_superset)
   191 
   192 subsection{* The universal Euclidean versions are what we use most of the time *}
   193 
   194 definition
   195   euclidean :: "'a::topological_space topology" where
   196   "euclidean = topology open"
   197 
   198 lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
   199   unfolding euclidean_def
   200   apply (rule cong[where x=S and y=S])
   201   apply (rule topology_inverse[symmetric])
   202   apply (auto simp add: istopology_def)
   203   by (auto simp add: mem_def subset_eq)
   204 
   205 lemma topspace_euclidean: "topspace euclidean = UNIV"
   206   apply (simp add: topspace_def)
   207   apply (rule set_ext)
   208   by (auto simp add: open_openin[symmetric])
   209 
   210 lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
   211   by (simp add: topspace_euclidean topspace_subtopology)
   212 
   213 lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S"
   214   by (simp add: closed_def closedin_def topspace_euclidean open_openin Compl_eq_Diff_UNIV)
   215 
   216 lemma open_subopen: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S)"
   217   by (simp add: open_openin openin_subopen[symmetric])
   218 
   219 subsection{* Open and closed balls. *}
   220 
   221 definition
   222   ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where
   223   "ball x e = {y. dist x y < e}"
   224 
   225 definition
   226   cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where
   227   "cball x e = {y. dist x y \<le> e}"
   228 
   229 lemma mem_ball[simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e" by (simp add: ball_def)
   230 lemma mem_cball[simp]: "y \<in> cball x e \<longleftrightarrow> dist x y \<le> e" by (simp add: cball_def)
   231 
   232 lemma mem_ball_0 [simp]:
   233   fixes x :: "'a::real_normed_vector"
   234   shows "x \<in> ball 0 e \<longleftrightarrow> norm x < e"
   235   by (simp add: dist_norm)
   236 
   237 lemma mem_cball_0 [simp]:
   238   fixes x :: "'a::real_normed_vector"
   239   shows "x \<in> cball 0 e \<longleftrightarrow> norm x \<le> e"
   240   by (simp add: dist_norm)
   241 
   242 lemma centre_in_cball[simp]: "x \<in> cball x e \<longleftrightarrow> 0\<le> e"  by simp
   243 lemma ball_subset_cball[simp,intro]: "ball x e \<subseteq> cball x e" by (simp add: subset_eq)
   244 lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e" by (simp add: subset_eq)
   245 lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e" by (simp add: subset_eq)
   246 lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
   247   by (simp add: expand_set_eq) arith
   248 
   249 lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
   250   by (simp add: expand_set_eq)
   251 
   252 subsection{* Topological properties of open balls *}
   253 
   254 lemma diff_less_iff: "(a::real) - b > 0 \<longleftrightarrow> a > b"
   255   "(a::real) - b < 0 \<longleftrightarrow> a < b"
   256   "a - b < c \<longleftrightarrow> a < c +b" "a - b > c \<longleftrightarrow> a > c +b" by arith+
   257 lemma diff_le_iff: "(a::real) - b \<ge> 0 \<longleftrightarrow> a \<ge> b" "(a::real) - b \<le> 0 \<longleftrightarrow> a \<le> b"
   258   "a - b \<le> c \<longleftrightarrow> a \<le> c +b" "a - b \<ge> c \<longleftrightarrow> a \<ge> c +b"  by arith+
   259 
   260 lemma open_ball[intro, simp]: "open (ball x e)"
   261   unfolding open_dist ball_def Collect_def Ball_def mem_def
   262   unfolding dist_commute
   263   apply clarify
   264   apply (rule_tac x="e - dist xa x" in exI)
   265   using dist_triangle_alt[where z=x]
   266   apply (clarsimp simp add: diff_less_iff)
   267   apply atomize
   268   apply (erule_tac x="y" in allE)
   269   apply (erule_tac x="xa" in allE)
   270   by arith
   271 
   272 lemma centre_in_ball[simp]: "x \<in> ball x e \<longleftrightarrow> e > 0" by (metis mem_ball dist_self)
   273 lemma open_contains_ball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. ball x e \<subseteq> S)"
   274   unfolding open_dist subset_eq mem_ball Ball_def dist_commute ..
   275 
   276 lemma openE[elim?]:
   277   assumes "open S" "x\<in>S" 
   278   obtains e where "e>0" "ball x e \<subseteq> S"
   279   using assms unfolding open_contains_ball by auto
   280 
   281 lemma open_contains_ball_eq: "open S \<Longrightarrow> \<forall>x. x\<in>S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
   282   by (metis open_contains_ball subset_eq centre_in_ball)
   283 
   284 lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
   285   unfolding mem_ball expand_set_eq
   286   apply (simp add: not_less)
   287   by (metis zero_le_dist order_trans dist_self)
   288 
   289 lemma ball_empty[intro]: "e \<le> 0 ==> ball x e = {}" by simp
   290 
   291 subsection{* Basic "localization" results are handy for connectedness. *}
   292 
   293 lemma openin_open: "openin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. open T \<and> (S = U \<inter> T))"
   294   by (auto simp add: openin_subtopology open_openin[symmetric])
   295 
   296 lemma openin_open_Int[intro]: "open S \<Longrightarrow> openin (subtopology euclidean U) (U \<inter> S)"
   297   by (auto simp add: openin_open)
   298 
   299 lemma open_openin_trans[trans]:
   300  "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
   301   by (metis Int_absorb1  openin_open_Int)
   302 
   303 lemma open_subset:  "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
   304   by (auto simp add: openin_open)
   305 
   306 lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
   307   by (simp add: closedin_subtopology closed_closedin Int_ac)
   308 
   309 lemma closedin_closed_Int: "closed S ==> closedin (subtopology euclidean U) (U \<inter> S)"
   310   by (metis closedin_closed)
   311 
   312 lemma closed_closedin_trans: "closed S \<Longrightarrow> closed T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> closedin (subtopology euclidean S) T"
   313   apply (subgoal_tac "S \<inter> T = T" )
   314   apply auto
   315   apply (frule closedin_closed_Int[of T S])
   316   by simp
   317 
   318 lemma closed_subset: "S \<subseteq> T \<Longrightarrow> closed S \<Longrightarrow> closedin (subtopology euclidean T) S"
   319   by (auto simp add: closedin_closed)
   320 
   321 lemma openin_euclidean_subtopology_iff:
   322   fixes S U :: "'a::metric_space set"
   323   shows "openin (subtopology euclidean U) S
   324   \<longleftrightarrow> S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)" (is "?lhs \<longleftrightarrow> ?rhs")
   325 proof-
   326   {assume ?lhs hence ?rhs unfolding openin_subtopology open_openin[symmetric]
   327       by (simp add: open_dist) blast}
   328   moreover
   329   {assume SU: "S \<subseteq> U" and H: "\<And>x. x \<in> S \<Longrightarrow> \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x' \<in> S"
   330     from H obtain d where d: "\<And>x . x\<in> S \<Longrightarrow> d x > 0 \<and> (\<forall>x' \<in> U. dist x' x < d x \<longrightarrow> x' \<in> S)"
   331       by metis
   332     let ?T = "\<Union>{B. \<exists>x\<in>S. B = ball x (d x)}"
   333     have oT: "open ?T" by auto
   334     { fix x assume "x\<in>S"
   335       hence "x \<in> \<Union>{B. \<exists>x\<in>S. B = ball x (d x)}"
   336         apply simp apply(rule_tac x="ball x(d x)" in exI) apply auto
   337         by (rule d [THEN conjunct1])
   338       hence "x\<in> ?T \<inter> U" using SU and `x\<in>S` by auto  }
   339     moreover
   340     { fix y assume "y\<in>?T"
   341       then obtain B where "y\<in>B" "B\<in>{B. \<exists>x\<in>S. B = ball x (d x)}" by auto
   342       then obtain x where "x\<in>S" and x:"y \<in> ball x (d x)" by auto
   343       assume "y\<in>U"
   344       hence "y\<in>S" using d[OF `x\<in>S`] and x by(auto simp add: dist_commute) }
   345     ultimately have "S = ?T \<inter> U" by blast
   346     with oT have ?lhs unfolding openin_subtopology open_openin[symmetric] by blast}
   347   ultimately show ?thesis by blast
   348 qed
   349 
   350 text{* These "transitivity" results are handy too. *}
   351 
   352 lemma openin_trans[trans]: "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T
   353   \<Longrightarrow> openin (subtopology euclidean U) S"
   354   unfolding open_openin openin_open by blast
   355 
   356 lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S"
   357   by (auto simp add: openin_open intro: openin_trans)
   358 
   359 lemma closedin_trans[trans]:
   360  "closedin (subtopology euclidean T) S \<Longrightarrow>
   361            closedin (subtopology euclidean U) T
   362            ==> closedin (subtopology euclidean U) S"
   363   by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc)
   364 
   365 lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S"
   366   by (auto simp add: closedin_closed intro: closedin_trans)
   367 
   368 subsection{* Connectedness *}
   369 
   370 definition "connected S \<longleftrightarrow>
   371   ~(\<exists>e1 e2. open e1 \<and> open e2 \<and> S \<subseteq> (e1 \<union> e2) \<and> (e1 \<inter> e2 \<inter> S = {})
   372   \<and> ~(e1 \<inter> S = {}) \<and> ~(e2 \<inter> S = {}))"
   373 
   374 lemma connected_local:
   375  "connected S \<longleftrightarrow> ~(\<exists>e1 e2.
   376                  openin (subtopology euclidean S) e1 \<and>
   377                  openin (subtopology euclidean S) e2 \<and>
   378                  S \<subseteq> e1 \<union> e2 \<and>
   379                  e1 \<inter> e2 = {} \<and>
   380                  ~(e1 = {}) \<and>
   381                  ~(e2 = {}))"
   382 unfolding connected_def openin_open by (safe, blast+)
   383 
   384 lemma exists_diff:
   385   fixes P :: "'a set \<Rightarrow> bool"
   386   shows "(\<exists>S. P(- S)) \<longleftrightarrow> (\<exists>S. P S)" (is "?lhs \<longleftrightarrow> ?rhs")
   387 proof-
   388   {assume "?lhs" hence ?rhs by blast }
   389   moreover
   390   {fix S assume H: "P S"
   391     have "S = - (- S)" by auto
   392     with H have "P (- (- S))" by metis }
   393   ultimately show ?thesis by metis
   394 qed
   395 
   396 lemma connected_clopen: "connected S \<longleftrightarrow>
   397         (\<forall>T. openin (subtopology euclidean S) T \<and>
   398             closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
   399 proof-
   400   have " \<not> connected S \<longleftrightarrow> (\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
   401     unfolding connected_def openin_open closedin_closed
   402     apply (subst exists_diff) by blast
   403   hence th0: "connected S \<longleftrightarrow> \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
   404     (is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)") apply (simp add: closed_def) by metis
   405 
   406   have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
   407     (is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
   408     unfolding connected_def openin_open closedin_closed by auto
   409   {fix e2
   410     {fix e1 have "?P e2 e1 \<longleftrightarrow> (\<exists>t.  closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t\<noteq>S)"
   411         by auto}
   412     then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by metis}
   413   then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by blast
   414   then show ?thesis unfolding th0 th1 by simp
   415 qed
   416 
   417 lemma connected_empty[simp, intro]: "connected {}"
   418   by (simp add: connected_def)
   419 
   420 subsection{* Hausdorff and other separation properties *}
   421 
   422 class t0_space =
   423   assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
   424 
   425 class t1_space =
   426   assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<notin> U \<and> x \<notin> V \<and> y \<in> V"
   427 begin
   428 
   429 subclass t0_space
   430 proof
   431 qed (fast dest: t1_space)
   432 
   433 end
   434 
   435 text {* T2 spaces are also known as Hausdorff spaces. *}
   436 
   437 class t2_space =
   438   assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
   439 begin
   440 
   441 subclass t1_space
   442 proof
   443 qed (fast dest: hausdorff)
   444 
   445 end
   446 
   447 instance metric_space \<subseteq> t2_space
   448 proof
   449   fix x y :: "'a::metric_space"
   450   assume xy: "x \<noteq> y"
   451   let ?U = "ball x (dist x y / 2)"
   452   let ?V = "ball y (dist x y / 2)"
   453   have th0: "\<And>d x y z. (d x z :: real) <= d x y + d y z \<Longrightarrow> d y z = d z y
   454                ==> ~(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith
   455   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
   456     using dist_pos_lt[OF xy] th0[of dist,OF dist_triangle dist_commute]
   457     by (auto simp add: expand_set_eq)
   458   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
   459     by blast
   460 qed
   461 
   462 lemma separation_t2:
   463   fixes x y :: "'a::t2_space"
   464   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
   465   using hausdorff[of x y] by blast
   466 
   467 lemma separation_t1:
   468   fixes x y :: "'a::t1_space"
   469   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in>U \<and> y\<notin> U \<and> x\<notin>V \<and> y\<in>V)"
   470   using t1_space[of x y] by blast
   471 
   472 lemma separation_t0:
   473   fixes x y :: "'a::t0_space"
   474   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
   475   using t0_space[of x y] by blast
   476 
   477 subsection{* Limit points *}
   478 
   479 definition
   480   islimpt:: "'a::topological_space \<Rightarrow> 'a set \<Rightarrow> bool"
   481     (infixr "islimpt" 60) where
   482   "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
   483 
   484 lemma islimptI:
   485   assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
   486   shows "x islimpt S"
   487   using assms unfolding islimpt_def by auto
   488 
   489 lemma islimptE:
   490   assumes "x islimpt S" and "x \<in> T" and "open T"
   491   obtains y where "y \<in> S" and "y \<in> T" and "y \<noteq> x"
   492   using assms unfolding islimpt_def by auto
   493 
   494 lemma islimpt_subset: "x islimpt S \<Longrightarrow> S \<subseteq> T ==> x islimpt T" by (auto simp add: islimpt_def)
   495 
   496 lemma islimpt_approachable:
   497   fixes x :: "'a::metric_space"
   498   shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e)"
   499   unfolding islimpt_def
   500   apply auto
   501   apply(erule_tac x="ball x e" in allE)
   502   apply auto
   503   apply(rule_tac x=y in bexI)
   504   apply (auto simp add: dist_commute)
   505   apply (simp add: open_dist, drule (1) bspec)
   506   apply (clarify, drule spec, drule (1) mp, auto)
   507   done
   508 
   509 lemma islimpt_approachable_le:
   510   fixes x :: "'a::metric_space"
   511   shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> S. x' \<noteq> x \<and> dist x' x <= e)"
   512   unfolding islimpt_approachable
   513   using approachable_lt_le[where f="\<lambda>x'. dist x' x" and P="\<lambda>x'. \<not> (x'\<in>S \<and> x'\<noteq>x)"]
   514   by metis 
   515 
   516 class perfect_space =
   517   (* FIXME: perfect_space should inherit from topological_space *)
   518   assumes islimpt_UNIV [simp, intro]: "(x::'a::metric_space) islimpt UNIV"
   519 
   520 lemma perfect_choose_dist:
   521   fixes x :: "'a::perfect_space"
   522   shows "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r"
   523 using islimpt_UNIV [of x]
   524 by (simp add: islimpt_approachable)
   525 
   526 instance real :: perfect_space
   527 apply default
   528 apply (rule islimpt_approachable [THEN iffD2])
   529 apply (clarify, rule_tac x="x + e/2" in bexI)
   530 apply (auto simp add: dist_norm)
   531 done
   532 
   533 instance cart :: (perfect_space, finite) perfect_space
   534 proof
   535   fix x :: "'a ^ 'b"
   536   {
   537     fix e :: real assume "0 < e"
   538     def a \<equiv> "x $ undefined"
   539     have "a islimpt UNIV" by (rule islimpt_UNIV)
   540     with `0 < e` obtain b where "b \<noteq> a" and "dist b a < e"
   541       unfolding islimpt_approachable by auto
   542     def y \<equiv> "Cart_lambda ((Cart_nth x)(undefined := b))"
   543     from `b \<noteq> a` have "y \<noteq> x"
   544       unfolding a_def y_def by (simp add: Cart_eq)
   545     from `dist b a < e` have "dist y x < e"
   546       unfolding dist_vector_def a_def y_def
   547       apply simp
   548       apply (rule le_less_trans [OF setL2_le_setsum [OF zero_le_dist]])
   549       apply (subst setsum_diff1' [where a=undefined], simp, simp, simp)
   550       done
   551     from `y \<noteq> x` and `dist y x < e`
   552     have "\<exists>y\<in>UNIV. y \<noteq> x \<and> dist y x < e" by auto
   553   }
   554   then show "x islimpt UNIV" unfolding islimpt_approachable by blast
   555 qed
   556 
   557 lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)"
   558   unfolding closed_def
   559   apply (subst open_subopen)
   560   apply (simp add: islimpt_def subset_eq)
   561   by (metis ComplE ComplI insertCI insert_absorb mem_def)
   562 
   563 lemma islimpt_EMPTY[simp]: "\<not> x islimpt {}"
   564   unfolding islimpt_def by auto
   565 
   566 lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}"
   567 proof-
   568   let ?U = "UNIV :: 'n set"
   569   let ?O = "{x::real^'n. \<forall>i. x$i\<ge>0}"
   570   {fix x:: "real^'n" and i::'n assume H: "\<forall>e>0. \<exists>x'\<in>?O. x' \<noteq> x \<and> dist x' x < e"
   571     and xi: "x$i < 0"
   572     from xi have th0: "-x$i > 0" by arith
   573     from H[rule_format, OF th0] obtain x' where x': "x' \<in>?O" "x' \<noteq> x" "dist x' x < -x $ i" by blast
   574       have th:" \<And>b a (x::real). abs x <= b \<Longrightarrow> b <= a ==> ~(a + x < 0)" by arith
   575       have th': "\<And>x (y::real). x < 0 \<Longrightarrow> 0 <= y ==> abs x <= abs (y - x)" by arith
   576       have th1: "\<bar>x$i\<bar> \<le> \<bar>(x' - x)$i\<bar>" using x'(1) xi
   577         apply (simp only: vector_component)
   578         by (rule th') auto
   579       have th2: "\<bar>dist x x'\<bar> \<ge> \<bar>(x' - x)$i\<bar>" using  component_le_norm[of "x'-x" i]
   580         apply (simp add: dist_norm) by norm
   581       from th[OF th1 th2] x'(3) have False by (simp add: dist_commute) }
   582   then show ?thesis unfolding closed_limpt islimpt_approachable
   583     unfolding not_le[symmetric] by blast
   584 qed
   585 
   586 lemma finite_set_avoid:
   587   fixes a :: "'a::metric_space"
   588   assumes fS: "finite S" shows  "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d <= dist a x"
   589 proof(induct rule: finite_induct[OF fS])
   590   case 1 thus ?case apply auto by ferrack
   591 next
   592   case (2 x F)
   593   from 2 obtain d where d: "d >0" "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> d \<le> dist a x" by blast
   594   {assume "x = a" hence ?case using d by auto  }
   595   moreover
   596   {assume xa: "x\<noteq>a"
   597     let ?d = "min d (dist a x)"
   598     have dp: "?d > 0" using xa d(1) using dist_nz by auto
   599     from d have d': "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> ?d \<le> dist a x" by auto
   600     with dp xa have ?case by(auto intro!: exI[where x="?d"]) }
   601   ultimately show ?case by blast
   602 qed
   603 
   604 lemma islimpt_finite:
   605   fixes S :: "'a::metric_space set"
   606   assumes fS: "finite S" shows "\<not> a islimpt S"
   607   unfolding islimpt_approachable
   608   using finite_set_avoid[OF fS, of a] by (metis dist_commute  not_le)
   609 
   610 lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T"
   611   apply (rule iffI)
   612   defer
   613   apply (metis Un_upper1 Un_upper2 islimpt_subset)
   614   unfolding islimpt_def
   615   apply (rule ccontr, clarsimp, rename_tac A B)
   616   apply (drule_tac x="A \<inter> B" in spec)
   617   apply (auto simp add: open_Int)
   618   done
   619 
   620 lemma discrete_imp_closed:
   621   fixes S :: "'a::metric_space set"
   622   assumes e: "0 < e" and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x"
   623   shows "closed S"
   624 proof-
   625   {fix x assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
   626     from e have e2: "e/2 > 0" by arith
   627     from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y\<noteq>x" "dist y x < e/2" by blast
   628     let ?m = "min (e/2) (dist x y) "
   629     from e2 y(2) have mp: "?m > 0" by (simp add: dist_nz[THEN sym])
   630     from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z\<noteq>x" "dist z x < ?m" by blast
   631     have th: "dist z y < e" using z y
   632       by (intro dist_triangle_lt [where z=x], simp)
   633     from d[rule_format, OF y(1) z(1) th] y z
   634     have False by (auto simp add: dist_commute)}
   635   then show ?thesis by (metis islimpt_approachable closed_limpt [where 'a='a])
   636 qed
   637 
   638 subsection{* Interior of a Set *}
   639 definition "interior S = {x. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S}"
   640 
   641 lemma interior_eq: "interior S = S \<longleftrightarrow> open S"
   642   apply (simp add: expand_set_eq interior_def)
   643   apply (subst (2) open_subopen) by (safe, blast+)
   644 
   645 lemma interior_open: "open S ==> (interior S = S)" by (metis interior_eq)
   646 
   647 lemma interior_empty[simp]: "interior {} = {}" by (simp add: interior_def)
   648 
   649 lemma open_interior[simp, intro]: "open(interior S)"
   650   apply (simp add: interior_def)
   651   apply (subst open_subopen) by blast
   652 
   653 lemma interior_interior[simp]: "interior(interior S) = interior S" by (metis interior_eq open_interior)
   654 lemma interior_subset: "interior S \<subseteq> S" by (auto simp add: interior_def)
   655 lemma subset_interior: "S \<subseteq> T ==> (interior S) \<subseteq> (interior T)" by (auto simp add: interior_def)
   656 lemma interior_maximal: "T \<subseteq> S \<Longrightarrow> open T ==> T \<subseteq> (interior S)" by (auto simp add: interior_def)
   657 lemma interior_unique: "T \<subseteq> S \<Longrightarrow> open T  \<Longrightarrow> (\<forall>T'. T' \<subseteq> S \<and> open T' \<longrightarrow> T' \<subseteq> T) \<Longrightarrow> interior S = T"
   658   by (metis equalityI interior_maximal interior_subset open_interior)
   659 lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e. 0 < e \<and> ball x e \<subseteq> S)"
   660   apply (simp add: interior_def)
   661   by (metis open_contains_ball centre_in_ball open_ball subset_trans)
   662 
   663 lemma open_subset_interior: "open S ==> S \<subseteq> interior T \<longleftrightarrow> S \<subseteq> T"
   664   by (metis interior_maximal interior_subset subset_trans)
   665 
   666 lemma interior_inter[simp]: "interior(S \<inter> T) = interior S \<inter> interior T"
   667   apply (rule equalityI, simp)
   668   apply (metis Int_lower1 Int_lower2 subset_interior)
   669   by (metis Int_mono interior_subset open_Int open_interior open_subset_interior)
   670 
   671 lemma interior_limit_point [intro]:
   672   fixes x :: "'a::perfect_space"
   673   assumes x: "x \<in> interior S" shows "x islimpt S"
   674 proof-
   675   from x obtain e where e: "e>0" "\<forall>x'. dist x x' < e \<longrightarrow> x' \<in> S"
   676     unfolding mem_interior subset_eq Ball_def mem_ball by blast
   677   {
   678     fix d::real assume d: "d>0"
   679     let ?m = "min d e"
   680     have mde2: "0 < ?m" using e(1) d(1) by simp
   681     from perfect_choose_dist [OF mde2, of x]
   682     obtain y where "y \<noteq> x" and "dist y x < ?m" by blast
   683     then have "dist y x < e" "dist y x < d" by simp_all
   684     from `dist y x < e` e(2) have "y \<in> S" by (simp add: dist_commute)
   685     have "\<exists>x'\<in>S. x'\<noteq> x \<and> dist x' x < d"
   686       using `y \<in> S` `y \<noteq> x` `dist y x < d` by fast
   687   }
   688   then show ?thesis unfolding islimpt_approachable by blast
   689 qed
   690 
   691 lemma interior_closed_Un_empty_interior:
   692   assumes cS: "closed S" and iT: "interior T = {}"
   693   shows "interior(S \<union> T) = interior S"
   694 proof
   695   show "interior S \<subseteq> interior (S\<union>T)"
   696     by (rule subset_interior, blast)
   697 next
   698   show "interior (S \<union> T) \<subseteq> interior S"
   699   proof
   700     fix x assume "x \<in> interior (S \<union> T)"
   701     then obtain R where "open R" "x \<in> R" "R \<subseteq> S \<union> T"
   702       unfolding interior_def by fast
   703     show "x \<in> interior S"
   704     proof (rule ccontr)
   705       assume "x \<notin> interior S"
   706       with `x \<in> R` `open R` obtain y where "y \<in> R - S"
   707         unfolding interior_def expand_set_eq by fast
   708       from `open R` `closed S` have "open (R - S)" by (rule open_Diff)
   709       from `R \<subseteq> S \<union> T` have "R - S \<subseteq> T" by fast
   710       from `y \<in> R - S` `open (R - S)` `R - S \<subseteq> T` `interior T = {}`
   711       show "False" unfolding interior_def by fast
   712     qed
   713   qed
   714 qed
   715 
   716 
   717 subsection{* Closure of a Set *}
   718 
   719 definition "closure S = S \<union> {x | x. x islimpt S}"
   720 
   721 lemma closure_interior: "closure S = - interior (- S)"
   722 proof-
   723   { fix x
   724     have "x\<in>- interior (- S) \<longleftrightarrow> x \<in> closure S"  (is "?lhs = ?rhs")
   725     proof
   726       let ?exT = "\<lambda> y. (\<exists>T. open T \<and> y \<in> T \<and> T \<subseteq> - S)"
   727       assume "?lhs"
   728       hence *:"\<not> ?exT x"
   729         unfolding interior_def
   730         by simp
   731       { assume "\<not> ?rhs"
   732         hence False using *
   733           unfolding closure_def islimpt_def
   734           by blast
   735       }
   736       thus "?rhs"
   737         by blast
   738     next
   739       assume "?rhs" thus "?lhs"
   740         unfolding closure_def interior_def islimpt_def
   741         by blast
   742     qed
   743   }
   744   thus ?thesis
   745     by blast
   746 qed
   747 
   748 lemma interior_closure: "interior S = - (closure (- S))"
   749 proof-
   750   { fix x
   751     have "x \<in> interior S \<longleftrightarrow> x \<in> - (closure (- S))"
   752       unfolding interior_def closure_def islimpt_def
   753       by auto
   754   }
   755   thus ?thesis
   756     by blast
   757 qed
   758 
   759 lemma closed_closure[simp, intro]: "closed (closure S)"
   760 proof-
   761   have "closed (- interior (-S))" by blast
   762   thus ?thesis using closure_interior[of S] by simp
   763 qed
   764 
   765 lemma closure_hull: "closure S = closed hull S"
   766 proof-
   767   have "S \<subseteq> closure S"
   768     unfolding closure_def
   769     by blast
   770   moreover
   771   have "closed (closure S)"
   772     using closed_closure[of S]
   773     by assumption
   774   moreover
   775   { fix t
   776     assume *:"S \<subseteq> t" "closed t"
   777     { fix x
   778       assume "x islimpt S"
   779       hence "x islimpt t" using *(1)
   780         using islimpt_subset[of x, of S, of t]
   781         by blast
   782     }
   783     with * have "closure S \<subseteq> t"
   784       unfolding closure_def
   785       using closed_limpt[of t]
   786       by auto
   787   }
   788   ultimately show ?thesis
   789     using hull_unique[of S, of "closure S", of closed]
   790     unfolding mem_def
   791     by simp
   792 qed
   793 
   794 lemma closure_eq: "closure S = S \<longleftrightarrow> closed S"
   795   unfolding closure_hull
   796   using hull_eq[of closed, unfolded mem_def, OF  closed_Inter, of S]
   797   by (metis mem_def subset_eq)
   798 
   799 lemma closure_closed[simp]: "closed S \<Longrightarrow> closure S = S"
   800   using closure_eq[of S]
   801   by simp
   802 
   803 lemma closure_closure[simp]: "closure (closure S) = closure S"
   804   unfolding closure_hull
   805   using hull_hull[of closed S]
   806   by assumption
   807 
   808 lemma closure_subset: "S \<subseteq> closure S"
   809   unfolding closure_hull
   810   using hull_subset[of S closed]
   811   by assumption
   812 
   813 lemma subset_closure: "S \<subseteq> T \<Longrightarrow> closure S \<subseteq> closure T"
   814   unfolding closure_hull
   815   using hull_mono[of S T closed]
   816   by assumption
   817 
   818 lemma closure_minimal: "S \<subseteq> T \<Longrightarrow>  closed T \<Longrightarrow> closure S \<subseteq> T"
   819   using hull_minimal[of S T closed]
   820   unfolding closure_hull mem_def
   821   by simp
   822 
   823 lemma closure_unique: "S \<subseteq> T \<and> closed T \<and> (\<forall> T'. S \<subseteq> T' \<and> closed T' \<longrightarrow> T \<subseteq> T') \<Longrightarrow> closure S = T"
   824   using hull_unique[of S T closed]
   825   unfolding closure_hull mem_def
   826   by simp
   827 
   828 lemma closure_empty[simp]: "closure {} = {}"
   829   using closed_empty closure_closed[of "{}"]
   830   by simp
   831 
   832 lemma closure_univ[simp]: "closure UNIV = UNIV"
   833   using closure_closed[of UNIV]
   834   by simp
   835 
   836 lemma closure_eq_empty: "closure S = {} \<longleftrightarrow> S = {}"
   837   using closure_empty closure_subset[of S]
   838   by blast
   839 
   840 lemma closure_subset_eq: "closure S \<subseteq> S \<longleftrightarrow> closed S"
   841   using closure_eq[of S] closure_subset[of S]
   842   by simp
   843 
   844 lemma open_inter_closure_eq_empty:
   845   "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
   846   using open_subset_interior[of S "- T"]
   847   using interior_subset[of "- T"]
   848   unfolding closure_interior
   849   by auto
   850 
   851 lemma open_inter_closure_subset:
   852   "open S \<Longrightarrow> (S \<inter> (closure T)) \<subseteq> closure(S \<inter> T)"
   853 proof
   854   fix x
   855   assume as: "open S" "x \<in> S \<inter> closure T"
   856   { assume *:"x islimpt T"
   857     have "x islimpt (S \<inter> T)"
   858     proof (rule islimptI)
   859       fix A
   860       assume "x \<in> A" "open A"
   861       with as have "x \<in> A \<inter> S" "open (A \<inter> S)"
   862         by (simp_all add: open_Int)
   863       with * obtain y where "y \<in> T" "y \<in> A \<inter> S" "y \<noteq> x"
   864         by (rule islimptE)
   865       hence "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x"
   866         by simp_all
   867       thus "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" ..
   868     qed
   869   }
   870   then show "x \<in> closure (S \<inter> T)" using as
   871     unfolding closure_def
   872     by blast
   873 qed
   874 
   875 lemma closure_complement: "closure(- S) = - interior(S)"
   876 proof-
   877   have "S = - (- S)"
   878     by auto
   879   thus ?thesis
   880     unfolding closure_interior
   881     by auto
   882 qed
   883 
   884 lemma interior_complement: "interior(- S) = - closure(S)"
   885   unfolding closure_interior
   886   by blast
   887 
   888 subsection{* Frontier (aka boundary) *}
   889 
   890 definition "frontier S = closure S - interior S"
   891 
   892 lemma frontier_closed: "closed(frontier S)"
   893   by (simp add: frontier_def closed_Diff)
   894 
   895 lemma frontier_closures: "frontier S = (closure S) \<inter> (closure(- S))"
   896   by (auto simp add: frontier_def interior_closure)
   897 
   898 lemma frontier_straddle:
   899   fixes a :: "'a::metric_space"
   900   shows "a \<in> frontier S \<longleftrightarrow> (\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e))" (is "?lhs \<longleftrightarrow> ?rhs")
   901 proof
   902   assume "?lhs"
   903   { fix e::real
   904     assume "e > 0"
   905     let ?rhse = "(\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)"
   906     { assume "a\<in>S"
   907       have "\<exists>x\<in>S. dist a x < e" using `e>0` `a\<in>S` by(rule_tac x=a in bexI) auto
   908       moreover have "\<exists>x. x \<notin> S \<and> dist a x < e" using `?lhs` `a\<in>S`
   909         unfolding frontier_closures closure_def islimpt_def using `e>0`
   910         by (auto, erule_tac x="ball a e" in allE, auto)
   911       ultimately have ?rhse by auto
   912     }
   913     moreover
   914     { assume "a\<notin>S"
   915       hence ?rhse using `?lhs`
   916         unfolding frontier_closures closure_def islimpt_def
   917         using open_ball[of a e] `e > 0`
   918           by simp (metis centre_in_ball mem_ball open_ball) 
   919     }
   920     ultimately have ?rhse by auto
   921   }
   922   thus ?rhs by auto
   923 next
   924   assume ?rhs
   925   moreover
   926   { fix T assume "a\<notin>S" and
   927     as:"\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)" "a \<notin> S" "a \<in> T" "open T"
   928     from `open T` `a \<in> T` have "\<exists>e>0. ball a e \<subseteq> T" unfolding open_contains_ball[of T] by auto
   929     then obtain e where "e>0" "ball a e \<subseteq> T" by auto
   930     then obtain y where y:"y\<in>S" "dist a y < e"  using as(1) by auto
   931     have "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> a"
   932       using `dist a y < e` `ball a e \<subseteq> T` unfolding ball_def using `y\<in>S` `a\<notin>S` by auto
   933   }
   934   hence "a \<in> closure S" unfolding closure_def islimpt_def using `?rhs` by auto
   935   moreover
   936   { fix T assume "a \<in> T"  "open T" "a\<in>S"
   937     then obtain e where "e>0" and balle: "ball a e \<subseteq> T" unfolding open_contains_ball using `?rhs` by auto
   938     obtain x where "x \<notin> S" "dist a x < e" using `?rhs` using `e>0` by auto
   939     hence "\<exists>y\<in>- S. y \<in> T \<and> y \<noteq> a" using balle `a\<in>S` unfolding ball_def by (rule_tac x=x in bexI)auto
   940   }
   941   hence "a islimpt (- S) \<or> a\<notin>S" unfolding islimpt_def by auto
   942   ultimately show ?lhs unfolding frontier_closures using closure_def[of "- S"] by auto
   943 qed
   944 
   945 lemma frontier_subset_closed: "closed S \<Longrightarrow> frontier S \<subseteq> S"
   946   by (metis frontier_def closure_closed Diff_subset)
   947 
   948 lemma frontier_empty[simp]: "frontier {} = {}"
   949   by (simp add: frontier_def closure_empty)
   950 
   951 lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S"
   952 proof-
   953   { assume "frontier S \<subseteq> S"
   954     hence "closure S \<subseteq> S" using interior_subset unfolding frontier_def by auto
   955     hence "closed S" using closure_subset_eq by auto
   956   }
   957   thus ?thesis using frontier_subset_closed[of S] by auto
   958 qed
   959 
   960 lemma frontier_complement: "frontier(- S) = frontier S"
   961   by (auto simp add: frontier_def closure_complement interior_complement)
   962 
   963 lemma frontier_disjoint_eq: "frontier S \<inter> S = {} \<longleftrightarrow> open S"
   964   using frontier_complement frontier_subset_eq[of "- S"]
   965   unfolding open_closed by auto
   966 
   967 subsection{* Common nets and The "within" modifier for nets. *}
   968 
   969 definition
   970   at_infinity :: "'a::real_normed_vector net" where
   971   "at_infinity = Abs_net (range (\<lambda>r. {x. r \<le> norm x}))"
   972 
   973 definition
   974   indirection :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> 'a net" (infixr "indirection" 70) where
   975   "a indirection v = (at a) within {b. \<exists>c\<ge>0. b - a = scaleR c v}"
   976 
   977 text{* Prove That They are all nets. *}
   978 
   979 lemma Rep_net_at_infinity:
   980   "Rep_net at_infinity = range (\<lambda>r. {x. r \<le> norm x})"
   981 unfolding at_infinity_def
   982 apply (rule Abs_net_inverse')
   983 apply (rule image_nonempty, simp)
   984 apply (clarsimp, rename_tac r s)
   985 apply (rule_tac x="max r s" in exI, auto)
   986 done
   987 
   988 lemma within_UNIV: "net within UNIV = net"
   989   by (simp add: Rep_net_inject [symmetric] Rep_net_within)
   990 
   991 subsection{* Identify Trivial limits, where we can't approach arbitrarily closely. *}
   992 
   993 definition
   994   trivial_limit :: "'a net \<Rightarrow> bool" where
   995   "trivial_limit net \<longleftrightarrow> {} \<in> Rep_net net"
   996 
   997 lemma trivial_limit_within:
   998   shows "trivial_limit (at a within S) \<longleftrightarrow> \<not> a islimpt S"
   999 proof
  1000   assume "trivial_limit (at a within S)"
  1001   thus "\<not> a islimpt S"
  1002     unfolding trivial_limit_def
  1003     unfolding Rep_net_within Rep_net_at
  1004     unfolding islimpt_def
  1005     apply (clarsimp simp add: expand_set_eq)
  1006     apply (rename_tac T, rule_tac x=T in exI)
  1007     apply (clarsimp, drule_tac x=y in spec, simp)
  1008     done
  1009 next
  1010   assume "\<not> a islimpt S"
  1011   thus "trivial_limit (at a within S)"
  1012     unfolding trivial_limit_def
  1013     unfolding Rep_net_within Rep_net_at
  1014     unfolding islimpt_def
  1015     apply (clarsimp simp add: image_image)
  1016     apply (rule_tac x=T in image_eqI)
  1017     apply (auto simp add: expand_set_eq)
  1018     done
  1019 qed
  1020 
  1021 lemma trivial_limit_at_iff: "trivial_limit (at a) \<longleftrightarrow> \<not> a islimpt UNIV"
  1022   using trivial_limit_within [of a UNIV]
  1023   by (simp add: within_UNIV)
  1024 
  1025 lemma trivial_limit_at:
  1026   fixes a :: "'a::perfect_space"
  1027   shows "\<not> trivial_limit (at a)"
  1028   by (simp add: trivial_limit_at_iff)
  1029 
  1030 lemma trivial_limit_at_infinity:
  1031   "\<not> trivial_limit (at_infinity :: ('a::{real_normed_vector,zero_neq_one}) net)"
  1032   (* FIXME: find a more appropriate type class *)
  1033   unfolding trivial_limit_def Rep_net_at_infinity
  1034   apply (clarsimp simp add: expand_set_eq)
  1035   apply (drule_tac x="scaleR r (sgn 1)" in spec)
  1036   apply (simp add: norm_sgn)
  1037   done
  1038 
  1039 lemma trivial_limit_sequentially[intro]: "\<not> trivial_limit sequentially"
  1040   by (auto simp add: trivial_limit_def Rep_net_sequentially)
  1041 
  1042 subsection{* Some property holds "sufficiently close" to the limit point. *}
  1043 
  1044 lemma eventually_at: (* FIXME: this replaces Limits.eventually_at *)
  1045   "eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
  1046 unfolding eventually_at dist_nz by auto
  1047 
  1048 lemma eventually_at_infinity:
  1049   "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. norm x >= b \<longrightarrow> P x)"
  1050 unfolding eventually_def Rep_net_at_infinity by auto
  1051 
  1052 lemma eventually_within: "eventually P (at a within S) \<longleftrightarrow>
  1053         (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
  1054 unfolding eventually_within eventually_at dist_nz by auto
  1055 
  1056 lemma eventually_within_le: "eventually P (at a within S) \<longleftrightarrow>
  1057         (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a <= d \<longrightarrow> P x)" (is "?lhs = ?rhs")
  1058 unfolding eventually_within
  1059 by auto (metis Rats_dense_in_nn_real order_le_less_trans order_refl) 
  1060 
  1061 lemma eventually_happens: "eventually P net ==> trivial_limit net \<or> (\<exists>x. P x)"
  1062   unfolding eventually_def trivial_limit_def
  1063   using Rep_net_nonempty [of net] by auto
  1064 
  1065 lemma always_eventually: "(\<forall>x. P x) ==> eventually P net"
  1066   unfolding eventually_def trivial_limit_def
  1067   using Rep_net_nonempty [of net] by auto
  1068 
  1069 lemma trivial_limit_eventually: "trivial_limit net \<Longrightarrow> eventually P net"
  1070   unfolding trivial_limit_def eventually_def by auto
  1071 
  1072 lemma eventually_False: "eventually (\<lambda>x. False) net \<longleftrightarrow> trivial_limit net"
  1073   unfolding trivial_limit_def eventually_def by auto
  1074 
  1075 lemma trivial_limit_eq: "trivial_limit net \<longleftrightarrow> (\<forall>P. eventually P net)"
  1076   apply (safe elim!: trivial_limit_eventually)
  1077   apply (simp add: eventually_False [symmetric])
  1078   done
  1079 
  1080 text{* Combining theorems for "eventually" *}
  1081 
  1082 lemma eventually_conjI:
  1083   "\<lbrakk>eventually (\<lambda>x. P x) net; eventually (\<lambda>x. Q x) net\<rbrakk>
  1084     \<Longrightarrow> eventually (\<lambda>x. P x \<and> Q x) net"
  1085 by (rule eventually_conj)
  1086 
  1087 lemma eventually_rev_mono:
  1088   "eventually P net \<Longrightarrow> (\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually Q net"
  1089 using eventually_mono [of P Q] by fast
  1090 
  1091 lemma eventually_and: " eventually (\<lambda>x. P x \<and> Q x) net \<longleftrightarrow> eventually P net \<and> eventually Q net"
  1092   by (auto intro!: eventually_conjI elim: eventually_rev_mono)
  1093 
  1094 lemma eventually_false: "eventually (\<lambda>x. False) net \<longleftrightarrow> trivial_limit net"
  1095   by (auto simp add: eventually_False)
  1096 
  1097 lemma not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> ~(trivial_limit net) ==> ~(eventually (\<lambda>x. P x) net)"
  1098   by (simp add: eventually_False)
  1099 
  1100 subsection{* Limits, defined as vacuously true when the limit is trivial. *}
  1101 
  1102   text{* Notation Lim to avoid collition with lim defined in analysis *}
  1103 definition
  1104   Lim :: "'a net \<Rightarrow> ('a \<Rightarrow> 'b::t2_space) \<Rightarrow> 'b" where
  1105   "Lim net f = (THE l. (f ---> l) net)"
  1106 
  1107 lemma Lim:
  1108  "(f ---> l) net \<longleftrightarrow>
  1109         trivial_limit net \<or>
  1110         (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
  1111   unfolding tendsto_iff trivial_limit_eq by auto
  1112 
  1113 
  1114 text{* Show that they yield usual definitions in the various cases. *}
  1115 
  1116 lemma Lim_within_le: "(f ---> l)(at a within S) \<longleftrightarrow>
  1117            (\<forall>e>0. \<exists>d>0. \<forall>x\<in>S. 0 < dist x a  \<and> dist x a  <= d \<longrightarrow> dist (f x) l < e)"
  1118   by (auto simp add: tendsto_iff eventually_within_le)
  1119 
  1120 lemma Lim_within: "(f ---> l) (at a within S) \<longleftrightarrow>
  1121         (\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a  \<and> dist x a  < d  \<longrightarrow> dist (f x) l < e)"
  1122   by (auto simp add: tendsto_iff eventually_within)
  1123 
  1124 lemma Lim_at: "(f ---> l) (at a) \<longleftrightarrow>
  1125         (\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a  \<and> dist x a  < d  \<longrightarrow> dist (f x) l < e)"
  1126   by (auto simp add: tendsto_iff eventually_at)
  1127 
  1128 lemma Lim_at_iff_LIM: "(f ---> l) (at a) \<longleftrightarrow> f -- a --> l"
  1129   unfolding Lim_at LIM_def by (simp only: zero_less_dist_iff)
  1130 
  1131 lemma Lim_at_infinity:
  1132   "(f ---> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x. norm x >= b \<longrightarrow> dist (f x) l < e)"
  1133   by (auto simp add: tendsto_iff eventually_at_infinity)
  1134 
  1135 lemma Lim_sequentially:
  1136  "(S ---> l) sequentially \<longleftrightarrow>
  1137           (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (S n) l < e)"
  1138   by (auto simp add: tendsto_iff eventually_sequentially)
  1139 
  1140 lemma Lim_sequentially_iff_LIMSEQ: "(S ---> l) sequentially \<longleftrightarrow> S ----> l"
  1141   unfolding Lim_sequentially LIMSEQ_def ..
  1142 
  1143 lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f ---> l) net"
  1144   by (rule topological_tendstoI, auto elim: eventually_rev_mono)
  1145 
  1146 text{* The expected monotonicity property. *}
  1147 
  1148 lemma Lim_within_empty: "(f ---> l) (net within {})"
  1149   unfolding tendsto_def Limits.eventually_within by simp
  1150 
  1151 lemma Lim_within_subset: "(f ---> l) (net within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (net within T)"
  1152   unfolding tendsto_def Limits.eventually_within
  1153   by (auto elim!: eventually_elim1)
  1154 
  1155 lemma Lim_Un: assumes "(f ---> l) (net within S)" "(f ---> l) (net within T)"
  1156   shows "(f ---> l) (net within (S \<union> T))"
  1157   using assms unfolding tendsto_def Limits.eventually_within
  1158   apply clarify
  1159   apply (drule spec, drule (1) mp, drule (1) mp)
  1160   apply (drule spec, drule (1) mp, drule (1) mp)
  1161   apply (auto elim: eventually_elim2)
  1162   done
  1163 
  1164 lemma Lim_Un_univ:
  1165  "(f ---> l) (net within S) \<Longrightarrow> (f ---> l) (net within T) \<Longrightarrow>  S \<union> T = UNIV
  1166         ==> (f ---> l) net"
  1167   by (metis Lim_Un within_UNIV)
  1168 
  1169 text{* Interrelations between restricted and unrestricted limits. *}
  1170 
  1171 lemma Lim_at_within: "(f ---> l) net ==> (f ---> l)(net within S)"
  1172   (* FIXME: rename *)
  1173   unfolding tendsto_def Limits.eventually_within
  1174   apply (clarify, drule spec, drule (1) mp, drule (1) mp)
  1175   by (auto elim!: eventually_elim1)
  1176 
  1177 lemma Lim_within_open:
  1178   fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
  1179   assumes"a \<in> S" "open S"
  1180   shows "(f ---> l)(at a within S) \<longleftrightarrow> (f ---> l)(at a)" (is "?lhs \<longleftrightarrow> ?rhs")
  1181 proof
  1182   assume ?lhs
  1183   { fix A assume "open A" "l \<in> A"
  1184     with `?lhs` have "eventually (\<lambda>x. f x \<in> A) (at a within S)"
  1185       by (rule topological_tendstoD)
  1186     hence "eventually (\<lambda>x. x \<in> S \<longrightarrow> f x \<in> A) (at a)"
  1187       unfolding Limits.eventually_within .
  1188     then obtain T where "open T" "a \<in> T" "\<forall>x\<in>T. x \<noteq> a \<longrightarrow> x \<in> S \<longrightarrow> f x \<in> A"
  1189       unfolding eventually_at_topological by fast
  1190     hence "open (T \<inter> S)" "a \<in> T \<inter> S" "\<forall>x\<in>(T \<inter> S). x \<noteq> a \<longrightarrow> f x \<in> A"
  1191       using assms by auto
  1192     hence "\<exists>T. open T \<and> a \<in> T \<and> (\<forall>x\<in>T. x \<noteq> a \<longrightarrow> f x \<in> A)"
  1193       by fast
  1194     hence "eventually (\<lambda>x. f x \<in> A) (at a)"
  1195       unfolding eventually_at_topological .
  1196   }
  1197   thus ?rhs by (rule topological_tendstoI)
  1198 next
  1199   assume ?rhs
  1200   thus ?lhs by (rule Lim_at_within)
  1201 qed
  1202 
  1203 text{* Another limit point characterization. *}
  1204 
  1205 lemma islimpt_sequential:
  1206   fixes x :: "'a::metric_space" (* FIXME: generalize to topological_space *)
  1207   shows "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S -{x}) \<and> (f ---> x) sequentially)"
  1208     (is "?lhs = ?rhs")
  1209 proof
  1210   assume ?lhs
  1211   then obtain f where f:"\<forall>y. y>0 \<longrightarrow> f y \<in> S \<and> f y \<noteq> x \<and> dist (f y) x < y"
  1212     unfolding islimpt_approachable using choice[of "\<lambda>e y. e>0 \<longrightarrow> y\<in>S \<and> y\<noteq>x \<and> dist y x < e"] by auto
  1213   { fix n::nat
  1214     have "f (inverse (real n + 1)) \<in> S - {x}" using f by auto
  1215   }
  1216   moreover
  1217   { fix e::real assume "e>0"
  1218     hence "\<exists>N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto
  1219     then obtain N::nat where "inverse (real (N + 1)) < e" by auto
  1220     hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
  1221     moreover have "\<forall>n\<ge>N. dist (f (inverse (real n + 1))) x < (inverse (real n + 1))" using f `e>0` by auto
  1222     ultimately have "\<exists>N::nat. \<forall>n\<ge>N. dist (f (inverse (real n + 1))) x < e" apply(rule_tac x=N in exI) apply auto apply(erule_tac x=n in allE)+ by auto
  1223   }
  1224   hence " ((\<lambda>n. f (inverse (real n + 1))) ---> x) sequentially"
  1225     unfolding Lim_sequentially using f by auto
  1226   ultimately show ?rhs apply (rule_tac x="(\<lambda>n::nat. f (inverse (real n + 1)))" in exI) by auto
  1227 next
  1228   assume ?rhs
  1229   then obtain f::"nat\<Rightarrow>'a"  where f:"(\<forall>n. f n \<in> S - {x})" "(\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f n) x < e)" unfolding Lim_sequentially by auto
  1230   { fix e::real assume "e>0"
  1231     then obtain N where "dist (f N) x < e" using f(2) by auto
  1232     moreover have "f N\<in>S" "f N \<noteq> x" using f(1) by auto
  1233     ultimately have "\<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e" by auto
  1234   }
  1235   thus ?lhs unfolding islimpt_approachable by auto
  1236 qed
  1237 
  1238 text{* Basic arithmetical combining theorems for limits. *}
  1239 
  1240 lemma Lim_linear:
  1241   assumes "(f ---> l) net" "bounded_linear h"
  1242   shows "((\<lambda>x. h (f x)) ---> h l) net"
  1243 using `bounded_linear h` `(f ---> l) net`
  1244 by (rule bounded_linear.tendsto)
  1245 
  1246 lemma Lim_ident_at: "((\<lambda>x. x) ---> a) (at a)"
  1247   unfolding tendsto_def Limits.eventually_at_topological by fast
  1248 
  1249 lemma Lim_const[intro]: "((\<lambda>x. a) ---> a) net" by (rule tendsto_const)
  1250 
  1251 lemma Lim_cmul[intro]:
  1252   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1253   shows "(f ---> l) net ==> ((\<lambda>x. c *\<^sub>R f x) ---> c *\<^sub>R l) net"
  1254   by (intro tendsto_intros)
  1255 
  1256 lemma Lim_neg:
  1257   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1258   shows "(f ---> l) net ==> ((\<lambda>x. -(f x)) ---> -l) net"
  1259   by (rule tendsto_minus)
  1260 
  1261 lemma Lim_add: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" shows
  1262  "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) + g(x)) ---> l + m) net"
  1263   by (rule tendsto_add)
  1264 
  1265 lemma Lim_sub:
  1266   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1267   shows "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) ---> l - m) net"
  1268   by (rule tendsto_diff)
  1269 
  1270 lemma Lim_null:
  1271   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1272   shows "(f ---> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) ---> 0) net" by (simp add: Lim dist_norm)
  1273 
  1274 lemma Lim_null_norm:
  1275   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1276   shows "(f ---> 0) net \<longleftrightarrow> ((\<lambda>x. norm(f x)) ---> 0) net"
  1277   by (simp add: Lim dist_norm)
  1278 
  1279 lemma Lim_null_comparison:
  1280   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1281   assumes "eventually (\<lambda>x. norm (f x) \<le> g x) net" "(g ---> 0) net"
  1282   shows "(f ---> 0) net"
  1283 proof(simp add: tendsto_iff, rule+)
  1284   fix e::real assume "0<e"
  1285   { fix x
  1286     assume "norm (f x) \<le> g x" "dist (g x) 0 < e"
  1287     hence "dist (f x) 0 < e" by (simp add: dist_norm)
  1288   }
  1289   thus "eventually (\<lambda>x. dist (f x) 0 < e) net"
  1290     using eventually_and[of "\<lambda>x. norm(f x) <= g x" "\<lambda>x. dist (g x) 0 < e" net]
  1291     using eventually_mono[of "(\<lambda>x. norm (f x) \<le> g x \<and> dist (g x) 0 < e)" "(\<lambda>x. dist (f x) 0 < e)" net]
  1292     using assms `e>0` unfolding tendsto_iff by auto
  1293 qed
  1294 
  1295 lemma Lim_component:
  1296   fixes f :: "'a \<Rightarrow> 'b::metric_space ^ 'n"
  1297   shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $i) ---> l$i) net"
  1298   unfolding tendsto_iff
  1299   apply (clarify)
  1300   apply (drule spec, drule (1) mp)
  1301   apply (erule eventually_elim1)
  1302   apply (erule le_less_trans [OF dist_nth_le])
  1303   done
  1304 
  1305 lemma Lim_transform_bound:
  1306   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1307   fixes g :: "'a \<Rightarrow> 'c::real_normed_vector"
  1308   assumes "eventually (\<lambda>n. norm(f n) <= norm(g n)) net"  "(g ---> 0) net"
  1309   shows "(f ---> 0) net"
  1310 proof (rule tendstoI)
  1311   fix e::real assume "e>0"
  1312   { fix x
  1313     assume "norm (f x) \<le> norm (g x)" "dist (g x) 0 < e"
  1314     hence "dist (f x) 0 < e" by (simp add: dist_norm)}
  1315   thus "eventually (\<lambda>x. dist (f x) 0 < e) net"
  1316     using eventually_and[of "\<lambda>x. norm (f x) \<le> norm (g x)" "\<lambda>x. dist (g x) 0 < e" net]
  1317     using eventually_mono[of "\<lambda>x. norm (f x) \<le> norm (g x) \<and> dist (g x) 0 < e" "\<lambda>x. dist (f x) 0 < e" net]
  1318     using assms `e>0` unfolding tendsto_iff by blast
  1319 qed
  1320 
  1321 text{* Deducing things about the limit from the elements. *}
  1322 
  1323 lemma Lim_in_closed_set:
  1324   assumes "closed S" "eventually (\<lambda>x. f(x) \<in> S) net" "\<not>(trivial_limit net)" "(f ---> l) net"
  1325   shows "l \<in> S"
  1326 proof (rule ccontr)
  1327   assume "l \<notin> S"
  1328   with `closed S` have "open (- S)" "l \<in> - S"
  1329     by (simp_all add: open_Compl)
  1330   with assms(4) have "eventually (\<lambda>x. f x \<in> - S) net"
  1331     by (rule topological_tendstoD)
  1332   with assms(2) have "eventually (\<lambda>x. False) net"
  1333     by (rule eventually_elim2) simp
  1334   with assms(3) show "False"
  1335     by (simp add: eventually_False)
  1336 qed
  1337 
  1338 text{* Need to prove closed(cball(x,e)) before deducing this as a corollary. *}
  1339 
  1340 lemma Lim_dist_ubound:
  1341   assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. dist a (f x) <= e) net"
  1342   shows "dist a l <= e"
  1343 proof (rule ccontr)
  1344   assume "\<not> dist a l \<le> e"
  1345   then have "0 < dist a l - e" by simp
  1346   with assms(2) have "eventually (\<lambda>x. dist (f x) l < dist a l - e) net"
  1347     by (rule tendstoD)
  1348   with assms(3) have "eventually (\<lambda>x. dist a (f x) \<le> e \<and> dist (f x) l < dist a l - e) net"
  1349     by (rule eventually_conjI)
  1350   then obtain w where "dist a (f w) \<le> e" "dist (f w) l < dist a l - e"
  1351     using assms(1) eventually_happens by auto
  1352   hence "dist a (f w) + dist (f w) l < e + (dist a l - e)"
  1353     by (rule add_le_less_mono)
  1354   hence "dist a (f w) + dist (f w) l < dist a l"
  1355     by simp
  1356   also have "\<dots> \<le> dist a (f w) + dist (f w) l"
  1357     by (rule dist_triangle)
  1358   finally show False by simp
  1359 qed
  1360 
  1361 lemma Lim_norm_ubound:
  1362   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1363   assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. norm(f x) <= e) net"
  1364   shows "norm(l) <= e"
  1365 proof (rule ccontr)
  1366   assume "\<not> norm l \<le> e"
  1367   then have "0 < norm l - e" by simp
  1368   with assms(2) have "eventually (\<lambda>x. dist (f x) l < norm l - e) net"
  1369     by (rule tendstoD)
  1370   with assms(3) have "eventually (\<lambda>x. norm (f x) \<le> e \<and> dist (f x) l < norm l - e) net"
  1371     by (rule eventually_conjI)
  1372   then obtain w where "norm (f w) \<le> e" "dist (f w) l < norm l - e"
  1373     using assms(1) eventually_happens by auto
  1374   hence "norm (f w - l) < norm l - e" "norm (f w) \<le> e" by (simp_all add: dist_norm)
  1375   hence "norm (f w - l) + norm (f w) < norm l" by simp
  1376   hence "norm (f w - l - f w) < norm l" by (rule le_less_trans [OF norm_triangle_ineq4])
  1377   thus False using `\<not> norm l \<le> e` by simp
  1378 qed
  1379 
  1380 lemma Lim_norm_lbound:
  1381   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  1382   assumes "\<not> (trivial_limit net)"  "(f ---> l) net"  "eventually (\<lambda>x. e <= norm(f x)) net"
  1383   shows "e \<le> norm l"
  1384 proof (rule ccontr)
  1385   assume "\<not> e \<le> norm l"
  1386   then have "0 < e - norm l" by simp
  1387   with assms(2) have "eventually (\<lambda>x. dist (f x) l < e - norm l) net"
  1388     by (rule tendstoD)
  1389   with assms(3) have "eventually (\<lambda>x. e \<le> norm (f x) \<and> dist (f x) l < e - norm l) net"
  1390     by (rule eventually_conjI)
  1391   then obtain w where "e \<le> norm (f w)" "dist (f w) l < e - norm l"
  1392     using assms(1) eventually_happens by auto
  1393   hence "norm (f w - l) + norm l < e" "e \<le> norm (f w)" by (simp_all add: dist_norm)
  1394   hence "norm (f w - l) + norm l < norm (f w)" by (rule less_le_trans)
  1395   hence "norm (f w - l + l) < norm (f w)" by (rule le_less_trans [OF norm_triangle_ineq])
  1396   thus False by simp
  1397 qed
  1398 
  1399 text{* Uniqueness of the limit, when nontrivial. *}
  1400 
  1401 lemma Lim_unique:
  1402   fixes f :: "'a \<Rightarrow> 'b::t2_space"
  1403   assumes "\<not> trivial_limit net"  "(f ---> l) net"  "(f ---> l') net"
  1404   shows "l = l'"
  1405 proof (rule ccontr)
  1406   assume "l \<noteq> l'"
  1407   obtain U V where "open U" "open V" "l \<in> U" "l' \<in> V" "U \<inter> V = {}"
  1408     using hausdorff [OF `l \<noteq> l'`] by fast
  1409   have "eventually (\<lambda>x. f x \<in> U) net"
  1410     using `(f ---> l) net` `open U` `l \<in> U` by (rule topological_tendstoD)
  1411   moreover
  1412   have "eventually (\<lambda>x. f x \<in> V) net"
  1413     using `(f ---> l') net` `open V` `l' \<in> V` by (rule topological_tendstoD)
  1414   ultimately
  1415   have "eventually (\<lambda>x. False) net"
  1416   proof (rule eventually_elim2)
  1417     fix x
  1418     assume "f x \<in> U" "f x \<in> V"
  1419     hence "f x \<in> U \<inter> V" by simp
  1420     with `U \<inter> V = {}` show "False" by simp
  1421   qed
  1422   with `\<not> trivial_limit net` show "False"
  1423     by (simp add: eventually_False)
  1424 qed
  1425 
  1426 lemma tendsto_Lim:
  1427   fixes f :: "'a \<Rightarrow> 'b::t2_space"
  1428   shows "~(trivial_limit net) \<Longrightarrow> (f ---> l) net ==> Lim net f = l"
  1429   unfolding Lim_def using Lim_unique[of net f] by auto
  1430 
  1431 text{* Limit under bilinear function *}
  1432 
  1433 lemma Lim_bilinear:
  1434   assumes "(f ---> l) net" and "(g ---> m) net" and "bounded_bilinear h"
  1435   shows "((\<lambda>x. h (f x) (g x)) ---> (h l m)) net"
  1436 using `bounded_bilinear h` `(f ---> l) net` `(g ---> m) net`
  1437 by (rule bounded_bilinear.tendsto)
  1438 
  1439 text{* These are special for limits out of the same vector space. *}
  1440 
  1441 lemma Lim_within_id: "(id ---> a) (at a within s)"
  1442   unfolding tendsto_def Limits.eventually_within eventually_at_topological
  1443   by auto
  1444 
  1445 lemma Lim_at_id: "(id ---> a) (at a)"
  1446 apply (subst within_UNIV[symmetric]) by (simp add: Lim_within_id)
  1447 
  1448 lemma Lim_at_zero:
  1449   fixes a :: "'a::real_normed_vector"
  1450   fixes l :: "'b::topological_space"
  1451   shows "(f ---> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) ---> l) (at 0)" (is "?lhs = ?rhs")
  1452 proof
  1453   assume "?lhs"
  1454   { fix S assume "open S" "l \<in> S"
  1455     with `?lhs` have "eventually (\<lambda>x. f x \<in> S) (at a)"
  1456       by (rule topological_tendstoD)
  1457     then obtain d where d: "d>0" "\<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<in> S"
  1458       unfolding Limits.eventually_at by fast
  1459     { fix x::"'a" assume "x \<noteq> 0 \<and> dist x 0 < d"
  1460       hence "f (a + x) \<in> S" using d
  1461       apply(erule_tac x="x+a" in allE)
  1462       by(auto simp add: comm_monoid_add.mult_commute dist_norm dist_commute)
  1463     }
  1464     hence "\<exists>d>0. \<forall>x. x \<noteq> 0 \<and> dist x 0 < d \<longrightarrow> f (a + x) \<in> S"
  1465       using d(1) by auto
  1466     hence "eventually (\<lambda>x. f (a + x) \<in> S) (at 0)"
  1467       unfolding Limits.eventually_at .
  1468   }
  1469   thus "?rhs" by (rule topological_tendstoI)
  1470 next
  1471   assume "?rhs"
  1472   { fix S assume "open S" "l \<in> S"
  1473     with `?rhs` have "eventually (\<lambda>x. f (a + x) \<in> S) (at 0)"
  1474       by (rule topological_tendstoD)
  1475     then obtain d where d: "d>0" "\<forall>x. x \<noteq> 0 \<and> dist x 0 < d \<longrightarrow> f (a + x) \<in> S"
  1476       unfolding Limits.eventually_at by fast
  1477     { fix x::"'a" assume "x \<noteq> a \<and> dist x a < d"
  1478       hence "f x \<in> S" using d apply(erule_tac x="x-a" in allE)
  1479         by(auto simp add: comm_monoid_add.mult_commute dist_norm dist_commute)
  1480     }
  1481     hence "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<in> S" using d(1) by auto
  1482     hence "eventually (\<lambda>x. f x \<in> S) (at a)" unfolding Limits.eventually_at .
  1483   }
  1484   thus "?lhs" by (rule topological_tendstoI)
  1485 qed
  1486 
  1487 text{* It's also sometimes useful to extract the limit point from the net.  *}
  1488 
  1489 definition
  1490   netlimit :: "'a::t2_space net \<Rightarrow> 'a" where
  1491   "netlimit net = (SOME a. ((\<lambda>x. x) ---> a) net)"
  1492 
  1493 lemma netlimit_within:
  1494   assumes "\<not> trivial_limit (at a within S)"
  1495   shows "netlimit (at a within S) = a"
  1496 unfolding netlimit_def
  1497 apply (rule some_equality)
  1498 apply (rule Lim_at_within)
  1499 apply (rule Lim_ident_at)
  1500 apply (erule Lim_unique [OF assms])
  1501 apply (rule Lim_at_within)
  1502 apply (rule Lim_ident_at)
  1503 done
  1504 
  1505 lemma netlimit_at:
  1506   fixes a :: "'a::perfect_space"
  1507   shows "netlimit (at a) = a"
  1508   apply (subst within_UNIV[symmetric])
  1509   using netlimit_within[of a UNIV]
  1510   by (simp add: trivial_limit_at within_UNIV)
  1511 
  1512 text{* Transformation of limit. *}
  1513 
  1514 lemma Lim_transform:
  1515   fixes f g :: "'a::type \<Rightarrow> 'b::real_normed_vector"
  1516   assumes "((\<lambda>x. f x - g x) ---> 0) net" "(f ---> l) net"
  1517   shows "(g ---> l) net"
  1518 proof-
  1519   from assms have "((\<lambda>x. f x - g x - f x) ---> 0 - l) net" using Lim_sub[of "\<lambda>x. f x - g x" 0 net f l] by auto
  1520   thus "?thesis" using Lim_neg [of "\<lambda> x. - g x" "-l" net] by auto
  1521 qed
  1522 
  1523 lemma Lim_transform_eventually:
  1524   "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f ---> l) net ==> (g ---> l) net"
  1525   apply (rule topological_tendstoI)
  1526   apply (drule (2) topological_tendstoD)
  1527   apply (erule (1) eventually_elim2, simp)
  1528   done
  1529 
  1530 lemma Lim_transform_within:
  1531   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1532   assumes "0 < d" "(\<forall>x'\<in>S. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x')"
  1533           "(f ---> l) (at x within S)"
  1534   shows   "(g ---> l) (at x within S)"
  1535   using assms(1,3) unfolding Lim_within
  1536   apply -
  1537   apply (clarify, rename_tac e)
  1538   apply (drule_tac x=e in spec, clarsimp, rename_tac r)
  1539   apply (rule_tac x="min d r" in exI, clarsimp, rename_tac y)
  1540   apply (drule_tac x=y in bspec, assumption, clarsimp)
  1541   apply (simp add: assms(2))
  1542   done
  1543 
  1544 lemma Lim_transform_at:
  1545   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1546   shows "0 < d \<Longrightarrow> (\<forall>x'. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x') \<Longrightarrow>
  1547   (f ---> l) (at x) ==> (g ---> l) (at x)"
  1548   apply (subst within_UNIV[symmetric])
  1549   using Lim_transform_within[of d UNIV x f g l]
  1550   by (auto simp add: within_UNIV)
  1551 
  1552 text{* Common case assuming being away from some crucial point like 0. *}
  1553 
  1554 lemma Lim_transform_away_within:
  1555   fixes a b :: "'a::metric_space"
  1556   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1557   assumes "a\<noteq>b" "\<forall>x\<in> S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
  1558   and "(f ---> l) (at a within S)"
  1559   shows "(g ---> l) (at a within S)"
  1560 proof-
  1561   have "\<forall>x'\<in>S. 0 < dist x' a \<and> dist x' a < dist a b \<longrightarrow> f x' = g x'" using assms(2)
  1562     apply auto apply(erule_tac x=x' in ballE) by (auto simp add: dist_commute)
  1563   thus ?thesis using Lim_transform_within[of "dist a b" S a f g l] using assms(1,3) unfolding dist_nz by auto
  1564 qed
  1565 
  1566 lemma Lim_transform_away_at:
  1567   fixes a b :: "'a::metric_space"
  1568   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1569   assumes ab: "a\<noteq>b" and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
  1570   and fl: "(f ---> l) (at a)"
  1571   shows "(g ---> l) (at a)"
  1572   using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl
  1573   by (auto simp add: within_UNIV)
  1574 
  1575 text{* Alternatively, within an open set. *}
  1576 
  1577 lemma Lim_transform_within_open:
  1578   fixes a :: "'a::metric_space"
  1579   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1580   assumes "open S"  "a \<in> S"  "\<forall>x\<in>S. x \<noteq> a \<longrightarrow> f x = g x"  "(f ---> l) (at a)"
  1581   shows "(g ---> l) (at a)"
  1582 proof-
  1583   from assms(1,2) obtain e::real where "e>0" and e:"ball a e \<subseteq> S" unfolding open_contains_ball by auto
  1584   hence "\<forall>x'. 0 < dist x' a \<and> dist x' a < e \<longrightarrow> f x' = g x'" using assms(3)
  1585     unfolding ball_def subset_eq apply auto apply(erule_tac x=x' in allE) apply(erule_tac x=x' in ballE) by(auto simp add: dist_commute)
  1586   thus ?thesis using Lim_transform_at[of e a f g l] `e>0` assms(4) by auto
  1587 qed
  1588 
  1589 text{* A congruence rule allowing us to transform limits assuming not at point. *}
  1590 
  1591 (* FIXME: Only one congruence rule for tendsto can be used at a time! *)
  1592 
  1593 lemma Lim_cong_within[cong add]:
  1594   fixes a :: "'a::metric_space"
  1595   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1596   shows "(\<And>x. x \<noteq> a \<Longrightarrow> f x = g x) ==> ((\<lambda>x. f x) ---> l) (at a within S) \<longleftrightarrow> ((g ---> l) (at a within S))"
  1597   by (simp add: Lim_within dist_nz[symmetric])
  1598 
  1599 lemma Lim_cong_at[cong add]:
  1600   fixes a :: "'a::metric_space"
  1601   fixes l :: "'b::metric_space" (* TODO: generalize *)
  1602   shows "(\<And>x. x \<noteq> a ==> f x = g x) ==> (((\<lambda>x. f x) ---> l) (at a) \<longleftrightarrow> ((g ---> l) (at a)))"
  1603   by (simp add: Lim_at dist_nz[symmetric])
  1604 
  1605 text{* Useful lemmas on closure and set of possible sequential limits.*}
  1606 
  1607 lemma closure_sequential:
  1608   fixes l :: "'a::metric_space" (* TODO: generalize *)
  1609   shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially)" (is "?lhs = ?rhs")
  1610 proof
  1611   assume "?lhs" moreover
  1612   { assume "l \<in> S"
  1613     hence "?rhs" using Lim_const[of l sequentially] by auto
  1614   } moreover
  1615   { assume "l islimpt S"
  1616     hence "?rhs" unfolding islimpt_sequential by auto
  1617   } ultimately
  1618   show "?rhs" unfolding closure_def by auto
  1619 next
  1620   assume "?rhs"
  1621   thus "?lhs" unfolding closure_def unfolding islimpt_sequential by auto
  1622 qed
  1623 
  1624 lemma closed_sequential_limits:
  1625   fixes S :: "'a::metric_space set"
  1626   shows "closed S \<longleftrightarrow> (\<forall>x l. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially \<longrightarrow> l \<in> S)"
  1627   unfolding closed_limpt
  1628   using closure_sequential [where 'a='a] closure_closed [where 'a='a] closed_limpt [where 'a='a] islimpt_sequential [where 'a='a] mem_delete [where 'a='a]
  1629   by metis
  1630 
  1631 lemma closure_approachable:
  1632   fixes S :: "'a::metric_space set"
  1633   shows "x \<in> closure S \<longleftrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e)"
  1634   apply (auto simp add: closure_def islimpt_approachable)
  1635   by (metis dist_self)
  1636 
  1637 lemma closed_approachable:
  1638   fixes S :: "'a::metric_space set"
  1639   shows "closed S ==> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
  1640   by (metis closure_closed closure_approachable)
  1641 
  1642 text{* Some other lemmas about sequences. *}
  1643 
  1644 lemma seq_offset:
  1645   fixes l :: "'a::metric_space" (* TODO: generalize *)
  1646   shows "(f ---> l) sequentially ==> ((\<lambda>i. f( i + k)) ---> l) sequentially"
  1647   apply (auto simp add: Lim_sequentially)
  1648   by (metis trans_le_add1 )
  1649 
  1650 lemma seq_offset_neg:
  1651   "(f ---> l) sequentially ==> ((\<lambda>i. f(i - k)) ---> l) sequentially"
  1652   apply (rule topological_tendstoI)
  1653   apply (drule (2) topological_tendstoD)
  1654   apply (simp only: eventually_sequentially)
  1655   apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k")
  1656   apply metis
  1657   by arith
  1658 
  1659 lemma seq_offset_rev:
  1660   "((\<lambda>i. f(i + k)) ---> l) sequentially ==> (f ---> l) sequentially"
  1661   apply (rule topological_tendstoI)
  1662   apply (drule (2) topological_tendstoD)
  1663   apply (simp only: eventually_sequentially)
  1664   apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k \<and> (n - k) + k = n")
  1665   by metis arith
  1666 
  1667 lemma seq_harmonic: "((\<lambda>n. inverse (real n)) ---> 0) sequentially"
  1668 proof-
  1669   { fix e::real assume "e>0"
  1670     hence "\<exists>N::nat. \<forall>n::nat\<ge>N. inverse (real n) < e"
  1671       using real_arch_inv[of e] apply auto apply(rule_tac x=n in exI)
  1672       by (metis not_le le_imp_inverse_le not_less real_of_nat_gt_zero_cancel_iff real_of_nat_less_iff xt1(7))
  1673   }
  1674   thus ?thesis unfolding Lim_sequentially dist_norm by simp
  1675 qed
  1676 
  1677 text{* More properties of closed balls. *}
  1678 
  1679 lemma closed_cball: "closed (cball x e)"
  1680 unfolding cball_def closed_def
  1681 unfolding Collect_neg_eq [symmetric] not_le
  1682 apply (clarsimp simp add: open_dist, rename_tac y)
  1683 apply (rule_tac x="dist x y - e" in exI, clarsimp)
  1684 apply (rename_tac x')
  1685 apply (cut_tac x=x and y=x' and z=y in dist_triangle)
  1686 apply simp
  1687 done
  1688 
  1689 lemma open_contains_cball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0.  cball x e \<subseteq> S)"
  1690 proof-
  1691   { fix x and e::real assume "x\<in>S" "e>0" "ball x e \<subseteq> S"
  1692     hence "\<exists>d>0. cball x d \<subseteq> S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto)
  1693   } moreover
  1694   { fix x and e::real assume "x\<in>S" "e>0" "cball x e \<subseteq> S"
  1695     hence "\<exists>d>0. ball x d \<subseteq> S" unfolding subset_eq apply(rule_tac x="e/2" in exI) by auto
  1696   } ultimately
  1697   show ?thesis unfolding open_contains_ball by auto
  1698 qed
  1699 
  1700 lemma open_contains_cball_eq: "open S ==> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
  1701   by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball mem_def)
  1702 
  1703 lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)"
  1704   apply (simp add: interior_def, safe)
  1705   apply (force simp add: open_contains_cball)
  1706   apply (rule_tac x="ball x e" in exI)
  1707   apply (simp add: open_ball centre_in_ball subset_trans [OF ball_subset_cball])
  1708   done
  1709 
  1710 lemma islimpt_ball:
  1711   fixes x y :: "'a::{real_normed_vector,perfect_space}"
  1712   shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e" (is "?lhs = ?rhs")
  1713 proof
  1714   assume "?lhs"
  1715   { assume "e \<le> 0"
  1716     hence *:"ball x e = {}" using ball_eq_empty[of x e] by auto
  1717     have False using `?lhs` unfolding * using islimpt_EMPTY[of y] by auto
  1718   }
  1719   hence "e > 0" by (metis not_less)
  1720   moreover
  1721   have "y \<in> cball x e" using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"] ball_subset_cball[of x e] `?lhs` unfolding closed_limpt by auto
  1722   ultimately show "?rhs" by auto
  1723 next
  1724   assume "?rhs" hence "e>0"  by auto
  1725   { fix d::real assume "d>0"
  1726     have "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
  1727     proof(cases "d \<le> dist x y")
  1728       case True thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
  1729       proof(cases "x=y")
  1730         case True hence False using `d \<le> dist x y` `d>0` by auto
  1731         thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by auto
  1732       next
  1733         case False
  1734 
  1735         have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x))
  1736               = norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))"
  1737           unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[THEN sym] by auto
  1738         also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
  1739           using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"]
  1740           unfolding scaleR_minus_left scaleR_one
  1741           by (auto simp add: norm_minus_commute)
  1742         also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
  1743           unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]]
  1744           unfolding real_add_mult_distrib using `x\<noteq>y`[unfolded dist_nz, unfolded dist_norm] by auto
  1745         also have "\<dots> \<le> e - d/2" using `d \<le> dist x y` and `d>0` and `?rhs` by(auto simp add: dist_norm)
  1746         finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \<in> ball x e" using `d>0` by auto
  1747 
  1748         moreover
  1749 
  1750         have "(d / (2*dist y x)) *\<^sub>R (y - x) \<noteq> 0"
  1751           using `x\<noteq>y`[unfolded dist_nz] `d>0` unfolding scaleR_eq_0_iff by (auto simp add: dist_commute)
  1752         moreover
  1753         have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" unfolding dist_norm apply simp unfolding norm_minus_cancel
  1754           using `d>0` `x\<noteq>y`[unfolded dist_nz] dist_commute[of x y]
  1755           unfolding dist_norm by auto
  1756         ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by (rule_tac  x="y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI) auto
  1757       qed
  1758     next
  1759       case False hence "d > dist x y" by auto
  1760       show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
  1761       proof(cases "x=y")
  1762         case True
  1763         obtain z where **: "z \<noteq> y" "dist z y < min e d"
  1764           using perfect_choose_dist[of "min e d" y]
  1765           using `d > 0` `e>0` by auto
  1766         show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
  1767           unfolding `x = y`
  1768           using `z \<noteq> y` **
  1769           by (rule_tac x=z in bexI, auto simp add: dist_commute)
  1770       next
  1771         case False thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
  1772           using `d>0` `d > dist x y` `?rhs` by(rule_tac x=x in bexI, auto)
  1773       qed
  1774     qed  }
  1775   thus "?lhs" unfolding mem_cball islimpt_approachable mem_ball by auto
  1776 qed
  1777 
  1778 lemma closure_ball_lemma:
  1779   fixes x y :: "'a::real_normed_vector"
  1780   assumes "x \<noteq> y" shows "y islimpt ball x (dist x y)"
  1781 proof (rule islimptI)
  1782   fix T assume "y \<in> T" "open T"
  1783   then obtain r where "0 < r" "\<forall>z. dist z y < r \<longrightarrow> z \<in> T"
  1784     unfolding open_dist by fast
  1785   (* choose point between x and y, within distance r of y. *)
  1786   def k \<equiv> "min 1 (r / (2 * dist x y))"
  1787   def z \<equiv> "y + scaleR k (x - y)"
  1788   have z_def2: "z = x + scaleR (1 - k) (y - x)"
  1789     unfolding z_def by (simp add: algebra_simps)
  1790   have "dist z y < r"
  1791     unfolding z_def k_def using `0 < r`
  1792     by (simp add: dist_norm min_def)
  1793   hence "z \<in> T" using `\<forall>z. dist z y < r \<longrightarrow> z \<in> T` by simp
  1794   have "dist x z < dist x y"
  1795     unfolding z_def2 dist_norm
  1796     apply (simp add: norm_minus_commute)
  1797     apply (simp only: dist_norm [symmetric])
  1798     apply (subgoal_tac "\<bar>1 - k\<bar> * dist x y < 1 * dist x y", simp)
  1799     apply (rule mult_strict_right_mono)
  1800     apply (simp add: k_def divide_pos_pos zero_less_dist_iff `0 < r` `x \<noteq> y`)
  1801     apply (simp add: zero_less_dist_iff `x \<noteq> y`)
  1802     done
  1803   hence "z \<in> ball x (dist x y)" by simp
  1804   have "z \<noteq> y"
  1805     unfolding z_def k_def using `x \<noteq> y` `0 < r`
  1806     by (simp add: min_def)
  1807   show "\<exists>z\<in>ball x (dist x y). z \<in> T \<and> z \<noteq> y"
  1808     using `z \<in> ball x (dist x y)` `z \<in> T` `z \<noteq> y`
  1809     by fast
  1810 qed
  1811 
  1812 lemma closure_ball:
  1813   fixes x :: "'a::real_normed_vector"
  1814   shows "0 < e \<Longrightarrow> closure (ball x e) = cball x e"
  1815 apply (rule equalityI)
  1816 apply (rule closure_minimal)
  1817 apply (rule ball_subset_cball)
  1818 apply (rule closed_cball)
  1819 apply (rule subsetI, rename_tac y)
  1820 apply (simp add: le_less [where 'a=real])
  1821 apply (erule disjE)
  1822 apply (rule subsetD [OF closure_subset], simp)
  1823 apply (simp add: closure_def)
  1824 apply clarify
  1825 apply (rule closure_ball_lemma)
  1826 apply (simp add: zero_less_dist_iff)
  1827 done
  1828 
  1829 (* In a trivial vector space, this fails for e = 0. *)
  1830 lemma interior_cball:
  1831   fixes x :: "'a::{real_normed_vector, perfect_space}"
  1832   shows "interior (cball x e) = ball x e"
  1833 proof(cases "e\<ge>0")
  1834   case False note cs = this
  1835   from cs have "ball x e = {}" using ball_empty[of e x] by auto moreover
  1836   { fix y assume "y \<in> cball x e"
  1837     hence False unfolding mem_cball using dist_nz[of x y] cs by auto  }
  1838   hence "cball x e = {}" by auto
  1839   hence "interior (cball x e) = {}" using interior_empty by auto
  1840   ultimately show ?thesis by blast
  1841 next
  1842   case True note cs = this
  1843   have "ball x e \<subseteq> cball x e" using ball_subset_cball by auto moreover
  1844   { fix S y assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
  1845     then obtain d where "d>0" and d:"\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S" unfolding open_dist by blast
  1846 
  1847     then obtain xa where xa_y: "xa \<noteq> y" and xa: "dist xa y < d"
  1848       using perfect_choose_dist [of d] by auto
  1849     have "xa\<in>S" using d[THEN spec[where x=xa]] using xa by(auto simp add: dist_commute)
  1850     hence xa_cball:"xa \<in> cball x e" using as(1) by auto
  1851 
  1852     hence "y \<in> ball x e" proof(cases "x = y")
  1853       case True
  1854       hence "e>0" using xa_y[unfolded dist_nz] xa_cball[unfolded mem_cball] by (auto simp add: dist_commute)
  1855       thus "y \<in> ball x e" using `x = y ` by simp
  1856     next
  1857       case False
  1858       have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d" unfolding dist_norm
  1859         using `d>0` norm_ge_zero[of "y - x"] `x \<noteq> y` by auto
  1860       hence *:"y + (d / 2 / dist y x) *\<^sub>R (y - x) \<in> cball x e" using d as(1)[unfolded subset_eq] by blast
  1861       have "y - x \<noteq> 0" using `x \<noteq> y` by auto
  1862       hence **:"d / (2 * norm (y - x)) > 0" unfolding zero_less_norm_iff[THEN sym]
  1863         using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto
  1864 
  1865       have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x = norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)"
  1866         by (auto simp add: dist_norm algebra_simps)
  1867       also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))"
  1868         by (auto simp add: algebra_simps)
  1869       also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)"
  1870         using ** by auto
  1871       also have "\<dots> = (dist y x) + d/2"using ** by (auto simp add: left_distrib dist_norm)
  1872       finally have "e \<ge> dist x y +d/2" using *[unfolded mem_cball] by (auto simp add: dist_commute)
  1873       thus "y \<in> ball x e" unfolding mem_ball using `d>0` by auto
  1874     qed  }
  1875   hence "\<forall>S \<subseteq> cball x e. open S \<longrightarrow> S \<subseteq> ball x e" by auto
  1876   ultimately show ?thesis using interior_unique[of "ball x e" "cball x e"] using open_ball[of x e] by auto
  1877 qed
  1878 
  1879 lemma frontier_ball:
  1880   fixes a :: "'a::real_normed_vector"
  1881   shows "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
  1882   apply (simp add: frontier_def closure_ball interior_open open_ball order_less_imp_le)
  1883   apply (simp add: expand_set_eq)
  1884   by arith
  1885 
  1886 lemma frontier_cball:
  1887   fixes a :: "'a::{real_normed_vector, perfect_space}"
  1888   shows "frontier(cball a e) = {x. dist a x = e}"
  1889   apply (simp add: frontier_def interior_cball closed_cball closure_closed order_less_imp_le)
  1890   apply (simp add: expand_set_eq)
  1891   by arith
  1892 
  1893 lemma cball_eq_empty: "(cball x e = {}) \<longleftrightarrow> e < 0"
  1894   apply (simp add: expand_set_eq not_le)
  1895   by (metis zero_le_dist dist_self order_less_le_trans)
  1896 lemma cball_empty: "e < 0 ==> cball x e = {}" by (simp add: cball_eq_empty)
  1897 
  1898 lemma cball_eq_sing:
  1899   fixes x :: "'a::perfect_space"
  1900   shows "(cball x e = {x}) \<longleftrightarrow> e = 0"
  1901 proof (rule linorder_cases)
  1902   assume e: "0 < e"
  1903   obtain a where "a \<noteq> x" "dist a x < e"
  1904     using perfect_choose_dist [OF e] by auto
  1905   hence "a \<noteq> x" "dist x a \<le> e" by (auto simp add: dist_commute)
  1906   with e show ?thesis by (auto simp add: expand_set_eq)
  1907 qed auto
  1908 
  1909 lemma cball_sing:
  1910   fixes x :: "'a::metric_space"
  1911   shows "e = 0 ==> cball x e = {x}"
  1912   by (auto simp add: expand_set_eq)
  1913 
  1914 text{* For points in the interior, localization of limits makes no difference.   *}
  1915 
  1916 lemma eventually_within_interior:
  1917   assumes "x \<in> interior S"
  1918   shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)" (is "?lhs = ?rhs")
  1919 proof-
  1920   from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S"
  1921     unfolding interior_def by fast
  1922   { assume "?lhs"
  1923     then obtain A where "open A" "x \<in> A" "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y"
  1924       unfolding Limits.eventually_within Limits.eventually_at_topological
  1925       by auto
  1926     with T have "open (A \<inter> T)" "x \<in> A \<inter> T" "\<forall>y\<in>(A \<inter> T). y \<noteq> x \<longrightarrow> P y"
  1927       by auto
  1928     then have "?rhs"
  1929       unfolding Limits.eventually_at_topological by auto
  1930   } moreover
  1931   { assume "?rhs" hence "?lhs"
  1932       unfolding Limits.eventually_within
  1933       by (auto elim: eventually_elim1)
  1934   } ultimately
  1935   show "?thesis" ..
  1936 qed
  1937 
  1938 lemma lim_within_interior:
  1939   "x \<in> interior S \<Longrightarrow> (f ---> l) (at x within S) \<longleftrightarrow> (f ---> l) (at x)"
  1940   unfolding tendsto_def by (simp add: eventually_within_interior)
  1941 
  1942 lemma netlimit_within_interior:
  1943   fixes x :: "'a::{perfect_space, real_normed_vector}"
  1944     (* FIXME: generalize to perfect_space *)
  1945   assumes "x \<in> interior S"
  1946   shows "netlimit(at x within S) = x" (is "?lhs = ?rhs")
  1947 proof-
  1948   from assms obtain e::real where e:"e>0" "ball x e \<subseteq> S" using open_interior[of S] unfolding open_contains_ball using interior_subset[of S] by auto
  1949   hence "\<not> trivial_limit (at x within S)" using islimpt_subset[of x "ball x e" S] unfolding trivial_limit_within islimpt_ball centre_in_cball by auto
  1950   thus ?thesis using netlimit_within by auto
  1951 qed
  1952 
  1953 subsection{* Boundedness. *}
  1954 
  1955   (* FIXME: This has to be unified with BSEQ!! *)
  1956 definition
  1957   bounded :: "'a::metric_space set \<Rightarrow> bool" where
  1958   "bounded S \<longleftrightarrow> (\<exists>x e. \<forall>y\<in>S. dist x y \<le> e)"
  1959 
  1960 lemma bounded_any_center: "bounded S \<longleftrightarrow> (\<exists>e. \<forall>y\<in>S. dist a y \<le> e)"
  1961 unfolding bounded_def
  1962 apply safe
  1963 apply (rule_tac x="dist a x + e" in exI, clarify)
  1964 apply (drule (1) bspec)
  1965 apply (erule order_trans [OF dist_triangle add_left_mono])
  1966 apply auto
  1967 done
  1968 
  1969 lemma bounded_iff: "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. norm x \<le> a)"
  1970 unfolding bounded_any_center [where a=0]
  1971 by (simp add: dist_norm)
  1972 
  1973 lemma bounded_empty[simp]: "bounded {}" by (simp add: bounded_def)
  1974 lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T ==> bounded S"
  1975   by (metis bounded_def subset_eq)
  1976 
  1977 lemma bounded_interior[intro]: "bounded S ==> bounded(interior S)"
  1978   by (metis bounded_subset interior_subset)
  1979 
  1980 lemma bounded_closure[intro]: assumes "bounded S" shows "bounded(closure S)"
  1981 proof-
  1982   from assms obtain x and a where a: "\<forall>y\<in>S. dist x y \<le> a" unfolding bounded_def by auto
  1983   { fix y assume "y \<in> closure S"
  1984     then obtain f where f: "\<forall>n. f n \<in> S"  "(f ---> y) sequentially"
  1985       unfolding closure_sequential by auto
  1986     have "\<forall>n. f n \<in> S \<longrightarrow> dist x (f n) \<le> a" using a by simp
  1987     hence "eventually (\<lambda>n. dist x (f n) \<le> a) sequentially"
  1988       by (rule eventually_mono, simp add: f(1))
  1989     have "dist x y \<le> a"
  1990       apply (rule Lim_dist_ubound [of sequentially f])
  1991       apply (rule trivial_limit_sequentially)
  1992       apply (rule f(2))
  1993       apply fact
  1994       done
  1995   }
  1996   thus ?thesis unfolding bounded_def by auto
  1997 qed
  1998 
  1999 lemma bounded_cball[simp,intro]: "bounded (cball x e)"
  2000   apply (simp add: bounded_def)
  2001   apply (rule_tac x=x in exI)
  2002   apply (rule_tac x=e in exI)
  2003   apply auto
  2004   done
  2005 
  2006 lemma bounded_ball[simp,intro]: "bounded(ball x e)"
  2007   by (metis ball_subset_cball bounded_cball bounded_subset)
  2008 
  2009 lemma finite_imp_bounded[intro]: assumes "finite S" shows "bounded S"
  2010 proof-
  2011   { fix a F assume as:"bounded F"
  2012     then obtain x e where "\<forall>y\<in>F. dist x y \<le> e" unfolding bounded_def by auto
  2013     hence "\<forall>y\<in>(insert a F). dist x y \<le> max e (dist x a)" by auto
  2014     hence "bounded (insert a F)" unfolding bounded_def by (intro exI)
  2015   }
  2016   thus ?thesis using finite_induct[of S bounded]  using bounded_empty assms by auto
  2017 qed
  2018 
  2019 lemma bounded_Un[simp]: "bounded (S \<union> T) \<longleftrightarrow> bounded S \<and> bounded T"
  2020   apply (auto simp add: bounded_def)
  2021   apply (rename_tac x y r s)
  2022   apply (rule_tac x=x in exI)
  2023   apply (rule_tac x="max r (dist x y + s)" in exI)
  2024   apply (rule ballI, rename_tac z, safe)
  2025   apply (drule (1) bspec, simp)
  2026   apply (drule (1) bspec)
  2027   apply (rule min_max.le_supI2)
  2028   apply (erule order_trans [OF dist_triangle add_left_mono])
  2029   done
  2030 
  2031 lemma bounded_Union[intro]: "finite F \<Longrightarrow> (\<forall>S\<in>F. bounded S) \<Longrightarrow> bounded(\<Union>F)"
  2032   by (induct rule: finite_induct[of F], auto)
  2033 
  2034 lemma bounded_pos: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x <= b)"
  2035   apply (simp add: bounded_iff)
  2036   apply (subgoal_tac "\<And>x (y::real). 0 < 1 + abs y \<and> (x <= y \<longrightarrow> x <= 1 + abs y)")
  2037   by metis arith
  2038 
  2039 lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)"
  2040   by (metis Int_lower1 Int_lower2 bounded_subset)
  2041 
  2042 lemma bounded_diff[intro]: "bounded S ==> bounded (S - T)"
  2043 apply (metis Diff_subset bounded_subset)
  2044 done
  2045 
  2046 lemma bounded_insert[intro]:"bounded(insert x S) \<longleftrightarrow> bounded S"
  2047   by (metis Diff_cancel Un_empty_right Un_insert_right bounded_Un bounded_subset finite.emptyI finite_imp_bounded infinite_remove subset_insertI)
  2048 
  2049 lemma not_bounded_UNIV[simp, intro]:
  2050   "\<not> bounded (UNIV :: 'a::{real_normed_vector, perfect_space} set)"
  2051 proof(auto simp add: bounded_pos not_le)
  2052   obtain x :: 'a where "x \<noteq> 0"
  2053     using perfect_choose_dist [OF zero_less_one] by fast
  2054   fix b::real  assume b: "b >0"
  2055   have b1: "b +1 \<ge> 0" using b by simp
  2056   with `x \<noteq> 0` have "b < norm (scaleR (b + 1) (sgn x))"
  2057     by (simp add: norm_sgn)
  2058   then show "\<exists>x::'a. b < norm x" ..
  2059 qed
  2060 
  2061 lemma bounded_linear_image:
  2062   assumes "bounded S" "bounded_linear f"
  2063   shows "bounded(f ` S)"
  2064 proof-
  2065   from assms(1) obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto
  2066   from assms(2) obtain B where B:"B>0" "\<forall>x. norm (f x) \<le> B * norm x" using bounded_linear.pos_bounded by (auto simp add: mult_ac)
  2067   { fix x assume "x\<in>S"
  2068     hence "norm x \<le> b" using b by auto
  2069     hence "norm (f x) \<le> B * b" using B(2) apply(erule_tac x=x in allE)
  2070       by (metis B(1) B(2) real_le_trans real_mult_le_cancel_iff2)
  2071   }
  2072   thus ?thesis unfolding bounded_pos apply(rule_tac x="b*B" in exI)
  2073     using b B real_mult_order[of b B] by (auto simp add: real_mult_commute)
  2074 qed
  2075 
  2076 lemma bounded_scaling:
  2077   fixes S :: "'a::real_normed_vector set"
  2078   shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)"
  2079   apply (rule bounded_linear_image, assumption)
  2080   apply (rule scaleR.bounded_linear_right)
  2081   done
  2082 
  2083 lemma bounded_translation:
  2084   fixes S :: "'a::real_normed_vector set"
  2085   assumes "bounded S" shows "bounded ((\<lambda>x. a + x) ` S)"
  2086 proof-
  2087   from assms obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto
  2088   { fix x assume "x\<in>S"
  2089     hence "norm (a + x) \<le> b + norm a" using norm_triangle_ineq[of a x] b by auto
  2090   }
  2091   thus ?thesis unfolding bounded_pos using norm_ge_zero[of a] b(1) using add_strict_increasing[of b 0 "norm a"]
  2092     by (auto intro!: add exI[of _ "b + norm a"])
  2093 qed
  2094 
  2095 
  2096 text{* Some theorems on sups and infs using the notion "bounded". *}
  2097 
  2098 lemma bounded_real:
  2099   fixes S :: "real set"
  2100   shows "bounded S \<longleftrightarrow>  (\<exists>a. \<forall>x\<in>S. abs x <= a)"
  2101   by (simp add: bounded_iff)
  2102 
  2103 lemma bounded_has_Sup:
  2104   fixes S :: "real set"
  2105   assumes "bounded S" "S \<noteq> {}"
  2106   shows "\<forall>x\<in>S. x <= Sup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> Sup S <= b"
  2107 proof
  2108   fix x assume "x\<in>S"
  2109   thus "x \<le> Sup S"
  2110     by (metis SupInf.Sup_upper abs_le_D1 assms(1) bounded_real)
  2111 next
  2112   show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b" using assms
  2113     by (metis SupInf.Sup_least)
  2114 qed
  2115 
  2116 lemma Sup_insert:
  2117   fixes S :: "real set"
  2118   shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))" 
  2119 by auto (metis Int_absorb Sup_insert_nonempty assms bounded_has_Sup(1) disjoint_iff_not_equal) 
  2120 
  2121 lemma Sup_insert_finite:
  2122   fixes S :: "real set"
  2123   shows "finite S \<Longrightarrow> Sup(insert x S) = (if S = {} then x else max x (Sup S))"
  2124   apply (rule Sup_insert)
  2125   apply (rule finite_imp_bounded)
  2126   by simp
  2127 
  2128 lemma bounded_has_Inf:
  2129   fixes S :: "real set"
  2130   assumes "bounded S"  "S \<noteq> {}"
  2131   shows "\<forall>x\<in>S. x >= Inf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S >= b"
  2132 proof
  2133   fix x assume "x\<in>S"
  2134   from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto
  2135   thus "x \<ge> Inf S" using `x\<in>S`
  2136     by (metis Inf_lower_EX abs_le_D2 minus_le_iff)
  2137 next
  2138   show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S \<ge> b" using assms
  2139     by (metis SupInf.Inf_greatest)
  2140 qed
  2141 
  2142 lemma Inf_insert:
  2143   fixes S :: "real set"
  2144   shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" 
  2145 by auto (metis Int_absorb Inf_insert_nonempty bounded_has_Inf(1) disjoint_iff_not_equal) 
  2146 lemma Inf_insert_finite:
  2147   fixes S :: "real set"
  2148   shows "finite S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))"
  2149   by (rule Inf_insert, rule finite_imp_bounded, simp)
  2150 
  2151 
  2152 (* TODO: Move this to RComplete.thy -- would need to include Glb into RComplete *)
  2153 lemma real_isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::real)"
  2154   apply (frule isGlb_isLb)
  2155   apply (frule_tac x = y in isGlb_isLb)
  2156   apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
  2157   done
  2158 
  2159 subsection{* Compactness (the definition is the one based on convegent subsequences). *}
  2160 
  2161 definition
  2162   compact :: "'a::metric_space set \<Rightarrow> bool" where (* TODO: generalize *)
  2163   "compact S \<longleftrightarrow>
  2164    (\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow>
  2165        (\<exists>l\<in>S. \<exists>r. subseq r \<and> ((f o r) ---> l) sequentially))"
  2166 
  2167 text {*
  2168   A metric space (or topological vector space) is said to have the
  2169   Heine-Borel property if every closed and bounded subset is compact.
  2170 *}
  2171 
  2172 class heine_borel =
  2173   assumes bounded_imp_convergent_subsequence:
  2174     "bounded s \<Longrightarrow> \<forall>n. f n \<in> s
  2175       \<Longrightarrow> \<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
  2176 
  2177 lemma bounded_closed_imp_compact:
  2178   fixes s::"'a::heine_borel set"
  2179   assumes "bounded s" and "closed s" shows "compact s"
  2180 proof (unfold compact_def, clarify)
  2181   fix f :: "nat \<Rightarrow> 'a" assume f: "\<forall>n. f n \<in> s"
  2182   obtain l r where r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially"
  2183     using bounded_imp_convergent_subsequence [OF `bounded s` `\<forall>n. f n \<in> s`] by auto
  2184   from f have fr: "\<forall>n. (f \<circ> r) n \<in> s" by simp
  2185   have "l \<in> s" using `closed s` fr l
  2186     unfolding closed_sequential_limits by blast
  2187   show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
  2188     using `l \<in> s` r l by blast
  2189 qed
  2190 
  2191 lemma subseq_bigger: assumes "subseq r" shows "n \<le> r n"
  2192 proof(induct n)
  2193   show "0 \<le> r 0" by auto
  2194 next
  2195   fix n assume "n \<le> r n"
  2196   moreover have "r n < r (Suc n)"
  2197     using assms [unfolded subseq_def] by auto
  2198   ultimately show "Suc n \<le> r (Suc n)" by auto
  2199 qed
  2200 
  2201 lemma eventually_subseq:
  2202   assumes r: "subseq r"
  2203   shows "eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
  2204 unfolding eventually_sequentially
  2205 by (metis subseq_bigger [OF r] le_trans)
  2206 
  2207 lemma lim_subseq:
  2208   "subseq r \<Longrightarrow> (s ---> l) sequentially \<Longrightarrow> ((s o r) ---> l) sequentially"
  2209 unfolding tendsto_def eventually_sequentially o_def
  2210 by (metis subseq_bigger le_trans)
  2211 
  2212 lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
  2213   unfolding Ex1_def
  2214   apply (rule_tac x="nat_rec e f" in exI)
  2215   apply (rule conjI)+
  2216 apply (rule def_nat_rec_0, simp)
  2217 apply (rule allI, rule def_nat_rec_Suc, simp)
  2218 apply (rule allI, rule impI, rule ext)
  2219 apply (erule conjE)
  2220 apply (induct_tac x)
  2221 apply (simp add: nat_rec_0)
  2222 apply (erule_tac x="n" in allE)
  2223 apply (simp)
  2224 done
  2225 
  2226 lemma convergent_bounded_increasing: fixes s ::"nat\<Rightarrow>real"
  2227   assumes "incseq s" and "\<forall>n. abs(s n) \<le> b"
  2228   shows "\<exists> l. \<forall>e::real>0. \<exists> N. \<forall>n \<ge> N.  abs(s n - l) < e"
  2229 proof-
  2230   have "isUb UNIV (range s) b" using assms(2) and abs_le_D1 unfolding isUb_def and setle_def by auto
  2231   then obtain t where t:"isLub UNIV (range s) t" using reals_complete[of "range s" ] by auto
  2232   { fix e::real assume "e>0" and as:"\<forall>N. \<exists>n\<ge>N. \<not> \<bar>s n - t\<bar> < e"
  2233     { fix n::nat
  2234       obtain N where "N\<ge>n" and n:"\<bar>s N - t\<bar> \<ge> e" using as[THEN spec[where x=n]] by auto
  2235       have "t \<ge> s N" using isLub_isUb[OF t, unfolded isUb_def setle_def] by auto
  2236       with n have "s N \<le> t - e" using `e>0` by auto
  2237       hence "s n \<le> t - e" using assms(1)[unfolded incseq_def, THEN spec[where x=n], THEN spec[where x=N]] using `n\<le>N` by auto  }
  2238     hence "isUb UNIV (range s) (t - e)" unfolding isUb_def and setle_def by auto
  2239     hence False using isLub_le_isUb[OF t, of "t - e"] and `e>0` by auto  }
  2240   thus ?thesis by blast
  2241 qed
  2242 
  2243 lemma convergent_bounded_monotone: fixes s::"nat \<Rightarrow> real"
  2244   assumes "\<forall>n. abs(s n) \<le> b" and "monoseq s"
  2245   shows "\<exists>l. \<forall>e::real>0. \<exists>N. \<forall>n\<ge>N. abs(s n - l) < e"
  2246   using convergent_bounded_increasing[of s b] assms using convergent_bounded_increasing[of "\<lambda>n. - s n" b]
  2247   unfolding monoseq_def incseq_def
  2248   apply auto unfolding minus_add_distrib[THEN sym, unfolded diff_minus[THEN sym]]
  2249   unfolding abs_minus_cancel by(rule_tac x="-l" in exI)auto
  2250 
  2251 lemma compact_real_lemma:
  2252   assumes "\<forall>n::nat. abs(s n) \<le> b"
  2253   shows "\<exists>(l::real) r. subseq r \<and> ((s \<circ> r) ---> l) sequentially"
  2254 proof-
  2255   obtain r where r:"subseq r" "monoseq (\<lambda>n. s (r n))"
  2256     using seq_monosub[of s] by auto
  2257   thus ?thesis using convergent_bounded_monotone[of "\<lambda>n. s (r n)" b] and assms
  2258     unfolding tendsto_iff dist_norm eventually_sequentially by auto
  2259 qed
  2260 
  2261 instance real :: heine_borel
  2262 proof
  2263   fix s :: "real set" and f :: "nat \<Rightarrow> real"
  2264   assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
  2265   then obtain b where b: "\<forall>n. abs (f n) \<le> b"
  2266     unfolding bounded_iff by auto
  2267   obtain l :: real and r :: "nat \<Rightarrow> nat" where
  2268     r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially"
  2269     using compact_real_lemma [OF b] by auto
  2270   thus "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
  2271     by auto
  2272 qed
  2273 
  2274 lemma bounded_component: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)"
  2275 unfolding bounded_def
  2276 apply clarify
  2277 apply (rule_tac x="x $ i" in exI)
  2278 apply (rule_tac x="e" in exI)
  2279 apply clarify
  2280 apply (rule order_trans [OF dist_nth_le], simp)
  2281 done
  2282 
  2283 lemma compact_lemma:
  2284   fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n"
  2285   assumes "bounded s" and "\<forall>n. f n \<in> s"
  2286   shows "\<forall>d.
  2287         \<exists>l r. subseq r \<and>
  2288         (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
  2289 proof
  2290   fix d::"'n set" have "finite d" by simp
  2291   thus "\<exists>l::'a ^ 'n. \<exists>r. subseq r \<and>
  2292       (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
  2293   proof(induct d) case empty thus ?case unfolding subseq_def by auto
  2294   next case (insert k d)
  2295     have s': "bounded ((\<lambda>x. x $ k) ` s)" using `bounded s` by (rule bounded_component)
  2296     obtain l1::"'a^'n" and r1 where r1:"subseq r1" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially"
  2297       using insert(3) by auto
  2298     have f': "\<forall>n. f (r1 n) $ k \<in> (\<lambda>x. x $ k) ` s" using `\<forall>n. f n \<in> s` by simp
  2299     obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially"
  2300       using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto
  2301     def r \<equiv> "r1 \<circ> r2" have r:"subseq r"
  2302       using r1 and r2 unfolding r_def o_def subseq_def by auto
  2303     moreover
  2304     def l \<equiv> "(\<chi> i. if i = k then l2 else l1$i)::'a^'n"
  2305     { fix e::real assume "e>0"
  2306       from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" by blast
  2307       from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $ k) l2 < e) sequentially" by (rule tendstoD)
  2308       from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $ i) (l1 $ i) < e) sequentially"
  2309         by (rule eventually_subseq)
  2310       have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $ i) (l $ i) < e) sequentially"
  2311         using N1' N2 by (rule eventually_elim2, simp add: l_def r_def)
  2312     }
  2313     ultimately show ?case by auto
  2314   qed
  2315 qed
  2316 
  2317 instance cart :: (heine_borel, finite) heine_borel
  2318 proof
  2319   fix s :: "('a ^ 'b) set" and f :: "nat \<Rightarrow> 'a ^ 'b"
  2320   assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
  2321   then obtain l r where r: "subseq r"
  2322     and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially"
  2323     using compact_lemma [OF s f] by blast
  2324   let ?d = "UNIV::'b set"
  2325   { fix e::real assume "e>0"
  2326     hence "0 < e / (real_of_nat (card ?d))"
  2327       using zero_less_card_finite using divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto
  2328     with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially"
  2329       by simp
  2330     moreover
  2331     { fix n assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))"
  2332       have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))"
  2333         unfolding dist_vector_def using zero_le_dist by (rule setL2_le_setsum)
  2334       also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))"
  2335         by (rule setsum_strict_mono) (simp_all add: n)
  2336       finally have "dist (f (r n)) l < e" by simp
  2337     }
  2338     ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
  2339       by (rule eventually_elim1)
  2340   }
  2341   hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp
  2342   with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto
  2343 qed
  2344 
  2345 lemma bounded_fst: "bounded s \<Longrightarrow> bounded (fst ` s)"
  2346 unfolding bounded_def
  2347 apply clarify
  2348 apply (rule_tac x="a" in exI)
  2349 apply (rule_tac x="e" in exI)
  2350 apply clarsimp
  2351 apply (drule (1) bspec)
  2352 apply (simp add: dist_Pair_Pair)
  2353 apply (erule order_trans [OF real_sqrt_sum_squares_ge1])
  2354 done
  2355 
  2356 lemma bounded_snd: "bounded s \<Longrightarrow> bounded (snd ` s)"
  2357 unfolding bounded_def
  2358 apply clarify
  2359 apply (rule_tac x="b" in exI)
  2360 apply (rule_tac x="e" in exI)
  2361 apply clarsimp
  2362 apply (drule (1) bspec)
  2363 apply (simp add: dist_Pair_Pair)
  2364 apply (erule order_trans [OF real_sqrt_sum_squares_ge2])
  2365 done
  2366 
  2367 instance "*" :: (heine_borel, heine_borel) heine_borel
  2368 proof
  2369   fix s :: "('a * 'b) set" and f :: "nat \<Rightarrow> 'a * 'b"
  2370   assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
  2371   from s have s1: "bounded (fst ` s)" by (rule bounded_fst)
  2372   from f have f1: "\<forall>n. fst (f n) \<in> fst ` s" by simp
  2373   obtain l1 r1 where r1: "subseq r1"
  2374     and l1: "((\<lambda>n. fst (f (r1 n))) ---> l1) sequentially"
  2375     using bounded_imp_convergent_subsequence [OF s1 f1]
  2376     unfolding o_def by fast
  2377   from s have s2: "bounded (snd ` s)" by (rule bounded_snd)
  2378   from f have f2: "\<forall>n. snd (f (r1 n)) \<in> snd ` s" by simp
  2379   obtain l2 r2 where r2: "subseq r2"
  2380     and l2: "((\<lambda>n. snd (f (r1 (r2 n)))) ---> l2) sequentially"
  2381     using bounded_imp_convergent_subsequence [OF s2 f2]
  2382     unfolding o_def by fast
  2383   have l1': "((\<lambda>n. fst (f (r1 (r2 n)))) ---> l1) sequentially"
  2384     using lim_subseq [OF r2 l1] unfolding o_def .
  2385   have l: "((f \<circ> (r1 \<circ> r2)) ---> (l1, l2)) sequentially"
  2386     using tendsto_Pair [OF l1' l2] unfolding o_def by simp
  2387   have r: "subseq (r1 \<circ> r2)"
  2388     using r1 r2 unfolding subseq_def by simp
  2389   show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
  2390     using l r by fast
  2391 qed
  2392 
  2393 subsection{* Completeness. *}
  2394 
  2395 lemma cauchy_def:
  2396   "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m n. m \<ge> N \<and> n \<ge> N --> dist(s m)(s n) < e)"
  2397 unfolding Cauchy_def by blast
  2398 
  2399 definition
  2400   complete :: "'a::metric_space set \<Rightarrow> bool" where
  2401   "complete s \<longleftrightarrow> (\<forall>f. (\<forall>n. f n \<in> s) \<and> Cauchy f
  2402                       --> (\<exists>l \<in> s. (f ---> l) sequentially))"
  2403 
  2404 lemma cauchy: "Cauchy s \<longleftrightarrow> (\<forall>e>0.\<exists> N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs")
  2405 proof-
  2406   { assume ?rhs
  2407     { fix e::real
  2408       assume "e>0"
  2409       with `?rhs` obtain N where N:"\<forall>n\<ge>N. dist (s n) (s N) < e/2"
  2410         by (erule_tac x="e/2" in allE) auto
  2411       { fix n m
  2412         assume nm:"N \<le> m \<and> N \<le> n"
  2413         hence "dist (s m) (s n) < e" using N
  2414           using dist_triangle_half_l[of "s m" "s N" "e" "s n"]
  2415           by blast
  2416       }
  2417       hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e"
  2418         by blast
  2419     }
  2420     hence ?lhs
  2421       unfolding cauchy_def
  2422       by blast
  2423   }
  2424   thus ?thesis
  2425     unfolding cauchy_def
  2426     using dist_triangle_half_l
  2427     by blast
  2428 qed
  2429 
  2430 lemma convergent_imp_cauchy:
  2431  "(s ---> l) sequentially ==> Cauchy s"
  2432 proof(simp only: cauchy_def, rule, rule)
  2433   fix e::real assume "e>0" "(s ---> l) sequentially"
  2434   then obtain N::nat where N:"\<forall>n\<ge>N. dist (s n) l < e/2" unfolding Lim_sequentially by(erule_tac x="e/2" in allE) auto
  2435   thus "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e"  using dist_triangle_half_l[of _ l e _] by (rule_tac x=N in exI) auto
  2436 qed
  2437 
  2438 lemma cauchy_imp_bounded: assumes "Cauchy s" shows "bounded (range s)"
  2439 proof-
  2440   from assms obtain N::nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1" unfolding cauchy_def apply(erule_tac x= 1 in allE) by auto
  2441   hence N:"\<forall>n. N \<le> n \<longrightarrow> dist (s N) (s n) < 1" by auto
  2442   moreover
  2443   have "bounded (s ` {0..N})" using finite_imp_bounded[of "s ` {1..N}"] by auto
  2444   then obtain a where a:"\<forall>x\<in>s ` {0..N}. dist (s N) x \<le> a"
  2445     unfolding bounded_any_center [where a="s N"] by auto
  2446   ultimately show "?thesis"
  2447     unfolding bounded_any_center [where a="s N"]
  2448     apply(rule_tac x="max a 1" in exI) apply auto
  2449     apply(erule_tac x=y in allE) apply(erule_tac x=y in ballE) by auto
  2450 qed
  2451 
  2452 lemma compact_imp_complete: assumes "compact s" shows "complete s"
  2453 proof-
  2454   { fix f assume as: "(\<forall>n::nat. f n \<in> s)" "Cauchy f"
  2455     from as(1) obtain l r where lr: "l\<in>s" "subseq r" "((f \<circ> r) ---> l) sequentially" using assms unfolding compact_def by blast
  2456 
  2457     note lr' = subseq_bigger [OF lr(2)]
  2458 
  2459     { fix e::real assume "e>0"
  2460       from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2" unfolding cauchy_def using `e>0` apply (erule_tac x="e/2" in allE) by auto
  2461       from lr(3)[unfolded Lim_sequentially, THEN spec[where x="e/2"]] obtain M where M:"\<forall>n\<ge>M. dist ((f \<circ> r) n) l < e/2" using `e>0` by auto
  2462       { fix n::nat assume n:"n \<ge> max N M"
  2463         have "dist ((f \<circ> r) n) l < e/2" using n M by auto
  2464         moreover have "r n \<ge> N" using lr'[of n] n by auto
  2465         hence "dist (f n) ((f \<circ> r) n) < e / 2" using N using n by auto
  2466         ultimately have "dist (f n) l < e" using dist_triangle_half_r[of "f (r n)" "f n" e l] by (auto simp add: dist_commute)  }
  2467       hence "\<exists>N. \<forall>n\<ge>N. dist (f n) l < e" by blast  }
  2468     hence "\<exists>l\<in>s. (f ---> l) sequentially" using `l\<in>s` unfolding Lim_sequentially by auto  }
  2469   thus ?thesis unfolding complete_def by auto
  2470 qed
  2471 
  2472 instance heine_borel < complete_space
  2473 proof
  2474   fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
  2475   hence "bounded (range f)"
  2476     by (rule cauchy_imp_bounded)
  2477   hence "compact (closure (range f))"
  2478     using bounded_closed_imp_compact [of "closure (range f)"] by auto
  2479   hence "complete (closure (range f))"
  2480     by (rule compact_imp_complete)
  2481   moreover have "\<forall>n. f n \<in> closure (range f)"
  2482     using closure_subset [of "range f"] by auto
  2483   ultimately have "\<exists>l\<in>closure (range f). (f ---> l) sequentially"
  2484     using `Cauchy f` unfolding complete_def by auto
  2485   then show "convergent f"
  2486     unfolding convergent_def LIMSEQ_conv_tendsto [symmetric] by auto
  2487 qed
  2488 
  2489 lemma complete_univ: "complete (UNIV :: 'a::complete_space set)"
  2490 proof(simp add: complete_def, rule, rule)
  2491   fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
  2492   hence "convergent f" by (rule Cauchy_convergent)
  2493   hence "\<exists>l. f ----> l" unfolding convergent_def .  
  2494   thus "\<exists>l. (f ---> l) sequentially" unfolding LIMSEQ_conv_tendsto .
  2495 qed
  2496 
  2497 lemma complete_imp_closed: assumes "complete s" shows "closed s"
  2498 proof -
  2499   { fix x assume "x islimpt s"
  2500     then obtain f where f: "\<forall>n. f n \<in> s - {x}" "(f ---> x) sequentially"
  2501       unfolding islimpt_sequential by auto
  2502     then obtain l where l: "l\<in>s" "(f ---> l) sequentially"
  2503       using `complete s`[unfolded complete_def] using convergent_imp_cauchy[of f x] by auto
  2504     hence "x \<in> s"  using Lim_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto
  2505   }
  2506   thus "closed s" unfolding closed_limpt by auto
  2507 qed
  2508 
  2509 lemma complete_eq_closed:
  2510   fixes s :: "'a::complete_space set"
  2511   shows "complete s \<longleftrightarrow> closed s" (is "?lhs = ?rhs")
  2512 proof
  2513   assume ?lhs thus ?rhs by (rule complete_imp_closed)
  2514 next
  2515   assume ?rhs
  2516   { fix f assume as:"\<forall>n::nat. f n \<in> s" "Cauchy f"
  2517     then obtain l where "(f ---> l) sequentially" using complete_univ[unfolded complete_def, THEN spec[where x=f]] by auto
  2518     hence "\<exists>l\<in>s. (f ---> l) sequentially" using `?rhs`[unfolded closed_sequential_limits, THEN spec[where x=f], THEN spec[where x=l]] using as(1) by auto  }
  2519   thus ?lhs unfolding complete_def by auto
  2520 qed
  2521 
  2522 lemma convergent_eq_cauchy:
  2523   fixes s :: "nat \<Rightarrow> 'a::complete_space"
  2524   shows "(\<exists>l. (s ---> l) sequentially) \<longleftrightarrow> Cauchy s" (is "?lhs = ?rhs")
  2525 proof
  2526   assume ?lhs then obtain l where "(s ---> l) sequentially" by auto
  2527   thus ?rhs using convergent_imp_cauchy by auto
  2528 next
  2529   assume ?rhs thus ?lhs using complete_univ[unfolded complete_def, THEN spec[where x=s]] by auto
  2530 qed
  2531 
  2532 lemma convergent_imp_bounded:
  2533   fixes s :: "nat \<Rightarrow> 'a::metric_space"
  2534   shows "(s ---> l) sequentially ==> bounded (s ` (UNIV::(nat set)))"
  2535   using convergent_imp_cauchy[of s]
  2536   using cauchy_imp_bounded[of s]
  2537   unfolding image_def
  2538   by auto
  2539 
  2540 subsection{* Total boundedness. *}
  2541 
  2542 fun helper_1::"('a::metric_space set) \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> 'a" where
  2543   "helper_1 s e n = (SOME y::'a. y \<in> s \<and> (\<forall>m<n. \<not> (dist (helper_1 s e m) y < e)))"
  2544 declare helper_1.simps[simp del]
  2545 
  2546 lemma compact_imp_totally_bounded:
  2547   assumes "compact s"
  2548   shows "\<forall>e>0. \<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> (\<Union>((\<lambda>x. ball x e) ` k))"
  2549 proof(rule, rule, rule ccontr)
  2550   fix e::real assume "e>0" and assm:"\<not> (\<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k)"
  2551   def x \<equiv> "helper_1 s e"
  2552   { fix n
  2553     have "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)"
  2554     proof(induct_tac rule:nat_less_induct)
  2555       fix n  def Q \<equiv> "(\<lambda>y. y \<in> s \<and> (\<forall>m<n. \<not> dist (x m) y < e))"
  2556       assume as:"\<forall>m<n. x m \<in> s \<and> (\<forall>ma<m. \<not> dist (x ma) (x m) < e)"
  2557       have "\<not> s \<subseteq> (\<Union>x\<in>x ` {0..<n}. ball x e)" using assm apply simp apply(erule_tac x="x ` {0 ..< n}" in allE) using as by auto
  2558       then obtain z where z:"z\<in>s" "z \<notin> (\<Union>x\<in>x ` {0..<n}. ball x e)" unfolding subset_eq by auto
  2559       have "Q (x n)" unfolding x_def and helper_1.simps[of s e n]
  2560         apply(rule someI2[where a=z]) unfolding x_def[symmetric] and Q_def using z by auto
  2561       thus "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)" unfolding Q_def by auto
  2562     qed }
  2563   hence "\<forall>n::nat. x n \<in> s" and x:"\<forall>n. \<forall>m < n. \<not> (dist (x m) (x n) < e)" by blast+
  2564   then obtain l r where "l\<in>s" and r:"subseq r" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded compact_def, THEN spec[where x=x]] by auto
  2565   from this(3) have "Cauchy (x \<circ> r)" using convergent_imp_cauchy by auto
  2566   then obtain N::nat where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e" unfolding cauchy_def using `e>0` by auto
  2567   show False
  2568     using N[THEN spec[where x=N], THEN spec[where x="N+1"]]
  2569     using r[unfolded subseq_def, THEN spec[where x=N], THEN spec[where x="N+1"]]
  2570     using x[THEN spec[where x="r (N+1)"], THEN spec[where x="r (N)"]] by auto
  2571 qed
  2572 
  2573 subsection{* Heine-Borel theorem (following Burkill \& Burkill vol. 2) *}
  2574 
  2575 lemma heine_borel_lemma: fixes s::"'a::metric_space set"
  2576   assumes "compact s"  "s \<subseteq> (\<Union> t)"  "\<forall>b \<in> t. open b"
  2577   shows "\<exists>e>0. \<forall>x \<in> s. \<exists>b \<in> t. ball x e \<subseteq> b"
  2578 proof(rule ccontr)
  2579   assume "\<not> (\<exists>e>0. \<forall>x\<in>s. \<exists>b\<in>t. ball x e \<subseteq> b)"
  2580   hence cont:"\<forall>e>0. \<exists>x\<in>s. \<forall>xa\<in>t. \<not> (ball x e \<subseteq> xa)" by auto
  2581   { fix n::nat
  2582     have "1 / real (n + 1) > 0" by auto
  2583     hence "\<exists>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> (ball x (inverse (real (n+1))) \<subseteq> xa))" using cont unfolding Bex_def by auto }
  2584   hence "\<forall>n::nat. \<exists>x. x \<in> s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)" by auto
  2585   then obtain f where f:"\<forall>n::nat. f n \<in> s \<and> (\<forall>xa\<in>t. \<not> ball (f n) (inverse (real (n + 1))) \<subseteq> xa)"
  2586     using choice[of "\<lambda>n::nat. \<lambda>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)"] by auto
  2587 
  2588   then obtain l r where l:"l\<in>s" and r:"subseq r" and lr:"((f \<circ> r) ---> l) sequentially"
  2589     using assms(1)[unfolded compact_def, THEN spec[where x=f]] by auto
  2590 
  2591   obtain b where "l\<in>b" "b\<in>t" using assms(2) and l by auto
  2592   then obtain e where "e>0" and e:"\<forall>z. dist z l < e \<longrightarrow> z\<in>b"
  2593     using assms(3)[THEN bspec[where x=b]] unfolding open_dist by auto
  2594 
  2595   then obtain N1 where N1:"\<forall>n\<ge>N1. dist ((f \<circ> r) n) l < e / 2"
  2596     using lr[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
  2597 
  2598   obtain N2::nat where N2:"N2>0" "inverse (real N2) < e /2" using real_arch_inv[of "e/2"] and `e>0` by auto
  2599   have N2':"inverse (real (r (N1 + N2) +1 )) < e/2"
  2600     apply(rule order_less_trans) apply(rule less_imp_inverse_less) using N2
  2601     using subseq_bigger[OF r, of "N1 + N2"] by auto
  2602 
  2603   def x \<equiv> "(f (r (N1 + N2)))"
  2604   have x:"\<not> ball x (inverse (real (r (N1 + N2) + 1))) \<subseteq> b" unfolding x_def
  2605     using f[THEN spec[where x="r (N1 + N2)"]] using `b\<in>t` by auto
  2606   have "\<exists>y\<in>ball x (inverse (real (r (N1 + N2) + 1))). y\<notin>b" apply(rule ccontr) using x by auto
  2607   then obtain y where y:"y \<in> ball x (inverse (real (r (N1 + N2) + 1)))" "y \<notin> b" by auto
  2608 
  2609   have "dist x l < e/2" using N1 unfolding x_def o_def by auto
  2610   hence "dist y l < e" using y N2' using dist_triangle[of y l x]by (auto simp add:dist_commute)
  2611 
  2612   thus False using e and `y\<notin>b` by auto
  2613 qed
  2614 
  2615 lemma compact_imp_heine_borel: "compact s ==> (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f)
  2616                \<longrightarrow> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))"
  2617 proof clarify
  2618   fix f assume "compact s" " \<forall>t\<in>f. open t" "s \<subseteq> \<Union>f"
  2619   then obtain e::real where "e>0" and "\<forall>x\<in>s. \<exists>b\<in>f. ball x e \<subseteq> b" using heine_borel_lemma[of s f] by auto
  2620   hence "\<forall>x\<in>s. \<exists>b. b\<in>f \<and> ball x e \<subseteq> b" by auto
  2621   hence "\<exists>bb. \<forall>x\<in>s. bb x \<in>f \<and> ball x e \<subseteq> bb x" using bchoice[of s "\<lambda>x b. b\<in>f \<and> ball x e \<subseteq> b"] by auto
  2622   then obtain  bb where bb:"\<forall>x\<in>s. (bb x) \<in> f \<and> ball x e \<subseteq> (bb x)" by blast
  2623 
  2624   from `compact s` have  "\<exists> k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" using compact_imp_totally_bounded[of s] `e>0` by auto
  2625   then obtain k where k:"finite k" "k \<subseteq> s" "s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" by auto
  2626 
  2627   have "finite (bb ` k)" using k(1) by auto
  2628   moreover
  2629   { fix x assume "x\<in>s"
  2630     hence "x\<in>\<Union>(\<lambda>x. ball x e) ` k" using k(3)  unfolding subset_eq by auto
  2631     hence "\<exists>X\<in>bb ` k. x \<in> X" using bb k(2) by blast
  2632     hence "x \<in> \<Union>(bb ` k)" using  Union_iff[of x "bb ` k"] by auto
  2633   }
  2634   ultimately show "\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f'" using bb k(2) by (rule_tac x="bb ` k" in exI) auto
  2635 qed
  2636 
  2637 subsection{* Bolzano-Weierstrass property. *}
  2638 
  2639 lemma heine_borel_imp_bolzano_weierstrass:
  2640   assumes "\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f) --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f'))"
  2641           "infinite t"  "t \<subseteq> s"
  2642   shows "\<exists>x \<in> s. x islimpt t"
  2643 proof(rule ccontr)
  2644   assume "\<not> (\<exists>x \<in> s. x islimpt t)"
  2645   then obtain f where f:"\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)" unfolding islimpt_def
  2646     using bchoice[of s "\<lambda> x T. x \<in> T \<and> open T \<and> (\<forall>y\<in>t. y \<in> T \<longrightarrow> y = x)"] by auto
  2647   obtain g where g:"g\<subseteq>{t. \<exists>x. x \<in> s \<and> t = f x}" "finite g" "s \<subseteq> \<Union>g"
  2648     using assms(1)[THEN spec[where x="{t. \<exists>x. x\<in>s \<and> t = f x}"]] using f by auto
  2649   from g(1,3) have g':"\<forall>x\<in>g. \<exists>xa \<in> s. x = f xa" by auto
  2650   { fix x y assume "x\<in>t" "y\<in>t" "f x = f y"
  2651     hence "x \<in> f x"  "y \<in> f x \<longrightarrow> y = x" using f[THEN bspec[where x=x]] and `t\<subseteq>s` by auto
  2652     hence "x = y" using `f x = f y` and f[THEN bspec[where x=y]] and `y\<in>t` and `t\<subseteq>s` by auto  }
  2653   hence "infinite (f ` t)" using assms(2) using finite_imageD[unfolded inj_on_def, of f t] by auto
  2654   moreover
  2655   { fix x assume "x\<in>t" "f x \<notin> g"
  2656     from g(3) assms(3) `x\<in>t` obtain h where "h\<in>g" and "x\<in>h" by auto
  2657     then obtain y where "y\<in>s" "h = f y" using g'[THEN bspec[where x=h]] by auto
  2658     hence "y = x" using f[THEN bspec[where x=y]] and `x\<in>t` and `x\<in>h`[unfolded `h = f y`] by auto
  2659     hence False using `f x \<notin> g` `h\<in>g` unfolding `h = f y` by auto  }
  2660   hence "f ` t \<subseteq> g" by auto
  2661   ultimately show False using g(2) using finite_subset by auto
  2662 qed
  2663 
  2664 subsection{* Complete the chain of compactness variants. *}
  2665 
  2666 primrec helper_2::"(real \<Rightarrow> 'a::metric_space) \<Rightarrow> nat \<Rightarrow> 'a" where
  2667   "helper_2 beyond 0 = beyond 0" |
  2668   "helper_2 beyond (Suc n) = beyond (dist undefined (helper_2 beyond n) + 1 )"
  2669 
  2670 lemma bolzano_weierstrass_imp_bounded: fixes s::"'a::metric_space set"
  2671   assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
  2672   shows "bounded s"
  2673 proof(rule ccontr)
  2674   assume "\<not> bounded s"
  2675   then obtain beyond where "\<forall>a. beyond a \<in>s \<and> \<not> dist undefined (beyond a) \<le> a"
  2676     unfolding bounded_any_center [where a=undefined]
  2677     apply simp using choice[of "\<lambda>a x. x\<in>s \<and> \<not> dist undefined x \<le> a"] by auto
  2678   hence beyond:"\<And>a. beyond a \<in>s" "\<And>a. dist undefined (beyond a) > a"
  2679     unfolding linorder_not_le by auto
  2680   def x \<equiv> "helper_2 beyond"
  2681 
  2682   { fix m n ::nat assume "m<n"
  2683     hence "dist undefined (x m) + 1 < dist undefined (x n)"
  2684     proof(induct n)
  2685       case 0 thus ?case by auto
  2686     next
  2687       case (Suc n)
  2688       have *:"dist undefined (x n) + 1 < dist undefined (x (Suc n))"
  2689         unfolding x_def and helper_2.simps
  2690         using beyond(2)[of "dist undefined (helper_2 beyond n) + 1"] by auto
  2691       thus ?case proof(cases "m < n")
  2692         case True thus ?thesis using Suc and * by auto
  2693       next
  2694         case False hence "m = n" using Suc(2) by auto
  2695         thus ?thesis using * by auto
  2696       qed
  2697     qed  } note * = this
  2698   { fix m n ::nat assume "m\<noteq>n"
  2699     have "1 < dist (x m) (x n)"
  2700     proof(cases "m<n")
  2701       case True
  2702       hence "1 < dist undefined (x n) - dist undefined (x m)" using *[of m n] by auto
  2703       thus ?thesis using dist_triangle [of undefined "x n" "x m"] by arith
  2704     next
  2705       case False hence "n<m" using `m\<noteq>n` by auto
  2706       hence "1 < dist undefined (x m) - dist undefined (x n)" using *[of n m] by auto
  2707       thus ?thesis using dist_triangle2 [of undefined "x m" "x n"] by arith
  2708     qed  } note ** = this
  2709   { fix a b assume "x a = x b" "a \<noteq> b"
  2710     hence False using **[of a b] by auto  }
  2711   hence "inj x" unfolding inj_on_def by auto
  2712   moreover
  2713   { fix n::nat
  2714     have "x n \<in> s"
  2715     proof(cases "n = 0")
  2716       case True thus ?thesis unfolding x_def using beyond by auto
  2717     next
  2718       case False then obtain z where "n = Suc z" using not0_implies_Suc by auto
  2719       thus ?thesis unfolding x_def using beyond by auto
  2720     qed  }
  2721   ultimately have "infinite (range x) \<and> range x \<subseteq> s" unfolding x_def using range_inj_infinite[of "helper_2 beyond"] using beyond(1) by auto
  2722 
  2723   then obtain l where "l\<in>s" and l:"l islimpt range x" using assms[THEN spec[where x="range x"]] by auto
  2724   then obtain y where "x y \<noteq> l" and y:"dist (x y) l < 1/2" unfolding islimpt_approachable apply(erule_tac x="1/2" in allE) by auto
  2725   then obtain z where "x z \<noteq> l" and z:"dist (x z) l < dist (x y) l" using l[unfolded islimpt_approachable, THEN spec[where x="dist (x y) l"]]
  2726     unfolding dist_nz by auto
  2727   show False using y and z and dist_triangle_half_l[of "x y" l 1 "x z"] and **[of y z] by auto
  2728 qed
  2729 
  2730 lemma sequence_infinite_lemma:
  2731   fixes l :: "'a::metric_space" (* TODO: generalize *)
  2732   assumes "\<forall>n::nat. (f n  \<noteq> l)"  "(f ---> l) sequentially"
  2733   shows "infinite (range f)"
  2734 proof
  2735   let ?A = "(\<lambda>x. dist x l) ` range f"
  2736   assume "finite (range f)"
  2737   hence **:"finite ?A" "?A \<noteq> {}" by auto
  2738   obtain k where k:"dist (f k) l = Min ?A" using Min_in[OF **] by auto
  2739   have "0 < Min ?A" using assms(1) unfolding dist_nz unfolding Min_gr_iff[OF **] by auto
  2740   then obtain N where "dist (f N) l < Min ?A" using assms(2)[unfolded Lim_sequentially, THEN spec[where x="Min ?A"]] by auto
  2741   moreover have "dist (f N) l \<in> ?A" by auto
  2742   ultimately show False using Min_le[OF **(1), of "dist (f N) l"] by auto
  2743 qed
  2744 
  2745 lemma sequence_unique_limpt:
  2746   fixes l :: "'a::metric_space" (* TODO: generalize *)
  2747   assumes "\<forall>n::nat. (f n \<noteq> l)"  "(f ---> l) sequentially"  "l' islimpt (range f)"
  2748   shows "l' = l"
  2749 proof(rule ccontr)
  2750   def e \<equiv> "dist l' l"
  2751   assume "l' \<noteq> l" hence "e>0" unfolding dist_nz e_def by auto
  2752   then obtain N::nat where N:"\<forall>n\<ge>N. dist (f n) l < e / 2"
  2753     using assms(2)[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
  2754   def d \<equiv> "Min (insert (e/2) ((\<lambda>n. if dist (f n) l' = 0 then e/2 else dist (f n) l') ` {0 .. N}))"
  2755   have "d>0" using `e>0` unfolding d_def e_def using zero_le_dist[of _ l', unfolded order_le_less] by auto
  2756   obtain k where k:"f k \<noteq> l'"  "dist (f k) l' < d" using `d>0` and assms(3)[unfolded islimpt_approachable, THEN spec[where x="d"]] by auto
  2757   have "k\<ge>N" using k(1)[unfolded dist_nz] using k(2)[unfolded d_def]
  2758     by force
  2759   hence "dist l' l < e" using N[THEN spec[where x=k]] using k(2)[unfolded d_def] and dist_triangle_half_r[of "f k" l' e l] by auto
  2760   thus False unfolding e_def by auto
  2761 qed
  2762 
  2763 lemma bolzano_weierstrass_imp_closed:
  2764   fixes s :: "'a::metric_space set" (* TODO: can this be generalized? *)
  2765   assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
  2766   shows "closed s"
  2767 proof-
  2768   { fix x l assume as: "\<forall>n::nat. x n \<in> s" "(x ---> l) sequentially"
  2769     hence "l \<in> s"
  2770     proof(cases "\<forall>n. x n \<noteq> l")
  2771       case False thus "l\<in>s" using as(1) by auto
  2772     next
  2773       case True note cas = this
  2774       with as(2) have "infinite (range x)" using sequence_infinite_lemma[of x l] by auto
  2775       then obtain l' where "l'\<in>s" "l' islimpt (range x)" using assms[THEN spec[where x="range x"]] as(1) by auto
  2776       thus "l\<in>s" using sequence_unique_limpt[of x l l'] using as cas by auto
  2777     qed  }
  2778   thus ?thesis unfolding closed_sequential_limits by fast
  2779 qed
  2780 
  2781 text{* Hence express everything as an equivalence.   *}
  2782 
  2783 lemma compact_eq_heine_borel:
  2784   fixes s :: "'a::heine_borel set"
  2785   shows "compact s \<longleftrightarrow>
  2786            (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f)
  2787                --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))" (is "?lhs = ?rhs")
  2788 proof
  2789   assume ?lhs thus ?rhs using compact_imp_heine_borel[of s] by blast
  2790 next
  2791   assume ?rhs
  2792   hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. x islimpt t)"
  2793     by (blast intro: heine_borel_imp_bolzano_weierstrass[of s])
  2794   thus ?lhs using bolzano_weierstrass_imp_bounded[of s] bolzano_weierstrass_imp_closed[of s] bounded_closed_imp_compact[of s] by blast
  2795 qed
  2796 
  2797 lemma compact_eq_bolzano_weierstrass:
  2798   fixes s :: "'a::heine_borel set"
  2799   shows "compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t))" (is "?lhs = ?rhs")
  2800 proof
  2801   assume ?lhs thus ?rhs unfolding compact_eq_heine_borel using heine_borel_imp_bolzano_weierstrass[of s] by auto
  2802 next
  2803   assume ?rhs thus ?lhs using bolzano_weierstrass_imp_bounded bolzano_weierstrass_imp_closed bounded_closed_imp_compact by auto
  2804 qed
  2805 
  2806 lemma compact_eq_bounded_closed:
  2807   fixes s :: "'a::heine_borel set"
  2808   shows "compact s \<longleftrightarrow> bounded s \<and> closed s"  (is "?lhs = ?rhs")
  2809 proof
  2810   assume ?lhs thus ?rhs unfolding compact_eq_bolzano_weierstrass using bolzano_weierstrass_imp_bounded bolzano_weierstrass_imp_closed by auto
  2811 next
  2812   assume ?rhs thus ?lhs using bounded_closed_imp_compact by auto
  2813 qed
  2814 
  2815 lemma compact_imp_bounded:
  2816   fixes s :: "'a::metric_space set"
  2817   shows "compact s ==> bounded s"
  2818 proof -
  2819   assume "compact s"
  2820   hence "\<forall>f. (\<forall>t\<in>f. open t) \<and> s \<subseteq> \<Union>f \<longrightarrow> (\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f')"
  2821     by (rule compact_imp_heine_borel)
  2822   hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t)"
  2823     using heine_borel_imp_bolzano_weierstrass[of s] by auto
  2824   thus "bounded s"
  2825     by (rule bolzano_weierstrass_imp_bounded)
  2826 qed
  2827 
  2828 lemma compact_imp_closed:
  2829   fixes s :: "'a::metric_space set"
  2830   shows "compact s ==> closed s"
  2831 proof -
  2832   assume "compact s"
  2833   hence "\<forall>f. (\<forall>t\<in>f. open t) \<and> s \<subseteq> \<Union>f \<longrightarrow> (\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f')"
  2834     by (rule compact_imp_heine_borel)
  2835   hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t)"
  2836     using heine_borel_imp_bolzano_weierstrass[of s] by auto
  2837   thus "closed s"
  2838     by (rule bolzano_weierstrass_imp_closed)
  2839 qed
  2840 
  2841 text{* In particular, some common special cases. *}
  2842 
  2843 lemma compact_empty[simp]:
  2844  "compact {}"
  2845   unfolding compact_def
  2846   by simp
  2847 
  2848 (* TODO: can any of the next 3 lemmas be generalized to metric spaces? *)
  2849 
  2850   (* FIXME : Rename *)
  2851 lemma compact_union[intro]:
  2852   fixes s t :: "'a::heine_borel set"
  2853   shows "compact s \<Longrightarrow> compact t ==> compact (s \<union> t)"
  2854   unfolding compact_eq_bounded_closed
  2855   using bounded_Un[of s t]
  2856   using closed_Un[of s t]
  2857   by simp
  2858 
  2859 lemma compact_inter[intro]:
  2860   fixes s t :: "'a::heine_borel set"
  2861   shows "compact s \<Longrightarrow> compact t ==> compact (s \<inter> t)"
  2862   unfolding compact_eq_bounded_closed
  2863   using bounded_Int[of s t]
  2864   using closed_Int[of s t]
  2865   by simp
  2866 
  2867 lemma compact_inter_closed[intro]:
  2868   fixes s t :: "'a::heine_borel set"
  2869   shows "compact s \<Longrightarrow> closed t ==> compact (s \<inter> t)"
  2870   unfolding compact_eq_bounded_closed
  2871   using closed_Int[of s t]
  2872   using bounded_subset[of "s \<inter> t" s]
  2873   by blast
  2874 
  2875 lemma closed_inter_compact[intro]:
  2876   fixes s t :: "'a::heine_borel set"
  2877   shows "closed s \<Longrightarrow> compact t ==> compact (s \<inter> t)"
  2878 proof-
  2879   assume "closed s" "compact t"
  2880   moreover
  2881   have "s \<inter> t = t \<inter> s" by auto ultimately
  2882   show ?thesis
  2883     using compact_inter_closed[of t s]
  2884     by auto
  2885 qed
  2886 
  2887 lemma closed_sing [simp]:
  2888   fixes a :: "'a::metric_space"
  2889   shows "closed {a}"
  2890   apply (clarsimp simp add: closed_def open_dist)
  2891   apply (rule ccontr)
  2892   apply (drule_tac x="dist x a" in spec)
  2893   apply (simp add: dist_nz dist_commute)
  2894   done
  2895 
  2896 lemma finite_imp_closed:
  2897   fixes s :: "'a::metric_space set"
  2898   shows "finite s ==> closed s"
  2899 proof (induct set: finite)
  2900   case empty show "closed {}" by simp
  2901 next
  2902   case (insert x F)
  2903   hence "closed ({x} \<union> F)" by (simp only: closed_Un closed_sing)
  2904   thus "closed (insert x F)" by simp
  2905 qed
  2906 
  2907 lemma finite_imp_compact:
  2908   fixes s :: "'a::heine_borel set"
  2909   shows "finite s ==> compact s"
  2910   unfolding compact_eq_bounded_closed
  2911   using finite_imp_closed finite_imp_bounded
  2912   by blast
  2913 
  2914 lemma compact_sing [simp]: "compact {a}"
  2915   unfolding compact_def o_def subseq_def
  2916   by (auto simp add: tendsto_const)
  2917 
  2918 lemma compact_cball[simp]:
  2919   fixes x :: "'a::heine_borel"
  2920   shows "compact(cball x e)"
  2921   using compact_eq_bounded_closed bounded_cball closed_cball
  2922   by blast
  2923 
  2924 lemma compact_frontier_bounded[intro]:
  2925   fixes s :: "'a::heine_borel set"
  2926   shows "bounded s ==> compact(frontier s)"
  2927   unfolding frontier_def
  2928   using compact_eq_bounded_closed
  2929   by blast
  2930 
  2931 lemma compact_frontier[intro]:
  2932   fixes s :: "'a::heine_borel set"
  2933   shows "compact s ==> compact (frontier s)"
  2934   using compact_eq_bounded_closed compact_frontier_bounded
  2935   by blast
  2936 
  2937 lemma frontier_subset_compact:
  2938   fixes s :: "'a::heine_borel set"
  2939   shows "compact s ==> frontier s \<subseteq> s"
  2940   using frontier_subset_closed compact_eq_bounded_closed
  2941   by blast
  2942 
  2943 lemma open_delete:
  2944   fixes s :: "'a::metric_space set"
  2945   shows "open s ==> open(s - {x})"
  2946   using open_Diff[of s "{x}"] closed_sing
  2947   by blast
  2948 
  2949 text{* Finite intersection property. I could make it an equivalence in fact. *}
  2950 
  2951 lemma compact_imp_fip:
  2952   fixes s :: "'a::heine_borel set"
  2953   assumes "compact s"  "\<forall>t \<in> f. closed t"
  2954         "\<forall>f'. finite f' \<and> f' \<subseteq> f --> (s \<inter> (\<Inter> f') \<noteq> {})"
  2955   shows "s \<inter> (\<Inter> f) \<noteq> {}"
  2956 proof
  2957   assume as:"s \<inter> (\<Inter> f) = {}"
  2958   hence "s \<subseteq> \<Union> uminus ` f" by auto
  2959   moreover have "Ball (uminus ` f) open" using open_Diff closed_Diff using assms(2) by auto
  2960   ultimately obtain f' where f':"f' \<subseteq> uminus ` f"  "finite f'"  "s \<subseteq> \<Union>f'" using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="(\<lambda>t. - t) ` f"]] by auto
  2961   hence "finite (uminus ` f') \<and> uminus ` f' \<subseteq> f" by(auto simp add: Diff_Diff_Int)
  2962   hence "s \<inter> \<Inter>uminus ` f' \<noteq> {}" using assms(3)[THEN spec[where x="uminus ` f'"]] by auto
  2963   thus False using f'(3) unfolding subset_eq and Union_iff by blast
  2964 qed
  2965 
  2966 subsection{* Bounded closed nest property (proof does not use Heine-Borel).            *}
  2967 
  2968 lemma bounded_closed_nest:
  2969   assumes "\<forall>n. closed(s n)" "\<forall>n. (s n \<noteq> {})"
  2970   "(\<forall>m n. m \<le> n --> s n \<subseteq> s m)"  "bounded(s 0)"
  2971   shows "\<exists>a::'a::heine_borel. \<forall>n::nat. a \<in> s(n)"
  2972 proof-
  2973   from assms(2) obtain x where x:"\<forall>n::nat. x n \<in> s n" using choice[of "\<lambda>n x. x\<in> s n"] by auto
  2974   from assms(4,1) have *:"compact (s 0)" using bounded_closed_imp_compact[of "s 0"] by auto
  2975 
  2976   then obtain l r where lr:"l\<in>s 0" "subseq r" "((x \<circ> r) ---> l) sequentially"
  2977     unfolding compact_def apply(erule_tac x=x in allE)  using x using assms(3) by blast
  2978 
  2979   { fix n::nat
  2980     { fix e::real assume "e>0"
  2981       with lr(3) obtain N where N:"\<forall>m\<ge>N. dist ((x \<circ> r) m) l < e" unfolding Lim_sequentially by auto
  2982       hence "dist ((x \<circ> r) (max N n)) l < e" by auto
  2983       moreover
  2984       have "r (max N n) \<ge> n" using lr(2) using subseq_bigger[of r "max N n"] by auto
  2985       hence "(x \<circ> r) (max N n) \<in> s n"
  2986         using x apply(erule_tac x=n in allE)
  2987         using x apply(erule_tac x="r (max N n)" in allE)
  2988         using assms(3) apply(erule_tac x=n in allE)apply( erule_tac x="r (max N n)" in allE) by auto
  2989       ultimately have "\<exists>y\<in>s n. dist y l < e" by auto
  2990     }
  2991     hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by blast
  2992   }
  2993   thus ?thesis by auto
  2994 qed
  2995 
  2996 text{* Decreasing case does not even need compactness, just completeness.        *}
  2997 
  2998 lemma decreasing_closed_nest:
  2999   assumes "\<forall>n. closed(s n)"
  3000           "\<forall>n. (s n \<noteq> {})"
  3001           "\<forall>m n. m \<le> n --> s n \<subseteq> s m"
  3002           "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y \<in> (s n). dist x y < e"
  3003   shows "\<exists>a::'a::heine_borel. \<forall>n::nat. a \<in> s n"
  3004 proof-
  3005   have "\<forall>n. \<exists> x. x\<in>s n" using assms(2) by auto
  3006   hence "\<exists>t. \<forall>n. t n \<in> s n" using choice[of "\<lambda> n x. x \<in> s n"] by auto
  3007   then obtain t where t: "\<forall>n. t n \<in> s n" by auto
  3008   { fix e::real assume "e>0"
  3009     then obtain N where N:"\<forall>x\<in>s N. \<forall>y\<in>s N. dist x y < e" using assms(4) by auto
  3010     { fix m n ::nat assume "N \<le> m \<and> N \<le> n"
  3011       hence "t m \<in> s N" "t n \<in> s N" using assms(3) t unfolding  subset_eq t by blast+
  3012       hence "dist (t m) (t n) < e" using N by auto
  3013     }
  3014     hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (t m) (t n) < e" by auto
  3015   }
  3016   hence  "Cauchy t" unfolding cauchy_def by auto
  3017   then obtain l where l:"(t ---> l) sequentially" using complete_univ unfolding complete_def by auto
  3018   { fix n::nat
  3019     { fix e::real assume "e>0"
  3020       then obtain N::nat where N:"\<forall>n\<ge>N. dist (t n) l < e" using l[unfolded Lim_sequentially] by auto
  3021       have "t (max n N) \<in> s n" using assms(3) unfolding subset_eq apply(erule_tac x=n in allE) apply (erule_tac x="max n N" in allE) using t by auto
  3022       hence "\<exists>y\<in>s n. dist y l < e" apply(rule_tac x="t (max n N)" in bexI) using N by auto
  3023     }
  3024     hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by auto
  3025   }
  3026   then show ?thesis by auto
  3027 qed
  3028 
  3029 text{* Strengthen it to the intersection actually being a singleton.             *}
  3030 
  3031 lemma decreasing_closed_nest_sing:
  3032   fixes s :: "nat \<Rightarrow> 'a::heine_borel set"
  3033   assumes "\<forall>n. closed(s n)"
  3034           "\<forall>n. s n \<noteq> {}"
  3035           "\<forall>m n. m \<le> n --> s n \<subseteq> s m"
  3036           "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y\<in>(s n). dist x y < e"
  3037   shows "\<exists>a. \<Inter>(range s) = {a}"
  3038 proof-
  3039   obtain a where a:"\<forall>n. a \<in> s n" using decreasing_closed_nest[of s] using assms by auto
  3040   { fix b assume b:"b \<in> \<Inter>(range s)"
  3041     { fix e::real assume "e>0"
  3042       hence "dist a b < e" using assms(4 )using b using a by blast
  3043     }
  3044     hence "dist a b = 0" by (metis dist_eq_0_iff dist_nz real_less_def)
  3045   }
  3046   with a have "\<Inter>(range s) = {a}" unfolding image_def by auto
  3047   thus ?thesis ..
  3048 qed
  3049 
  3050 text{* Cauchy-type criteria for uniform convergence. *}
  3051 
  3052 lemma uniformly_convergent_eq_cauchy: fixes s::"nat \<Rightarrow> 'b \<Rightarrow> 'a::heine_borel" shows
  3053  "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e) \<longleftrightarrow>
  3054   (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  --> dist (s m x) (s n x) < e)" (is "?lhs = ?rhs")
  3055 proof(rule)
  3056   assume ?lhs
  3057   then obtain l where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e" by auto
  3058   { fix e::real assume "e>0"
  3059     then obtain N::nat where N:"\<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e / 2" using l[THEN spec[where x="e/2"]] by auto
  3060     { fix n m::nat and x::"'b" assume "N \<le> m \<and> N \<le> n \<and> P x"
  3061       hence "dist (s m x) (s n x) < e"
  3062         using N[THEN spec[where x=m], THEN spec[where x=x]]
  3063         using N[THEN spec[where x=n], THEN spec[where x=x]]
  3064         using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto  }
  3065     hence "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  --> dist (s m x) (s n x) < e"  by auto  }
  3066   thus ?rhs by auto
  3067 next
  3068   assume ?rhs
  3069   hence "\<forall>x. P x \<longrightarrow> Cauchy (\<lambda>n. s n x)" unfolding cauchy_def apply auto by (erule_tac x=e in allE)auto
  3070   then obtain l where l:"\<forall>x. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l x) sequentially" unfolding convergent_eq_cauchy[THEN sym]
  3071     using choice[of "\<lambda>x l. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l) sequentially"] by auto
  3072   { fix e::real assume "e>0"
  3073     then obtain N where N:"\<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x \<longrightarrow> dist (s m x) (s n x) < e/2"
  3074       using `?rhs`[THEN spec[where x="e/2"]] by auto
  3075     { fix x assume "P x"
  3076       then obtain M where M:"\<forall>n\<ge>M. dist (s n x) (l x) < e/2"
  3077         using l[THEN spec[where x=x], unfolded Lim_sequentially] using `e>0` by(auto elim!: allE[where x="e/2"])
  3078       fix n::nat assume "n\<ge>N"
  3079       hence "dist(s n x)(l x) < e"  using `P x`and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]]
  3080         using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"] by (auto simp add: dist_commute)  }
  3081     hence "\<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e" by auto }
  3082   thus ?lhs by auto
  3083 qed
  3084 
  3085 lemma uniformly_cauchy_imp_uniformly_convergent:
  3086   fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::heine_borel"
  3087   assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e"
  3088           "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n --> dist(s n x)(l x) < e)"
  3089   shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e"
  3090 proof-
  3091   obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e"
  3092     using assms(1) unfolding uniformly_convergent_eq_cauchy[THEN sym] by auto
  3093   moreover
  3094   { fix x assume "P x"
  3095     hence "l x = l' x" using Lim_unique[OF trivial_limit_sequentially, of "\<lambda>n. s n x" "l x" "l' x"]
  3096       using l and assms(2) unfolding Lim_sequentially by blast  }
  3097   ultimately show ?thesis by auto
  3098 qed
  3099 
  3100 subsection{* Define continuity over a net to take in restrictions of the set. *}
  3101 
  3102 definition
  3103   continuous :: "'a::t2_space net \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
  3104   "continuous net f \<longleftrightarrow> (f ---> f(netlimit net)) net"
  3105 
  3106 lemma continuous_trivial_limit:
  3107  "trivial_limit net ==> continuous net f"
  3108   unfolding continuous_def tendsto_def trivial_limit_eq by auto
  3109 
  3110 lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f(x)) (at x within s)"
  3111   unfolding continuous_def
  3112   unfolding tendsto_def
  3113   using netlimit_within[of x s]
  3114   by (cases "trivial_limit (at x within s)") (auto simp add: trivial_limit_eventually)
  3115 
  3116 lemma continuous_at: "continuous (at x) f \<longleftrightarrow> (f ---> f(x)) (at x)"
  3117   using continuous_within [of x UNIV f] by (simp add: within_UNIV)
  3118 
  3119 lemma continuous_at_within:
  3120   assumes "continuous (at x) f"  shows "continuous (at x within s) f"
  3121   using assms unfolding continuous_at continuous_within
  3122   by (rule Lim_at_within)
  3123 
  3124 text{* Derive the epsilon-delta forms, which we often use as "definitions" *}
  3125 
  3126 lemma continuous_within_eps_delta:
  3127   "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s.  dist x' x < d --> dist (f x') (f x) < e)"
  3128   unfolding continuous_within and Lim_within
  3129   apply auto unfolding dist_nz[THEN sym] apply(auto elim!:allE) apply(rule_tac x=d in exI) by auto
  3130 
  3131 lemma continuous_at_eps_delta: "continuous (at x) f \<longleftrightarrow>  (\<forall>e>0. \<exists>d>0.
  3132                            \<forall>x'. dist x' x < d --> dist(f x')(f x) < e)"
  3133   using continuous_within_eps_delta[of x UNIV f]
  3134   unfolding within_UNIV by blast
  3135 
  3136 text{* Versions in terms of open balls. *}
  3137 
  3138 lemma continuous_within_ball:
  3139  "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
  3140                             f ` (ball x d \<inter> s) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
  3141 proof
  3142   assume ?lhs
  3143   { fix e::real assume "e>0"
  3144     then obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
  3145       using `?lhs`[unfolded continuous_within Lim_within] by auto
  3146     { fix y assume "y\<in>f ` (ball x d \<inter> s)"
  3147       hence "y \<in> ball (f x) e" using d(2) unfolding dist_nz[THEN sym]
  3148         apply (auto simp add: dist_commute mem_ball) apply(erule_tac x=xa in ballE) apply auto using `e>0` by auto
  3149     }
  3150     hence "\<exists>d>0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e" using `d>0` unfolding subset_eq ball_def by (auto simp add: dist_commute)  }
  3151   thus ?rhs by auto
  3152 next
  3153   assume ?rhs thus ?lhs unfolding continuous_within Lim_within ball_def subset_eq
  3154     apply (auto simp add: dist_commute) apply(erule_tac x=e in allE) by auto
  3155 qed
  3156 
  3157 lemma continuous_at_ball:
  3158   "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f ` (ball x d) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
  3159 proof
  3160   assume ?lhs thus ?rhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
  3161     apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x=xa in allE) apply (auto simp add: dist_commute dist_nz)
  3162     unfolding dist_nz[THEN sym] by auto
  3163 next
  3164   assume ?rhs thus ?lhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
  3165     apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x="f xa" in allE) by (auto simp add: dist_commute dist_nz)
  3166 qed
  3167 
  3168 text{* For setwise continuity, just start from the epsilon-delta definitions. *}
  3169 
  3170 definition
  3171   continuous_on :: "'a::metric_space set \<Rightarrow> ('a \<Rightarrow> 'b::metric_space) \<Rightarrow> bool" where
  3172   "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d::real>0. \<forall>x' \<in> s. dist x' x < d --> dist (f x') (f x) < e)"
  3173 
  3174 
  3175 definition
  3176   uniformly_continuous_on ::
  3177     "'a::metric_space set \<Rightarrow> ('a \<Rightarrow> 'b::metric_space) \<Rightarrow> bool" where
  3178   "uniformly_continuous_on s f \<longleftrightarrow>
  3179         (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall> x'\<in>s. dist x' x < d
  3180                            --> dist (f x') (f x) < e)"
  3181 
  3182 
  3183 text{* Lifting and dropping *}
  3184 
  3185 lemma continuous_on_o_dest_vec1: fixes f::"real \<Rightarrow> 'a::real_normed_vector"
  3186   assumes "continuous_on {a..b::real} f" shows "continuous_on {vec1 a..vec1 b} (f o dest_vec1)"
  3187   using assms unfolding continuous_on_def apply safe
  3188   apply(erule_tac x="x$1" in ballE,erule_tac x=e in allE) apply safe
  3189   apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real 
  3190   apply(erule_tac x="dest_vec1 x'" in ballE) by(auto simp add:vector_le_def)
  3191 
  3192 lemma continuous_on_o_vec1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
  3193   assumes "continuous_on {a..b} f" shows "continuous_on {dest_vec1 a..dest_vec1 b} (f o vec1)"
  3194   using assms unfolding continuous_on_def apply safe
  3195   apply(erule_tac x="vec x" in ballE,erule_tac x=e in allE) apply safe
  3196   apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real 
  3197   apply(erule_tac x="vec1 x'" in ballE) by(auto simp add:vector_le_def)
  3198 
  3199 text{* Some simple consequential lemmas. *}
  3200 
  3201 lemma uniformly_continuous_imp_continuous:
  3202  " uniformly_continuous_on s f ==> continuous_on s f"
  3203   unfolding uniformly_continuous_on_def continuous_on_def by blast
  3204 
  3205 lemma continuous_at_imp_continuous_within:
  3206  "continuous (at x) f ==> continuous (at x within s) f"
  3207   unfolding continuous_within continuous_at using Lim_at_within by auto
  3208 
  3209 lemma continuous_at_imp_continuous_on: assumes "(\<forall>x \<in> s. continuous (at x) f)"
  3210   shows "continuous_on s f"
  3211 proof(simp add: continuous_at continuous_on_def, rule, rule, rule)
  3212   fix x and e::real assume "x\<in>s" "e>0"
  3213   hence "eventually (\<lambda>xa. dist (f xa) (f x) < e) (at x)" using assms unfolding continuous_at tendsto_iff by auto
  3214   then obtain d where d:"d>0" "\<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" unfolding eventually_at by auto
  3215   { fix x' assume "\<not> 0 < dist x' x"
  3216     hence "x=x'"
  3217       using dist_nz[of x' x] by auto
  3218     hence "dist (f x') (f x) < e" using `e>0` by auto
  3219   }
  3220   thus "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using d by auto
  3221 qed
  3222 
  3223 lemma continuous_on_eq_continuous_within:
  3224  "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x within s) f)" (is "?lhs = ?rhs")
  3225 proof
  3226   assume ?rhs
  3227   { fix x assume "x\<in>s"
  3228     fix e::real assume "e>0"
  3229     assume "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
  3230     then obtain d where "d>0" and d:"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" by auto
  3231     { fix x' assume as:"x'\<in>s" "dist x' x < d"
  3232       hence "dist (f x') (f x) < e" using `e>0` d `x'\<in>s` dist_eq_0_iff[of x' x] zero_le_dist[of x' x] as(2) by (metis dist_eq_0_iff dist_nz) }
  3233     hence "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using `d>0` by auto
  3234   }
  3235   thus ?lhs using `?rhs` unfolding continuous_on_def continuous_within Lim_within by auto
  3236 next
  3237   assume ?lhs
  3238   thus ?rhs unfolding continuous_on_def continuous_within Lim_within by blast
  3239 qed
  3240 
  3241 lemma continuous_on:
  3242  "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. (f ---> f(x)) (at x within s))"
  3243   by (auto simp add: continuous_on_eq_continuous_within continuous_within)
  3244 
  3245 lemma continuous_on_eq_continuous_at:
  3246  "open s ==> (continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x) f))"
  3247   by (auto simp add: continuous_on continuous_at Lim_within_open)
  3248 
  3249 lemma continuous_within_subset:
  3250  "continuous (at x within s) f \<Longrightarrow> t \<subseteq> s
  3251              ==> continuous (at x within t) f"
  3252   unfolding continuous_within by(metis Lim_within_subset)
  3253 
  3254 lemma continuous_on_subset:
  3255  "continuous_on s f \<Longrightarrow> t \<subseteq> s ==> continuous_on t f"
  3256   unfolding continuous_on by (metis subset_eq Lim_within_subset)
  3257 
  3258 lemma continuous_on_interior:
  3259  "continuous_on s f \<Longrightarrow> x \<in> interior s ==> continuous (at x) f"
  3260 unfolding interior_def
  3261 apply simp
  3262 by (meson continuous_on_eq_continuous_at continuous_on_subset)
  3263 
  3264 lemma continuous_on_eq:
  3265  "(\<forall>x \<in> s. f x = g x) \<Longrightarrow> continuous_on s f
  3266            ==> continuous_on s g"
  3267   by (simp add: continuous_on_def)
  3268 
  3269 text{* Characterization of various kinds of continuity in terms of sequences.  *}
  3270 
  3271 (* \<longrightarrow> could be generalized, but \<longleftarrow> requires metric space *)
  3272 lemma continuous_within_sequentially:
  3273   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
  3274   shows "continuous (at a within s) f \<longleftrightarrow>
  3275                 (\<forall>x. (\<forall>n::nat. x n \<in> s) \<and> (x ---> a) sequentially
  3276                      --> ((f o x) ---> f a) sequentially)" (is "?lhs = ?rhs")
  3277 proof
  3278   assume ?lhs
  3279   { fix x::"nat \<Rightarrow> 'a" assume x:"\<forall>n. x n \<in> s" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (x n) a < e"
  3280     fix e::real assume "e>0"
  3281     from `?lhs` obtain d where "d>0" and d:"\<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) (f a) < e" unfolding continuous_within Lim_within using `e>0` by auto
  3282     from x(2) `d>0` obtain N where N:"\<forall>n\<ge>N. dist (x n) a < d" by auto
  3283     hence "\<exists>N. \<forall>n\<ge>N. dist ((f \<circ> x) n) (f a) < e"
  3284       apply(rule_tac  x=N in exI) using N d  apply auto using x(1)
  3285       apply(erule_tac x=n in allE) apply(erule_tac x=n in allE)
  3286       apply(erule_tac x="x n" in ballE)  apply auto unfolding dist_nz[THEN sym] apply auto using `e>0` by auto
  3287   }
  3288   thus ?rhs unfolding continuous_within unfolding Lim_sequentially by simp
  3289 next
  3290   assume ?rhs
  3291   { fix e::real assume "e>0"
  3292     assume "\<not> (\<exists>d>0. \<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) (f a) < e)"
  3293     hence "\<forall>d. \<exists>x. d>0 \<longrightarrow> x\<in>s \<and> (0 < dist x a \<and> dist x a < d \<and> \<not> dist (f x) (f a) < e)" by blast
  3294     then obtain x where x:"\<forall>d>0. x d \<in> s \<and> (0 < dist (x d) a \<and> dist (x d) a < d \<and> \<not> dist (f (x d)) (f a) < e)"
  3295       using choice[of "\<lambda>d x.0<d \<longrightarrow> x\<in>s \<and> (0 < dist x a \<and> dist x a < d \<and> \<not> dist (f x) (f a) < e)"] by auto
  3296     { fix d::real assume "d>0"
  3297       hence "\<exists>N::nat. inverse (real (N + 1)) < d" using real_arch_inv[of d] by (auto, rule_tac x="n - 1" in exI)auto
  3298       then obtain N::nat where N:"inverse (real (N + 1)) < d" by auto
  3299       { fix n::nat assume n:"n\<ge>N"
  3300         hence "dist (x (inverse (real (n + 1)))) a < inverse (real (n + 1))" using x[THEN spec[where x="inverse (real (n + 1))"]] by auto
  3301         moreover have "inverse (real (n + 1)) < d" using N n by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
  3302         ultimately have "dist (x (inverse (real (n + 1)))) a < d" by auto
  3303       }
  3304       hence "\<exists>N::nat. \<forall>n\<ge>N. dist (x (inverse (real (n + 1)))) a < d" by auto
  3305     }
  3306     hence "(\<forall>n::nat. x (inverse (real (n + 1))) \<in> s) \<and> (\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist (x (inverse (real (n + 1)))) a < e)" using x by auto
  3307     hence "\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist (f (x (inverse (real (n + 1))))) (f a) < e"  using `?rhs`[THEN spec[where x="\<lambda>n::nat. x (inverse (real (n+1)))"], unfolded Lim_sequentially] by auto
  3308     hence "False" apply(erule_tac x=e in allE) using `e>0` using x by auto
  3309   }
  3310   thus ?lhs  unfolding continuous_within unfolding Lim_within unfolding Lim_sequentially by blast
  3311 qed
  3312 
  3313 lemma continuous_at_sequentially:
  3314   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
  3315   shows "continuous (at a) f \<longleftrightarrow> (\<forall>x. (x ---> a) sequentially
  3316                   --> ((f o x) ---> f a) sequentially)"
  3317   using continuous_within_sequentially[of a UNIV f] unfolding within_UNIV by auto
  3318 
  3319 lemma continuous_on_sequentially:
  3320  "continuous_on s f \<longleftrightarrow>  (\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x ---> a) sequentially
  3321                     --> ((f o x) ---> f(a)) sequentially)" (is "?lhs = ?rhs")
  3322 proof
  3323   assume ?rhs thus ?lhs using continuous_within_sequentially[of _ s f] unfolding continuous_on_eq_continuous_within by auto
  3324 next
  3325   assume ?lhs thus ?rhs unfolding continuous_on_eq_continuous_within using continuous_within_sequentially[of _ s f] by auto
  3326 qed
  3327 
  3328 lemma uniformly_continuous_on_sequentially:
  3329   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
  3330   shows "uniformly_continuous_on s f \<longleftrightarrow> (\<forall>x y. (\<forall>n. x n \<in> s) \<and> (\<forall>n. y n \<in> s) \<and>
  3331                     ((\<lambda>n. x n - y n) ---> 0) sequentially
  3332                     \<longrightarrow> ((\<lambda>n. f(x n) - f(y n)) ---> 0) sequentially)" (is "?lhs = ?rhs")
  3333 proof
  3334   assume ?lhs
  3335   { fix x y assume x:"\<forall>n. x n \<in> s" and y:"\<forall>n. y n \<in> s" and xy:"((\<lambda>n. x n - y n) ---> 0) sequentially"
  3336     { fix e::real assume "e>0"
  3337       then obtain d where "d>0" and d:"\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
  3338         using `?lhs`[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto
  3339       obtain N where N:"\<forall>n\<ge>N. norm (x n - y n - 0) < d" using xy[unfolded Lim_sequentially dist_norm] and `d>0` by auto
  3340       { fix n assume "n\<ge>N"
  3341         hence "norm (f (x n) - f (y n) - 0) < e"
  3342           using N[THEN spec[where x=n]] using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]] using x and y
  3343           unfolding dist_commute and dist_norm by simp  }
  3344       hence "\<exists>N. \<forall>n\<ge>N. norm (f (x n) - f (y n) - 0) < e"  by auto  }
  3345     hence "((\<lambda>n. f(x n) - f(y n)) ---> 0) sequentially" unfolding Lim_sequentially and dist_norm by auto  }
  3346   thus ?rhs by auto
  3347 next
  3348   assume ?rhs
  3349   { assume "\<not> ?lhs"
  3350     then obtain e where "e>0" "\<forall>d>0. \<exists>x\<in>s. \<exists>x'\<in>s. dist x' x < d \<and> \<not> dist (f x') (f x) < e" unfolding uniformly_continuous_on_def by auto
  3351     then obtain fa where fa:"\<forall>x.  0 < x \<longrightarrow> fst (fa x) \<in> s \<and> snd (fa x) \<in> s \<and> dist (fst (fa x)) (snd (fa x)) < x \<and> \<not> dist (f (fst (fa x))) (f (snd (fa x))) < e"
  3352       using choice[of "\<lambda>d x. d>0 \<longrightarrow> fst x \<in> s \<and> snd x \<in> s \<and> dist (snd x) (fst x) < d \<and> \<not> dist (f (snd x)) (f (fst x)) < e"] unfolding Bex_def
  3353       by (auto simp add: dist_commute)
  3354     def x \<equiv> "\<lambda>n::nat. fst (fa (inverse (real n + 1)))"
  3355     def y \<equiv> "\<lambda>n::nat. snd (fa (inverse (real n + 1)))"
  3356     have xyn:"\<forall>n. x n \<in> s \<and> y n \<in> s" and xy0:"\<forall>n. dist (x n) (y n) < inverse (real n + 1)" and fxy:"\<forall>n. \<not> dist (f (x n)) (f (y n)) < e"
  3357       unfolding x_def and y_def using fa by auto
  3358     have 1:"\<And>(x::'a) y. dist (x - y) 0 = dist x y" unfolding dist_norm by auto
  3359     have 2:"\<And>(x::'b) y. dist (x - y) 0 = dist x y" unfolding dist_norm by auto
  3360     { fix e::real assume "e>0"
  3361       then obtain N::nat where "N \<noteq> 0" and N:"0 < inverse (real N) \<and> inverse (real N) < e" unfolding real_arch_inv[of e]   by auto
  3362       { fix n::nat assume "n\<ge>N"
  3363         hence "inverse (real n + 1) < inverse (real N)" using real_of_nat_ge_zero and `N\<noteq>0` by auto
  3364         also have "\<dots> < e" using N by auto
  3365         finally have "inverse (real n + 1) < e" by auto
  3366         hence "dist (x n - y n) 0 < e" unfolding 1 using xy0[THEN spec[where x=n]] by auto  }
  3367       hence "\<exists>N. \<forall>n\<ge>N. dist (x n - y n) 0 < e" by auto  }
  3368     hence "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f (x n) - f (y n)) 0 < e" using `?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn unfolding Lim_sequentially by auto
  3369     hence False unfolding 2 using fxy and `e>0` by auto  }
  3370   thus ?lhs unfolding uniformly_continuous_on_def by blast
  3371 qed
  3372 
  3373 text{* The usual transformation theorems. *}
  3374 
  3375 lemma continuous_transform_within:
  3376   fixes f g :: "'a::metric_space \<Rightarrow> 'b::metric_space"
  3377   assumes "0 < d" "x \<in> s" "\<forall>x' \<in> s. dist x' x < d --> f x' = g x'"
  3378           "continuous (at x within s) f"
  3379   shows "continuous (at x within s) g"
  3380 proof-
  3381   { fix e::real assume "e>0"
  3382     then obtain d' where d':"d'>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < e" using assms(4) unfolding continuous_within Lim_within by auto
  3383     { fix x' assume "x'\<in>s" "0 < dist x' x" "dist x' x < (min d d')"
  3384       hence "dist (f x') (g x) < e" using assms(2,3) apply(erule_tac x=x in ballE) using d' by auto  }
  3385     hence "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < (min d d') \<longrightarrow> dist (f xa) (g x) < e" by blast
  3386     hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (g x) < e" using `d>0` `d'>0` by(rule_tac x="min d d'" in exI)auto  }
  3387   hence "(f ---> g x) (at x within s)" unfolding Lim_within using assms(1) by auto
  3388   thus ?thesis unfolding continuous_within using Lim_transform_within[of d s x f g "g x"] using assms by blast
  3389 qed
  3390 
  3391 lemma continuous_transform_at:
  3392   fixes f g :: "'a::metric_space \<Rightarrow> 'b::metric_space"
  3393   assumes "0 < d" "\<forall>x'. dist x' x < d --> f x' = g x'"
  3394           "continuous (at x) f"
  3395   shows "continuous (at x) g"
  3396 proof-
  3397   { fix e::real assume "e>0"
  3398     then obtain d' where d':"d'>0" "\<forall>xa. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < e" using assms(3) unfolding continuous_at Lim_at by auto
  3399     { fix x' assume "0 < dist x' x" "dist x' x < (min d d')"
  3400       hence "dist (f x') (g x) < e" using assms(2) apply(erule_tac x=x in allE) using d' by auto
  3401     }
  3402     hence "\<forall>xa. 0 < dist xa x \<and> dist xa x < (min d d') \<longrightarrow> dist (f xa) (g x) < e" by blast
  3403     hence "\<exists>d>0. \<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (g x) < e" using `d>0` `d'>0` by(rule_tac x="min d d'" in exI)auto
  3404   }
  3405   hence "(f ---> g x) (at x)" unfolding Lim_at using assms(1) by auto
  3406   thus ?thesis unfolding continuous_at using Lim_transform_at[of d x f g "g x"] using assms by blast
  3407 qed
  3408 
  3409 text{* Combination results for pointwise continuity. *}
  3410 
  3411 lemma continuous_const: "continuous net (\<lambda>x. c)"
  3412   by (auto simp add: continuous_def Lim_const)
  3413 
  3414 lemma continuous_cmul:
  3415   fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
  3416   shows "continuous net f ==> continuous net (\<lambda>x. c *\<^sub>R f x)"
  3417   by (auto simp add: continuous_def Lim_cmul)
  3418 
  3419 lemma continuous_neg:
  3420   fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
  3421   shows "continuous net f ==> continuous net (\<lambda>x. -(f x))"
  3422   by (auto simp add: continuous_def Lim_neg)
  3423 
  3424 lemma continuous_add:
  3425   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
  3426   shows "continuous net f \<Longrightarrow> continuous net g \<Longrightarrow> continuous net (\<lambda>x. f x + g x)"
  3427   by (auto simp add: continuous_def Lim_add)
  3428 
  3429 lemma continuous_sub:
  3430   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
  3431   shows "continuous net f \<Longrightarrow> continuous net g \<Longrightarrow> continuous net (\<lambda>x. f x - g x)"
  3432   by (auto simp add: continuous_def Lim_sub)
  3433 
  3434 
  3435 text{* Same thing for setwise continuity. *}
  3436 
  3437 lemma continuous_on_const:
  3438  "continuous_on s (\<lambda>x. c)"
  3439   unfolding continuous_on_eq_continuous_within using continuous_const by blast
  3440 
  3441 lemma continuous_on_cmul:
  3442   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3443   shows "continuous_on s f ==>  continuous_on s (\<lambda>x. c *\<^sub>R (f x))"
  3444   unfolding continuous_on_eq_continuous_within using continuous_cmul by blast
  3445 
  3446 lemma continuous_on_neg:
  3447   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3448   shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
  3449   unfolding continuous_on_eq_continuous_within using continuous_neg by blast
  3450 
  3451 lemma continuous_on_add:
  3452   fixes f g :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3453   shows "continuous_on s f \<Longrightarrow> continuous_on s g
  3454            \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
  3455   unfolding continuous_on_eq_continuous_within using continuous_add by blast
  3456 
  3457 lemma continuous_on_sub:
  3458   fixes f g :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3459   shows "continuous_on s f \<Longrightarrow> continuous_on s g
  3460            \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
  3461   unfolding continuous_on_eq_continuous_within using continuous_sub by blast
  3462 
  3463 text{* Same thing for uniform continuity, using sequential formulations. *}
  3464 
  3465 lemma uniformly_continuous_on_const:
  3466  "uniformly_continuous_on s (\<lambda>x. c)"
  3467   unfolding uniformly_continuous_on_def by simp
  3468 
  3469 lemma uniformly_continuous_on_cmul:
  3470   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
  3471     (* FIXME: generalize 'a to metric_space *)
  3472   assumes "uniformly_continuous_on s f"
  3473   shows "uniformly_continuous_on s (\<lambda>x. c *\<^sub>R f(x))"
  3474 proof-
  3475   { fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
  3476     hence "((\<lambda>n. c *\<^sub>R f (x n) - c *\<^sub>R f (y n)) ---> 0) sequentially"
  3477       using Lim_cmul[of "(\<lambda>n. f (x n) - f (y n))" 0 sequentially c]
  3478       unfolding scaleR_zero_right scaleR_right_diff_distrib by auto
  3479   }
  3480   thus ?thesis using assms unfolding uniformly_continuous_on_sequentially by auto
  3481 qed
  3482 
  3483 lemma dist_minus:
  3484   fixes x y :: "'a::real_normed_vector"
  3485   shows "dist (- x) (- y) = dist x y"
  3486   unfolding dist_norm minus_diff_minus norm_minus_cancel ..
  3487 
  3488 lemma uniformly_continuous_on_neg:
  3489   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3490   shows "uniformly_continuous_on s f
  3491          ==> uniformly_continuous_on s (\<lambda>x. -(f x))"
  3492   unfolding uniformly_continuous_on_def dist_minus .
  3493 
  3494 lemma uniformly_continuous_on_add:
  3495   fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" (* FIXME: generalize 'a *)
  3496   assumes "uniformly_continuous_on s f" "uniformly_continuous_on s g"
  3497   shows "uniformly_continuous_on s (\<lambda>x. f x + g x)"
  3498 proof-
  3499   {  fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
  3500                     "((\<lambda>n. g (x n) - g (y n)) ---> 0) sequentially"
  3501     hence "((\<lambda>xa. f (x xa) - f (y xa) + (g (x xa) - g (y xa))) ---> 0 + 0) sequentially"
  3502       using Lim_add[of "\<lambda> n. f (x n) - f (y n)" 0  sequentially "\<lambda> n. g (x n) - g (y n)" 0] by auto
  3503     hence "((\<lambda>n. f (x n) + g (x n) - (f (y n) + g (y n))) ---> 0) sequentially" unfolding Lim_sequentially and add_diff_add [symmetric] by auto  }
  3504   thus ?thesis using assms unfolding uniformly_continuous_on_sequentially by auto
  3505 qed
  3506 
  3507 lemma uniformly_continuous_on_sub:
  3508   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" (* FIXME: generalize 'a *)
  3509   shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s g
  3510            ==> uniformly_continuous_on s  (\<lambda>x. f x - g x)"
  3511   unfolding ab_diff_minus
  3512   using uniformly_continuous_on_add[of s f "\<lambda>x. - g x"]
  3513   using uniformly_continuous_on_neg[of s g] by auto
  3514 
  3515 text{* Identity function is continuous in every sense. *}
  3516 
  3517 lemma continuous_within_id:
  3518  "continuous (at a within s) (\<lambda>x. x)"
  3519   unfolding continuous_within by (rule Lim_at_within [OF Lim_ident_at])
  3520 
  3521 lemma continuous_at_id:
  3522  "continuous (at a) (\<lambda>x. x)"
  3523   unfolding continuous_at by (rule Lim_ident_at)
  3524 
  3525 lemma continuous_on_id:
  3526  "continuous_on s (\<lambda>x. x)"
  3527   unfolding continuous_on Lim_within by auto
  3528 
  3529 lemma uniformly_continuous_on_id:
  3530  "uniformly_continuous_on s (\<lambda>x. x)"
  3531   unfolding uniformly_continuous_on_def by auto
  3532 
  3533 text{* Continuity of all kinds is preserved under composition. *}
  3534 
  3535 lemma continuous_within_compose:
  3536   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3537   fixes g :: "'b::metric_space \<Rightarrow> 'c::metric_space"
  3538   assumes "continuous (at x within s) f"   "continuous (at (f x) within f ` s) g"
  3539   shows "continuous (at x within s) (g o f)"
  3540 proof-
  3541   { fix e::real assume "e>0"
  3542     with assms(2)[unfolded continuous_within Lim_within] obtain d  where "d>0" and d:"\<forall>xa\<in>f ` s. 0 < dist xa (f x) \<and> dist xa (f x) < d \<longrightarrow> dist (g xa) (g (f x)) < e" by auto
  3543     from assms(1)[unfolded continuous_within Lim_within] obtain d' where "d'>0" and d':"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < d" using `d>0` by auto
  3544     { fix y assume as:"y\<in>s"  "0 < dist y x"  "dist y x < d'"
  3545       hence "dist (f y) (f x) < d" using d'[THEN bspec[where x=y]] by (auto simp add:dist_commute)
  3546       hence "dist (g (f y)) (g (f x)) < e" using as(1) d[THEN bspec[where x="f y"]] unfolding dist_nz[THEN sym] using `e>0` by auto   }
  3547     hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (g (f xa)) (g (f x)) < e" using `d'>0` by auto  }
  3548   thus ?thesis unfolding continuous_within Lim_within by auto
  3549 qed
  3550 
  3551 lemma continuous_at_compose:
  3552   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3553   fixes g :: "'b::metric_space \<Rightarrow> 'c::metric_space"
  3554   assumes "continuous (at x) f"  "continuous (at (f x)) g"
  3555   shows "continuous (at x) (g o f)"
  3556 proof-
  3557   have " continuous (at (f x) within range f) g" using assms(2) using continuous_within_subset[of "f x" UNIV g "range f", unfolded within_UNIV] by auto
  3558   thus ?thesis using assms(1) using continuous_within_compose[of x UNIV f g, unfolded within_UNIV] by auto
  3559 qed
  3560 
  3561 lemma continuous_on_compose:
  3562  "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)"
  3563   unfolding continuous_on_eq_continuous_within using continuous_within_compose[of _ s f g] by auto
  3564 
  3565 lemma uniformly_continuous_on_compose:
  3566   assumes "uniformly_continuous_on s f"  "uniformly_continuous_on (f ` s) g"
  3567   shows "uniformly_continuous_on s (g o f)"
  3568 proof-
  3569   { fix e::real assume "e>0"
  3570     then obtain d where "d>0" and d:"\<forall>x\<in>f ` s. \<forall>x'\<in>f ` s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" using assms(2) unfolding uniformly_continuous_on_def by auto
  3571     obtain d' where "d'>0" "\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d' \<longrightarrow> dist (f x') (f x) < d" using `d>0` using assms(1) unfolding uniformly_continuous_on_def by auto
  3572     hence "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist ((g \<circ> f) x') ((g \<circ> f) x) < e" using `d>0` using d by auto  }
  3573   thus ?thesis using assms unfolding uniformly_continuous_on_def by auto
  3574 qed
  3575 
  3576 text{* Continuity in terms of open preimages. *}
  3577 
  3578 lemma continuous_at_open:
  3579   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3580   shows "continuous (at x) f \<longleftrightarrow> (\<forall>t. open t \<and> f x \<in> t --> (\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x' \<in> s. (f x') \<in> t)))" (is "?lhs = ?rhs")
  3581 proof
  3582   assume ?lhs
  3583   { fix t assume as: "open t" "f x \<in> t"
  3584     then obtain e where "e>0" and e:"ball (f x) e \<subseteq> t" unfolding open_contains_ball by auto
  3585 
  3586     obtain d where "d>0" and d:"\<forall>y. 0 < dist y x \<and> dist y x < d \<longrightarrow> dist (f y) (f x) < e" using `e>0` using `?lhs`[unfolded continuous_at Lim_at open_dist] by auto
  3587 
  3588     have "open (ball x d)" using open_ball by auto
  3589     moreover have "x \<in> ball x d" unfolding centre_in_ball using `d>0` by simp
  3590     moreover
  3591     { fix x' assume "x'\<in>ball x d" hence "f x' \<in> t"
  3592         using e[unfolded subset_eq Ball_def mem_ball, THEN spec[where x="f x'"]]    d[THEN spec[where x=x']]
  3593         unfolding mem_ball apply (auto simp add: dist_commute)
  3594         unfolding dist_nz[THEN sym] using as(2) by auto  }
  3595     hence "\<forall>x'\<in>ball x d. f x' \<in> t" by auto
  3596     ultimately have "\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x'\<in>s. f x' \<in> t)"
  3597       apply(rule_tac x="ball x d" in exI) by simp  }
  3598   thus ?rhs by auto
  3599 next
  3600   assume ?rhs
  3601   { fix e::real assume "e>0"
  3602     then obtain s where s: "open s"  "x \<in> s"  "\<forall>x'\<in>s. f x' \<in> ball (f x) e" using `?rhs`[unfolded continuous_at Lim_at, THEN spec[where x="ball (f x) e"]]
  3603       unfolding centre_in_ball[of "f x" e, THEN sym] by auto
  3604     then obtain d where "d>0" and d:"ball x d \<subseteq> s" unfolding open_contains_ball by auto
  3605     { fix y assume "0 < dist y x \<and> dist y x < d"
  3606       hence "dist (f y) (f x) < e" using d[unfolded subset_eq Ball_def mem_ball, THEN spec[where x=y]]
  3607         using s(3)[THEN bspec[where x=y], unfolded mem_ball] by (auto simp add: dist_commute)  }
  3608     hence "\<exists>d>0. \<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" using `d>0` by auto  }
  3609   thus ?lhs unfolding continuous_at Lim_at by auto
  3610 qed
  3611 
  3612 lemma continuous_on_open:
  3613  "continuous_on s f \<longleftrightarrow>
  3614         (\<forall>t. openin (subtopology euclidean (f ` s)) t
  3615             --> openin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
  3616 proof
  3617   assume ?lhs
  3618   { fix t assume as:"openin (subtopology euclidean (f ` s)) t"
  3619     have "{x \<in> s. f x \<in> t} \<subseteq> s" using as[unfolded openin_euclidean_subtopology_iff] by auto
  3620     moreover
  3621     { fix x assume as':"x\<in>{x \<in> s. f x \<in> t}"
  3622       then obtain e where e: "e>0" "\<forall>x'\<in>f ` s. dist x' (f x) < e \<longrightarrow> x' \<in> t" using as[unfolded openin_euclidean_subtopology_iff, THEN conjunct2, THEN bspec[where x="f x"]] by auto
  3623       from this(1) obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" using `?lhs`[unfolded continuous_on Lim_within, THEN bspec[where x=x]] using as' by auto
  3624       have "\<exists>e>0. \<forall>x'\<in>s. dist x' x < e \<longrightarrow> x' \<in> {x \<in> s. f x \<in> t}" using d e unfolding dist_nz[THEN sym] by (rule_tac x=d in exI, auto)  }
  3625     ultimately have "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}" unfolding openin_euclidean_subtopology_iff by auto  }
  3626   thus ?rhs unfolding continuous_on Lim_within using openin by auto
  3627 next
  3628   assume ?rhs
  3629   { fix e::real and x assume "x\<in>s" "e>0"
  3630     { fix xa x' assume "dist (f xa) (f x) < e" "xa \<in> s" "x' \<in> s" "dist (f xa) (f x') < e - dist (f xa) (f x)"
  3631       hence "dist (f x') (f x) < e" using dist_triangle[of "f x'" "f x" "f xa"]
  3632         by (auto simp add: dist_commute)  }
  3633     hence "ball (f x) e \<inter> f ` s \<subseteq> f ` s \<and> (\<forall>xa\<in>ball (f x) e \<inter> f ` s. \<exists>ea>0. \<forall>x'\<in>f ` s. dist x' xa < ea \<longrightarrow> x' \<in> ball (f x) e \<inter> f ` s)" apply auto
  3634       apply(rule_tac x="e - dist (f xa) (f x)" in exI) using `e>0` by (auto simp add: dist_commute)
  3635     hence "\<forall>xa\<in>{xa \<in> s. f xa \<in> ball (f x) e \<inter> f ` s}. \<exists>ea>0. \<forall>x'\<in>s. dist x' xa < ea \<longrightarrow> x' \<in> {xa \<in> s. f xa \<in> ball (f x) e \<inter> f ` s}"
  3636       using `?rhs`[unfolded openin_euclidean_subtopology_iff, THEN spec[where x="ball (f x) e \<inter> f ` s"]] by auto
  3637     hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" apply(erule_tac x=x in ballE) apply auto using `e>0` `x\<in>s` by (auto simp add: dist_commute)  }
  3638   thus ?lhs unfolding continuous_on Lim_within by auto
  3639 qed
  3640 
  3641 (* ------------------------------------------------------------------------- *)
  3642 (* Similarly in terms of closed sets.                                        *)
  3643 (* ------------------------------------------------------------------------- *)
  3644 
  3645 lemma continuous_on_closed:
  3646  "continuous_on s f \<longleftrightarrow>  (\<forall>t. closedin (subtopology euclidean (f ` s)) t  --> closedin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
  3647 proof
  3648   assume ?lhs
  3649   { fix t
  3650     have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
  3651     have **:"f ` s - (f ` s - (f ` s - t)) = f ` s - t" by auto
  3652     assume as:"closedin (subtopology euclidean (f ` s)) t"
  3653     hence "closedin (subtopology euclidean (f ` s)) (f ` s - (f ` s - t))" unfolding closedin_def topspace_euclidean_subtopology unfolding ** by auto
  3654     hence "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?lhs`[unfolded continuous_on_open, THEN spec[where x="(f ` s) - t"]]
  3655       unfolding openin_closedin_eq topspace_euclidean_subtopology unfolding * by auto  }
  3656   thus ?rhs by auto
  3657 next
  3658   assume ?rhs
  3659   { fix t
  3660     have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
  3661     assume as:"openin (subtopology euclidean (f ` s)) t"
  3662     hence "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?rhs`[THEN spec[where x="(f ` s) - t"]]
  3663       unfolding openin_closedin_eq topspace_euclidean_subtopology *[THEN sym] closedin_subtopology by auto }
  3664   thus ?lhs unfolding continuous_on_open by auto
  3665 qed
  3666 
  3667 text{* Half-global and completely global cases.                                  *}
  3668 
  3669 lemma continuous_open_in_preimage:
  3670   assumes "continuous_on s f"  "open t"
  3671   shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
  3672 proof-
  3673   have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto
  3674   have "openin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
  3675     using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto
  3676   thus ?thesis using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \<inter> f ` s"]] using * by auto
  3677 qed
  3678 
  3679 lemma continuous_closed_in_preimage:
  3680   assumes "continuous_on s f"  "closed t"
  3681   shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
  3682 proof-
  3683   have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto
  3684   have "closedin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
  3685     using closedin_closed_Int[of t "f ` s", OF assms(2)] unfolding Int_commute by auto
  3686   thus ?thesis
  3687     using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \<inter> f ` s"]] using * by auto
  3688 qed
  3689 
  3690 lemma continuous_open_preimage:
  3691   assumes "continuous_on s f" "open s" "open t"
  3692   shows "open {x \<in> s. f x \<in> t}"
  3693 proof-
  3694   obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T"
  3695     using continuous_open_in_preimage[OF assms(1,3)] unfolding openin_open by auto
  3696   thus ?thesis using open_Int[of s T, OF assms(2)] by auto
  3697 qed
  3698 
  3699 lemma continuous_closed_preimage:
  3700   assumes "continuous_on s f" "closed s" "closed t"
  3701   shows "closed {x \<in> s. f x \<in> t}"
  3702 proof-
  3703   obtain T where T: "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T"
  3704     using continuous_closed_in_preimage[OF assms(1,3)] unfolding closedin_closed by auto
  3705   thus ?thesis using closed_Int[of s T, OF assms(2)] by auto
  3706 qed
  3707 
  3708 lemma continuous_open_preimage_univ:
  3709   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3710   shows "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
  3711   using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
  3712 
  3713 lemma continuous_closed_preimage_univ:
  3714   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3715   shows "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
  3716   using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
  3717 
  3718 lemma continuous_open_vimage:
  3719   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3720   shows "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open (f -` s)"
  3721   unfolding vimage_def by (rule continuous_open_preimage_univ)
  3722 
  3723 lemma continuous_closed_vimage:
  3724   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3725   shows "\<forall>x. continuous (at x) f \<Longrightarrow> closed s \<Longrightarrow> closed (f -` s)"
  3726   unfolding vimage_def by (rule continuous_closed_preimage_univ)
  3727 
  3728 lemma interior_image_subset: fixes f::"_::metric_space \<Rightarrow> _::metric_space"
  3729   assumes "\<forall>x. continuous (at x) f" "inj f"
  3730   shows "interior (f ` s) \<subseteq> f ` (interior s)"
  3731   apply rule unfolding interior_def mem_Collect_eq image_iff apply safe
  3732 proof- fix x T assume as:"open T" "x \<in> T" "T \<subseteq> f ` s" 
  3733   hence "x \<in> f ` s" by auto then guess y unfolding image_iff .. note y=this
  3734   thus "\<exists>xa\<in>{x. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> s}. x = f xa" apply(rule_tac x=y in bexI) using assms as
  3735     apply safe apply(rule_tac x="{x. f x \<in> T}" in exI) apply(safe,rule continuous_open_preimage_univ)
  3736   proof- fix x assume "f x \<in> T" hence "f x \<in> f ` s" using as by auto
  3737     thus "x \<in> s" unfolding inj_image_mem_iff[OF assms(2)] . qed auto qed
  3738 
  3739 text{* Equality of continuous functions on closure and related results.          *}
  3740 
  3741 lemma continuous_closed_in_preimage_constant:
  3742  "continuous_on s f ==> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
  3743   using continuous_closed_in_preimage[of s f "{a}"] closed_sing by auto
  3744 
  3745 lemma continuous_closed_preimage_constant:
  3746  "continuous_on s f \<Longrightarrow> closed s ==> closed {x \<in> s. f x = a}"
  3747   using continuous_closed_preimage[of s f "{a}"] closed_sing by auto
  3748 
  3749 lemma continuous_constant_on_closure:
  3750   assumes "continuous_on (closure s) f"
  3751           "\<forall>x \<in> s. f x = a"
  3752   shows "\<forall>x \<in> (closure s). f x = a"
  3753     using continuous_closed_preimage_constant[of "closure s" f a]
  3754     assms closure_minimal[of s "{x \<in> closure s. f x = a}"] closure_subset unfolding subset_eq by auto
  3755 
  3756 lemma image_closure_subset:
  3757   assumes "continuous_on (closure s) f"  "closed t"  "(f ` s) \<subseteq> t"
  3758   shows "f ` (closure s) \<subseteq> t"
  3759 proof-
  3760   have "s \<subseteq> {x \<in> closure s. f x \<in> t}" using assms(3) closure_subset by auto
  3761   moreover have "closed {x \<in> closure s. f x \<in> t}"
  3762     using continuous_closed_preimage[OF assms(1)] and assms(2) by auto
  3763   ultimately have "closure s = {x \<in> closure s . f x \<in> t}"
  3764     using closure_minimal[of s "{x \<in> closure s. f x \<in> t}"] by auto
  3765   thus ?thesis by auto
  3766 qed
  3767 
  3768 lemma continuous_on_closure_norm_le:
  3769   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  3770   assumes "continuous_on (closure s) f"  "\<forall>y \<in> s. norm(f y) \<le> b"  "x \<in> (closure s)"
  3771   shows "norm(f x) \<le> b"
  3772 proof-
  3773   have *:"f ` s \<subseteq> cball 0 b" using assms(2)[unfolded mem_cball_0[THEN sym]] by auto
  3774   show ?thesis
  3775     using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3)
  3776     unfolding subset_eq apply(erule_tac x="f x" in ballE) by (auto simp add: dist_norm)
  3777 qed
  3778 
  3779 text{* Making a continuous function avoid some value in a neighbourhood.         *}
  3780 
  3781 lemma continuous_within_avoid:
  3782   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3783   assumes "continuous (at x within s) f"  "x \<in> s"  "f x \<noteq> a"
  3784   shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a"
  3785 proof-
  3786   obtain d where "d>0" and d:"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < dist (f x) a"
  3787     using assms(1)[unfolded continuous_within Lim_within, THEN spec[where x="dist (f x) a"]] assms(3)[unfolded dist_nz] by auto
  3788   { fix y assume " y\<in>s"  "dist x y < d"
  3789     hence "f y \<noteq> a" using d[THEN bspec[where x=y]] assms(3)[unfolded dist_nz]
  3790       apply auto unfolding dist_nz[THEN sym] by (auto simp add: dist_commute) }
  3791   thus ?thesis using `d>0` by auto
  3792 qed
  3793 
  3794 lemma continuous_at_avoid:
  3795   fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *)
  3796   assumes "continuous (at x) f"  "f x \<noteq> a"
  3797   shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
  3798 using assms using continuous_within_avoid[of x UNIV f a, unfolded within_UNIV] by auto
  3799 
  3800 lemma continuous_on_avoid:
  3801   assumes "continuous_on s f"  "x \<in> s"  "f x \<noteq> a"
  3802   shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e \<longrightarrow> f y \<noteq> a"
  3803 using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x], OF assms(2)]  continuous_within_avoid[of x s f a]  assms(2,3) by auto
  3804 
  3805 lemma continuous_on_open_avoid:
  3806   assumes "continuous_on s f"  "open s"  "x \<in> s"  "f x \<noteq> a"
  3807   shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
  3808 using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)]  continuous_at_avoid[of x f a]  assms(3,4) by auto
  3809 
  3810 text{* Proving a function is constant by proving open-ness of level set.         *}
  3811 
  3812 lemma continuous_levelset_open_in_cases:
  3813  "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
  3814         openin (subtopology euclidean s) {x \<in> s. f x = a}
  3815         ==> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)"
  3816 unfolding connected_clopen using continuous_closed_in_preimage_constant by auto
  3817 
  3818 lemma continuous_levelset_open_in:
  3819  "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
  3820         openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
  3821         (\<exists>x \<in> s. f x = a)  ==> (\<forall>x \<in> s. f x = a)"
  3822 using continuous_levelset_open_in_cases[of s f ]
  3823 by meson
  3824 
  3825 lemma continuous_levelset_open:
  3826   assumes "connected s"  "continuous_on s f"  "open {x \<in> s. f x = a}"  "\<exists>x \<in> s.  f x = a"
  3827   shows "\<forall>x \<in> s. f x = a"
  3828 using continuous_levelset_open_in[OF assms(1,2), of a, unfolded openin_open] using assms (3,4) by auto
  3829 
  3830 text{* Some arithmetical combinations (more to prove).                           *}
  3831 
  3832 lemma open_scaling[intro]:
  3833   fixes s :: "'a::real_normed_vector set"
  3834   assumes "c \<noteq> 0"  "open s"
  3835   shows "open((\<lambda>x. c *\<^sub>R x) ` s)"
  3836 proof-
  3837   { fix x assume "x \<in> s"
  3838     then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]] by auto
  3839     have "e * abs c > 0" using assms(1)[unfolded zero_less_abs_iff[THEN sym]] using real_mult_order[OF `e>0`] by auto
  3840     moreover
  3841     { fix y assume "dist y (c *\<^sub>R x) < e * \<bar>c\<bar>"
  3842       hence "norm ((1 / c) *\<^sub>R y - x) < e" unfolding dist_norm
  3843         using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1)
  3844           assms(1)[unfolded zero_less_abs_iff[THEN sym]] by (simp del:zero_less_abs_iff)
  3845       hence "y \<in> op *\<^sub>R c ` s" using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"]  e[THEN spec[where x="(1 / c) *\<^sub>R y"]]  assms(1) unfolding dist_norm scaleR_scaleR by auto  }
  3846     ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *\<^sub>R x) < e \<longrightarrow> x' \<in> op *\<^sub>R c ` s" apply(rule_tac x="e * abs c" in exI) by auto  }
  3847   thus ?thesis unfolding open_dist by auto
  3848 qed
  3849 
  3850 lemma minus_image_eq_vimage:
  3851   fixes A :: "'a::ab_group_add set"
  3852   shows "(\<lambda>x. - x) ` A = (\<lambda>x. - x) -` A"
  3853   by (auto intro!: image_eqI [where f="\<lambda>x. - x"])
  3854 
  3855 lemma open_negations:
  3856   fixes s :: "'a::real_normed_vector set"
  3857   shows "open s ==> open ((\<lambda> x. -x) ` s)"
  3858   unfolding scaleR_minus1_left [symmetric]
  3859   by (rule open_scaling, auto)
  3860 
  3861 lemma open_translation:
  3862   fixes s :: "'a::real_normed_vector set"
  3863   assumes "open s"  shows "open((\<lambda>x. a + x) ` s)"
  3864 proof-
  3865   { fix x have "continuous (at x) (\<lambda>x. x - a)" using continuous_sub[of "at x" "\<lambda>x. x" "\<lambda>x. a"] continuous_at_id[of x] continuous_const[of "at x" a] by auto  }
  3866   moreover have "{x. x - a \<in> s}  = op + a ` s" apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto
  3867   ultimately show ?thesis using continuous_open_preimage_univ[of "\<lambda>x. x - a" s] using assms by auto
  3868 qed
  3869 
  3870 lemma open_affinity:
  3871   fixes s :: "'a::real_normed_vector set"
  3872   assumes "open s"  "c \<noteq> 0"
  3873   shows "open ((\<lambda>x. a + c *\<^sub>R x) ` s)"
  3874 proof-
  3875   have *:"(\<lambda>x. a + c *\<^sub>R x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *\<^sub>R x)" unfolding o_def ..
  3876   have "op + a ` op *\<^sub>R c ` s = (op + a \<circ> op *\<^sub>R c) ` s" by auto
  3877   thus ?thesis using assms open_translation[of "op *\<^sub>R c ` s" a] unfolding * by auto
  3878 qed
  3879 
  3880 lemma interior_translation:
  3881   fixes s :: "'a::real_normed_vector set"
  3882   shows "interior ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (interior s)"
  3883 proof (rule set_ext, rule)
  3884   fix x assume "x \<in> interior (op + a ` s)"
  3885   then obtain e where "e>0" and e:"ball x e \<subseteq> op + a ` s" unfolding mem_interior by auto
  3886   hence "ball (x - a) e \<subseteq> s" unfolding subset_eq Ball_def mem_ball dist_norm apply auto apply(erule_tac x="a + xa" in allE) unfolding ab_group_add_class.diff_diff_eq[THEN sym] by auto
  3887   thus "x \<in> op + a ` interior s" unfolding image_iff apply(rule_tac x="x - a" in bexI) unfolding mem_interior using `e > 0` by auto
  3888 next
  3889   fix x assume "x \<in> op + a ` interior s"
  3890   then obtain y e where "e>0" and e:"ball y e \<subseteq> s" and y:"x = a + y" unfolding image_iff Bex_def mem_interior by auto
  3891   { fix z have *:"a + y - z = y + a - z" by auto
  3892     assume "z\<in>ball x e"
  3893     hence "z - a \<in> s" using e[unfolded subset_eq, THEN bspec[where x="z - a"]] unfolding mem_ball dist_norm y ab_group_add_class.diff_diff_eq2 * by auto
  3894     hence "z \<in> op + a ` s" unfolding image_iff by(auto intro!: bexI[where x="z - a"])  }
  3895   hence "ball x e \<subseteq> op + a ` s" unfolding subset_eq by auto
  3896   thus "x \<in> interior (op + a ` s)" unfolding mem_interior using `e>0` by auto
  3897 qed
  3898 
  3899 subsection {* Preservation of compactness and connectedness under continuous function.  *}
  3900 
  3901 lemma compact_continuous_image:
  3902   assumes "continuous_on s f"  "compact s"
  3903   shows "compact(f ` s)"
  3904 proof-
  3905   { fix x assume x:"\<forall>n::nat. x n \<in> f ` s"
  3906     then obtain y where y:"\<forall>n. y n \<in> s \<and> x n = f (y n)" unfolding image_iff Bex_def using choice[of "\<lambda>n xa. xa \<in> s \<and> x n = f xa"] by auto
  3907     then obtain l r where "l\<in>s" and r:"subseq r" and lr:"((y \<circ> r) ---> l) sequentially" using assms(2)[unfolded compact_def, THEN spec[where x=y]] by auto
  3908     { fix e::real assume "e>0"
  3909       then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' l < d \<longrightarrow> dist (f x') (f l) < e" using assms(1)[unfolded continuous_on_def, THEN bspec[where x=l], OF `l\<in>s`] by auto
  3910       then obtain N::nat where N:"\<forall>n\<ge>N. dist ((y \<circ> r) n) l < d" using lr[unfolded Lim_sequentially, THEN spec[where x=d]] by auto
  3911       { fix n::nat assume "n\<ge>N" hence "dist ((x \<circ> r) n) (f l) < e" using N[THEN spec[where x=n]] d[THEN bspec[where x="y (r n)"]] y[THEN spec[where x="r n"]] by auto  }
  3912       hence "\<exists>N. \<forall>n\<ge>N. dist ((x \<circ> r) n) (f l) < e" by auto  }
  3913     hence "\<exists>l\<in>f ` s. \<exists>r. subseq r \<and> ((x \<circ> r) ---> l) sequentially" unfolding Lim_sequentially using r lr `l\<in>s` by auto  }
  3914   thus ?thesis unfolding compact_def by auto
  3915 qed
  3916 
  3917 lemma connected_continuous_image:
  3918   assumes "continuous_on s f"  "connected s"
  3919   shows "connected(f ` s)"
  3920 proof-
  3921   { fix T assume as: "T \<noteq> {}"  "T \<noteq> f ` s"  "openin (subtopology euclidean (f ` s)) T"  "closedin (subtopology euclidean (f ` s)) T"
  3922     have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
  3923       using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]]
  3924       using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]]
  3925       using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \<in> s. f x \<in> T}"]] as(3,4) by auto
  3926     hence False using as(1,2)
  3927       using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto }
  3928   thus ?thesis unfolding connected_clopen by auto
  3929 qed
  3930 
  3931 text{* Continuity implies uniform continuity on a compact domain.                *}
  3932 
  3933 lemma compact_uniformly_continuous:
  3934   assumes "continuous_on s f"  "compact s"
  3935   shows "uniformly_continuous_on s f"
  3936 proof-
  3937     { fix x assume x:"x\<in>s"
  3938       hence "\<forall>xa. \<exists>y. 0 < xa \<longrightarrow> (y > 0 \<and> (\<forall>x'\<in>s. dist x' x < y \<longrightarrow> dist (f x') (f x) < xa))" using assms(1)[unfolded continuous_on_def, THEN bspec[where x=x]] by auto
  3939       hence "\<exists>fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)" using choice[of "\<lambda>e d. e>0 \<longrightarrow> d>0 \<and>(\<forall>x'\<in>s. (dist x' x < d \<longrightarrow> dist (f x') (f x) < e))"] by auto  }
  3940     then have "\<forall>x\<in>s. \<exists>y. \<forall>xa. 0 < xa \<longrightarrow> (\<forall>x'\<in>s. y xa > 0 \<and> (dist x' x < y xa \<longrightarrow> dist (f x') (f x) < xa))" by auto
  3941     then obtain d where d:"\<forall>e>0. \<forall>x\<in>s. \<forall>x'\<in>s. d x e > 0 \<and> (dist x' x < d x e \<longrightarrow> dist (f x') (f x) < e)"
  3942       using bchoice[of s "\<lambda>x fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)"] by blast
  3943 
  3944   { fix e::real assume "e>0"
  3945 
  3946     { fix x assume "x\<in>s" hence "x \<in> ball x (d x (e / 2))" unfolding centre_in_ball using d[THEN spec[where x="e/2"]] using `e>0` by auto  }
  3947     hence "s \<subseteq> \<Union>{ball x (d x (e / 2)) |x. x \<in> s}" unfolding subset_eq by auto
  3948     moreover
  3949     { fix b assume "b\<in>{ball x (d x (e / 2)) |x. x \<in> s}" hence "open b" by auto  }
  3950     ultimately obtain ea where "ea>0" and ea:"\<forall>x\<in>s. \<exists>b\<in>{ball x (d x (e / 2)) |x. x \<in> s}. ball x ea \<subseteq> b" using heine_borel_lemma[OF assms(2), of "{ball x (d x (e / 2)) | x. x\<in>s }"] by auto
  3951 
  3952     { fix x y assume "x\<in>s" "y\<in>s" and as:"dist y x < ea"
  3953       obtain z where "z\<in>s" and z:"ball x ea \<subseteq> ball z (d z (e / 2))" using ea[THEN bspec[where x=x]] and `x\<in>s` by auto
  3954       hence "x\<in>ball z (d z (e / 2))" using `ea>0` unfolding subset_eq by auto
  3955       hence "dist (f z) (f x) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `x\<in>s` and `z\<in>s`
  3956         by (auto  simp add: dist_commute)
  3957       moreover have "y\<in>ball z (d z (e / 2))" using as and `ea>0` and z[unfolded subset_eq]
  3958         by (auto simp add: dist_commute)
  3959       hence "dist (f z) (f y) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `y\<in>s` and `z\<in>s`
  3960         by (auto  simp add: dist_commute)
  3961       ultimately have "dist (f y) (f x) < e" using dist_triangle_half_r[of "f z" "f x" e "f y"]
  3962         by (auto simp add: dist_commute)  }
  3963     then have "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using `ea>0` by auto  }
  3964   thus ?thesis unfolding uniformly_continuous_on_def by auto
  3965 qed
  3966 
  3967 text{* Continuity of inverse function on compact domain. *}
  3968 
  3969 lemma continuous_on_inverse:
  3970   fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel"
  3971     (* TODO: can this be generalized more? *)
  3972   assumes "continuous_on s f"  "compact s"  "\<forall>x \<in> s. g (f x) = x"
  3973   shows "continuous_on (f ` s) g"
  3974 proof-
  3975   have *:"g ` f ` s = s" using assms(3) by (auto simp add: image_iff)
  3976   { fix t assume t:"closedin (subtopology euclidean (g ` f ` s)) t"
  3977     then obtain T where T: "closed T" "t = s \<inter> T" unfolding closedin_closed unfolding * by auto
  3978     have "continuous_on (s \<inter> T) f" using continuous_on_subset[OF assms(1), of "s \<inter> t"]
  3979       unfolding T(2) and Int_left_absorb by auto
  3980     moreover have "compact (s \<inter> T)"
  3981       using assms(2) unfolding compact_eq_bounded_closed
  3982       using bounded_subset[of s "s \<inter> T"] and T(1) by auto
  3983     ultimately have "closed (f ` t)" using T(1) unfolding T(2)
  3984       using compact_continuous_image [of "s \<inter> T" f] unfolding compact_eq_bounded_closed by auto
  3985     moreover have "{x \<in> f ` s. g x \<in> t} = f ` s \<inter> f ` t" using assms(3) unfolding T(2) by auto
  3986     ultimately have "closedin (subtopology euclidean (f ` s)) {x \<in> f ` s. g x \<in> t}"
  3987       unfolding closedin_closed by auto  }
  3988   thus ?thesis unfolding continuous_on_closed by auto
  3989 qed
  3990 
  3991 subsection{* A uniformly convergent limit of continuous functions is continuous.       *}
  3992 
  3993 lemma norm_triangle_lt:
  3994   fixes x y :: "'a::real_normed_vector"
  3995   shows "norm x + norm y < e \<Longrightarrow> norm (x + y) < e"
  3996 by (rule le_less_trans [OF norm_triangle_ineq])
  3997 
  3998 lemma continuous_uniform_limit:
  3999   fixes f :: "'a \<Rightarrow> 'b::metric_space \<Rightarrow> 'c::real_normed_vector"
  4000   assumes "\<not> (trivial_limit net)"  "eventually (\<lambda>n. continuous_on s (f n)) net"
  4001   "\<forall>e>0. eventually (\<lambda>n. \<forall>x \<in> s. norm(f n x - g x) < e) net"
  4002   shows "continuous_on s g"
  4003 proof-
  4004   { fix x and e::real assume "x\<in>s" "e>0"
  4005     have "eventually (\<lambda>n. \<forall>x\<in>s. norm (f n x - g x) < e / 3) net" using `e>0` assms(3)[THEN spec[where x="e/3"]] by auto
  4006     then obtain n where n:"\<forall>xa\<in>s. norm (f n xa - g xa) < e / 3"  "continuous_on s (f n)"
  4007       using eventually_and[of "(\<lambda>n. \<forall>x\<in>s. norm (f n x - g x) < e / 3)" "(\<lambda>n. continuous_on s (f n))" net] assms(1,2) eventually_happens by blast
  4008     have "e / 3 > 0" using `e>0` by auto
  4009     then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f n x') (f n x) < e / 3"
  4010       using n(2)[unfolded continuous_on_def, THEN bspec[where x=x], OF `x\<in>s`, THEN spec[where x="e/3"]] by blast
  4011     { fix y assume "y\<in>s" "dist y x < d"
  4012       hence "dist (f n y) (f n x) < e / 3" using d[THEN bspec[where x=y]] by auto
  4013       hence "norm (f n y - g x) < 2 * e / 3" using norm_triangle_lt[of "f n y - f n x" "f n x - g x" "2*e/3"]
  4014         using n(1)[THEN bspec[where x=x], OF `x\<in>s`] unfolding dist_norm unfolding ab_group_add_class.ab_diff_minus by auto
  4015       hence "dist (g y) (g x) < e" unfolding dist_norm using n(1)[THEN bspec[where x=y], OF `y\<in>s`]
  4016         unfolding norm_minus_cancel[of "f n y - g y", THEN sym] using norm_triangle_lt[of "f n y - g x" "g y - f n y" e] by (auto simp add: uminus_add_conv_diff)  }
  4017     hence "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" using `d>0` by auto  }
  4018   thus ?thesis unfolding continuous_on_def by auto
  4019 qed
  4020 
  4021 subsection{* Topological properties of linear functions.                               *}
  4022 
  4023 lemma linear_lim_0:
  4024   assumes "bounded_linear f" shows "(f ---> 0) (at (0))"
  4025 proof-
  4026   interpret f: bounded_linear f by fact
  4027   have "(f ---> f 0) (at 0)"
  4028     using tendsto_ident_at by (rule f.tendsto)
  4029   thus ?thesis unfolding f.zero .
  4030 qed
  4031 
  4032 lemma linear_continuous_at:
  4033   assumes "bounded_linear f"  shows "continuous (at a) f"
  4034   unfolding continuous_at using assms
  4035   apply (rule bounded_linear.tendsto)
  4036   apply (rule tendsto_ident_at)
  4037   done
  4038 
  4039 lemma linear_continuous_within:
  4040   shows "bounded_linear f ==> continuous (at x within s) f"
  4041   using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto
  4042 
  4043 lemma linear_continuous_on:
  4044   shows "bounded_linear f ==> continuous_on s f"
  4045   using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
  4046 
  4047 lemma continuous_on_vec1:"continuous_on A (vec1::real\<Rightarrow>real^1)"
  4048   by(rule linear_continuous_on[OF bounded_linear_vec1])
  4049 
  4050 text{* Also bilinear functions, in composition form.                             *}
  4051 
  4052 lemma bilinear_continuous_at_compose:
  4053   shows "continuous (at x) f \<Longrightarrow> continuous (at x) g \<Longrightarrow> bounded_bilinear h
  4054         ==> continuous (at x) (\<lambda>x. h (f x) (g x))"
  4055   unfolding continuous_at using Lim_bilinear[of f "f x" "(at x)" g "g x" h] by auto
  4056 
  4057 lemma bilinear_continuous_within_compose:
  4058   shows "continuous (at x within s) f \<Longrightarrow> continuous (at x within s) g \<Longrightarrow> bounded_bilinear h
  4059         ==> continuous (at x within s) (\<lambda>x. h (f x) (g x))"
  4060   unfolding continuous_within using Lim_bilinear[of f "f x"] by auto
  4061 
  4062 lemma bilinear_continuous_on_compose:
  4063   shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> bounded_bilinear h
  4064              ==> continuous_on s (\<lambda>x. h (f x) (g x))"
  4065   unfolding continuous_on_eq_continuous_within apply auto apply(erule_tac x=x in ballE) apply auto apply(erule_tac x=x in ballE) apply auto
  4066   using bilinear_continuous_within_compose[of _ s f g h] by auto
  4067 
  4068 subsection{* Topological stuff lifted from and dropped to R                            *}
  4069 
  4070 
  4071 lemma open_real:
  4072   fixes s :: "real set" shows
  4073  "open s \<longleftrightarrow>
  4074         (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. abs(x' - x) < e --> x' \<in> s)" (is "?lhs = ?rhs")
  4075   unfolding open_dist dist_norm by simp
  4076 
  4077 lemma islimpt_approachable_real:
  4078   fixes s :: "real set"
  4079   shows "x islimpt s \<longleftrightarrow> (\<forall>e>0.  \<exists>x'\<in> s. x' \<noteq> x \<and> abs(x' - x) < e)"
  4080   unfolding islimpt_approachable dist_norm by simp
  4081 
  4082 lemma closed_real:
  4083   fixes s :: "real set"
  4084   shows "closed s \<longleftrightarrow>
  4085         (\<forall>x. (\<forall>e>0.  \<exists>x' \<in> s. x' \<noteq> x \<and> abs(x' - x) < e)
  4086             --> x \<in> s)"
  4087   unfolding closed_limpt islimpt_approachable dist_norm by simp
  4088 
  4089 lemma continuous_at_real_range:
  4090   fixes f :: "'a::real_normed_vector \<Rightarrow> real"
  4091   shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
  4092         \<forall>x'. norm(x' - x) < d --> abs(f x' - f x) < e)"
  4093   unfolding continuous_at unfolding Lim_at
  4094   unfolding dist_nz[THEN sym] unfolding dist_norm apply auto
  4095   apply(erule_tac x=e in allE) apply auto apply (rule_tac x=d in exI) apply auto apply (erule_tac x=x' in allE) apply auto
  4096   apply(erule_tac x=e in allE) by auto
  4097 
  4098 lemma continuous_on_real_range:
  4099   fixes f :: "'a::real_normed_vector \<Rightarrow> real"
  4100   shows "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d --> abs(f x' - f x) < e))"
  4101   unfolding continuous_on_def dist_norm by simp
  4102 
  4103 lemma continuous_at_norm: "continuous (at x) norm"
  4104   unfolding continuous_at by (intro tendsto_intros)
  4105 
  4106 lemma continuous_on_norm: "continuous_on s norm"
  4107 unfolding continuous_on by (intro ballI tendsto_intros)
  4108 
  4109 lemma continuous_at_component: "continuous (at a) (\<lambda>x. x $ i)"
  4110 unfolding continuous_at by (intro tendsto_intros)
  4111 
  4112 lemma continuous_on_component: "continuous_on s (\<lambda>x. x $ i)"
  4113 unfolding continuous_on by (intro ballI tendsto_intros)
  4114 
  4115 lemma continuous_at_infnorm: "continuous (at x) infnorm"
  4116   unfolding continuous_at Lim_at o_def unfolding dist_norm
  4117   apply auto apply (rule_tac x=e in exI) apply auto
  4118   using order_trans[OF real_abs_sub_infnorm infnorm_le_norm, of _ x] by (metis xt1(7))
  4119 
  4120 text{* Hence some handy theorems on distance, diameter etc. of/from a set.       *}
  4121 
  4122 lemma compact_attains_sup:
  4123   fixes s :: "real set"
  4124   assumes "compact s"  "s \<noteq> {}"
  4125   shows "\<exists>x \<in> s. \<forall>y \<in> s. y \<le> x"
  4126 proof-
  4127   from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
  4128   { fix e::real assume as: "\<forall>x\<in>s. x \<le> Sup s" "Sup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = Sup s \<or> \<not> Sup s - x' < e"
  4129     have "isLub UNIV s (Sup s)" using Sup[OF assms(2)] unfolding setle_def using as(1) by auto
  4130     moreover have "isUb UNIV s (Sup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto
  4131     ultimately have False using isLub_le_isUb[of UNIV s "Sup s" "Sup s - e"] using `e>0` by auto  }
  4132   thus ?thesis using bounded_has_Sup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Sup s"]]
  4133     apply(rule_tac x="Sup s" in bexI) by auto
  4134 qed
  4135 
  4136 lemma Inf:
  4137   fixes S :: "real set"
  4138   shows "S \<noteq> {} ==> (\<exists>b. b <=* S) ==> isGlb UNIV S (Inf S)"
  4139 by (auto simp add: isLb_def setle_def setge_def isGlb_def greatestP_def) 
  4140 
  4141 lemma compact_attains_inf:
  4142   fixes s :: "real set"
  4143   assumes "compact s" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
  4144 proof-
  4145   from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
  4146   { fix e::real assume as: "\<forall>x\<in>s. x \<ge> Inf s"  "Inf s \<notin> s"  "0 < e"
  4147       "\<forall>x'\<in>s. x' = Inf s \<or> \<not> abs (x' - Inf s) < e"
  4148     have "isGlb UNIV s (Inf s)" using Inf[OF assms(2)] unfolding setge_def using as(1) by auto
  4149     moreover
  4150     { fix x assume "x \<in> s"
  4151       hence *:"abs (x - Inf s) = x - Inf s" using as(1)[THEN bspec[where x=x]] by auto
  4152       have "Inf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto }
  4153     hence "isLb UNIV s (Inf s + e)" unfolding isLb_def and setge_def by auto
  4154     ultimately have False using isGlb_le_isLb[of UNIV s "Inf s" "Inf s + e"] using `e>0` by auto  }
  4155   thus ?thesis using bounded_has_Inf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Inf s"]]
  4156     apply(rule_tac x="Inf s" in bexI) by auto
  4157 qed
  4158 
  4159 lemma continuous_attains_sup:
  4160   fixes f :: "'a::metric_space \<Rightarrow> real"
  4161   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
  4162         ==> (\<exists>x \<in> s. \<forall>y \<in> s.  f y \<le> f x)"
  4163   using compact_attains_sup[of "f ` s"]
  4164   using compact_continuous_image[of s f] by auto
  4165 
  4166 lemma continuous_attains_inf:
  4167   fixes f :: "'a::metric_space \<Rightarrow> real"
  4168   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
  4169         \<Longrightarrow> (\<exists>x \<in> s. \<forall>y \<in> s. f x \<le> f y)"
  4170   using compact_attains_inf[of "f ` s"]
  4171   using compact_continuous_image[of s f] by auto
  4172 
  4173 lemma distance_attains_sup:
  4174   assumes "compact s" "s \<noteq> {}"
  4175   shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a y \<le> dist a x"
  4176 proof (rule continuous_attains_sup [OF assms])
  4177   { fix x assume "x\<in>s"
  4178     have "(dist a ---> dist a x) (at x within s)"
  4179       by (intro tendsto_dist tendsto_const Lim_at_within Lim_ident_at)
  4180   }
  4181   thus "continuous_on s (dist a)"
  4182     unfolding continuous_on ..
  4183 qed
  4184 
  4185 text{* For *minimal* distance, we only need closure, not compactness.            *}
  4186 
  4187 lemma distance_attains_inf:
  4188   fixes a :: "'a::heine_borel"
  4189   assumes "closed s"  "s \<noteq> {}"
  4190   shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a x \<le> dist a y"
  4191 proof-
  4192   from assms(2) obtain b where "b\<in>s" by auto
  4193   let ?B = "cball a (dist b a) \<inter> s"
  4194   have "b \<in> ?B" using `b\<in>s` by (simp add: dist_commute)
  4195   hence "?B \<noteq> {}" by auto
  4196   moreover
  4197   { fix x assume "x\<in>?B"
  4198     fix e::real assume "e>0"
  4199     { fix x' assume "x'\<in>?B" and as:"dist x' x < e"
  4200       from as have "\<bar>dist a x' - dist a x\<bar> < e"
  4201         unfolding abs_less_iff minus_diff_eq
  4202         using dist_triangle2 [of a x' x]
  4203         using dist_triangle [of a x x']
  4204         by arith
  4205     }
  4206     hence "\<exists>d>0. \<forall>x'\<in>?B. dist x' x < d \<longrightarrow> \<bar>dist a x' - dist a x\<bar> < e"
  4207       using `e>0` by auto
  4208   }
  4209   hence "continuous_on (cball a (dist b a) \<inter> s) (dist a)"
  4210     unfolding continuous_on Lim_within dist_norm real_norm_def
  4211     by fast
  4212   moreover have "compact ?B"
  4213     using compact_cball[of a "dist b a"]
  4214     unfolding compact_eq_bounded_closed
  4215     using bounded_Int and closed_Int and assms(1) by auto
  4216   ultimately obtain x where "x\<in>cball a (dist b a) \<inter> s" "\<forall>y\<in>cball a (dist b a) \<inter> s. dist a x \<le> dist a y"
  4217     using continuous_attains_inf[of ?B "dist a"] by fastsimp
  4218   thus ?thesis by fastsimp
  4219 qed
  4220 
  4221 subsection{* We can now extend limit compositions to consider the scalar multiplier.   *}
  4222 
  4223 lemma Lim_mul:
  4224   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
  4225   assumes "(c ---> d) net"  "(f ---> l) net"
  4226   shows "((\<lambda>x. c(x) *\<^sub>R f x) ---> (d *\<^sub>R l)) net"
  4227   using assms by (rule scaleR.tendsto)
  4228 
  4229 lemma Lim_vmul:
  4230   fixes c :: "'a \<Rightarrow> real" and v :: "'b::real_normed_vector"
  4231   shows "(c ---> d) net ==> ((\<lambda>x. c(x) *\<^sub>R v) ---> d *\<^sub>R v) net"
  4232   by (intro tendsto_intros)
  4233 
  4234 lemmas Lim_intros = Lim_add Lim_const Lim_sub Lim_cmul Lim_vmul Lim_within_id
  4235 
  4236 lemma continuous_vmul:
  4237   fixes c :: "'a::metric_space \<Rightarrow> real" and v :: "'b::real_normed_vector"
  4238   shows "continuous net c ==> continuous net (\<lambda>x. c(x) *\<^sub>R v)"
  4239   unfolding continuous_def using Lim_vmul[of c] by auto
  4240 
  4241 lemma continuous_mul:
  4242   fixes c :: "'a::metric_space \<Rightarrow> real"
  4243   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  4244   shows "continuous net c \<Longrightarrow> continuous net f
  4245              ==> continuous net (\<lambda>x. c(x) *\<^sub>R f x) "
  4246   unfolding continuous_def by (intro tendsto_intros)
  4247 
  4248 lemmas continuous_intros = continuous_add continuous_vmul continuous_cmul continuous_const continuous_sub continuous_at_id continuous_within_id continuous_mul
  4249 
  4250 lemma continuous_on_vmul:
  4251   fixes c :: "'a::metric_space \<Rightarrow> real" and v :: "'b::real_normed_vector"
  4252   shows "continuous_on s c ==> continuous_on s (\<lambda>x. c(x) *\<^sub>R v)"
  4253   unfolding continuous_on_eq_continuous_within using continuous_vmul[of _ c] by auto
  4254 
  4255 lemma continuous_on_mul:
  4256   fixes c :: "'a::metric_space \<Rightarrow> real"
  4257   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
  4258   shows "continuous_on s c \<Longrightarrow> continuous_on s f
  4259              ==> continuous_on s (\<lambda>x. c(x) *\<^sub>R f x)"
  4260   unfolding continuous_on_eq_continuous_within using continuous_mul[of _ c] by auto
  4261 
  4262 lemmas continuous_on_intros = continuous_on_add continuous_on_const continuous_on_id continuous_on_compose continuous_on_cmul continuous_on_neg continuous_on_sub
  4263   uniformly_continuous_on_add uniformly_continuous_on_const uniformly_continuous_on_id uniformly_continuous_on_compose uniformly_continuous_on_cmul uniformly_continuous_on_neg uniformly_continuous_on_sub
  4264   continuous_on_mul continuous_on_vmul
  4265 
  4266 text{* And so we have continuity of inverse.                                     *}
  4267 
  4268 lemma Lim_inv:
  4269   fixes f :: "'a \<Rightarrow> real"
  4270   assumes "(f ---> l) (net::'a net)"  "l \<noteq> 0"
  4271   shows "((inverse o f) ---> inverse l) net"
  4272   unfolding o_def using assms by (rule tendsto_inverse)
  4273 
  4274 lemma continuous_inv:
  4275   fixes f :: "'a::metric_space \<Rightarrow> real"
  4276   shows "continuous net f \<Longrightarrow> f(netlimit net) \<noteq> 0
  4277            ==> continuous net (inverse o f)"
  4278   unfolding continuous_def using Lim_inv by auto
  4279 
  4280 lemma continuous_at_within_inv:
  4281   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_field"
  4282   assumes "continuous (at a within s) f" "f a \<noteq> 0"
  4283   shows "continuous (at a within s) (inverse o f)"
  4284   using assms unfolding continuous_within o_def
  4285   by (intro tendsto_intros)
  4286 
  4287 lemma continuous_at_inv:
  4288   fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_field"
  4289   shows "continuous (at a) f \<Longrightarrow> f a \<noteq> 0
  4290          ==> continuous (at a) (inverse o f) "
  4291   using within_UNIV[THEN sym, of "at a"] using continuous_at_within_inv[of a UNIV] by auto
  4292 
  4293 subsection{* Preservation properties for pasted sets.                                  *}
  4294 
  4295 lemma bounded_pastecart:
  4296   fixes s :: "('a::real_normed_vector ^ _) set" (* FIXME: generalize to metric_space *)
  4297   assumes "bounded s" "bounded t"
  4298   shows "bounded { pastecart x y | x y . (x \<in> s \<and> y \<in> t)}"
  4299 proof-
  4300   obtain a b where ab:"\<forall>x\<in>s. norm x \<le> a" "\<forall>x\<in>t. norm x \<le> b" using assms[unfolded bounded_iff] by auto
  4301   { fix x y assume "x\<in>s" "y\<in>t"
  4302     hence "norm x \<le> a" "norm y \<le> b" using ab by auto
  4303     hence "norm (pastecart x y) \<le> a + b" using norm_pastecart[of x y] by auto }
  4304   thus ?thesis unfolding bounded_iff by auto
  4305 qed
  4306 
  4307 lemma bounded_Times:
  4308   assumes "bounded s" "bounded t" shows "bounded (s \<times> t)"
  4309 proof-
  4310   obtain x y a b where "\<forall>z\<in>s. dist x z \<le> a" "\<forall>z\<in>t. dist y z \<le> b"
  4311     using assms [unfolded bounded_def] by auto
  4312   then have "\<forall>z\<in>s \<times> t. dist (x, y) z \<le> sqrt (a\<twosuperior> + b\<twosuperior>)"
  4313     by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono)
  4314   thus ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto
  4315 qed
  4316 
  4317 lemma closed_pastecart:
  4318   fixes s :: "(real ^ 'a) set" (* FIXME: generalize *)
  4319   assumes "closed s"  "closed t"
  4320   shows "closed {pastecart x y | x y . x \<in> s \<and> y \<in> t}"
  4321 proof-
  4322   { fix x l assume as:"\<forall>n::nat. x n \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}"  "(x ---> l) sequentially"
  4323     { fix n::nat have "fstcart (x n) \<in> s" "sndcart (x n) \<in> t" using as(1)[THEN spec[where x=n]] by auto } note * = this
  4324     moreover
  4325     { fix e::real assume "e>0"
  4326       then obtain N::nat where N:"\<forall>n\<ge>N. dist (x n) l < e" using as(2)[unfolded Lim_sequentially, THEN spec[where x=e]] by auto
  4327       { fix n::nat assume "n\<ge>N"
  4328         hence "dist (fstcart (x n)) (fstcart l) < e" "dist (sndcart (x n)) (sndcart l) < e"
  4329           using N[THEN spec[where x=n]] dist_fstcart[of "x n" l] dist_sndcart[of "x n" l] by auto   }
  4330       hence "\<exists>N. \<forall>n\<ge>N. dist (fstcart (x n)) (fstcart l) < e" "\<exists>N. \<forall>n\<ge>N. dist (sndcart (x n)) (sndcart l) < e" by auto  }
  4331     ultimately have "fstcart l \<in> s" "sndcart l \<in> t"
  4332       using assms(1)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. fstcart (x n)"], THEN spec[where x="fstcart l"]]
  4333       using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. sndcart (x n)"], THEN spec[where x="sndcart l"]]
  4334       unfolding Lim_sequentially by auto
  4335     hence "l \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}" apply- unfolding mem_Collect_eq apply(rule_tac x="fstcart l" in exI,rule_tac x="sndcart l" in exI) by auto }
  4336   thus ?thesis unfolding closed_sequential_limits by auto
  4337 qed
  4338 
  4339 lemma compact_pastecart:
  4340   fixes s t :: "(real ^ _) set"
  4341   shows "compact s \<Longrightarrow> compact t ==> compact {pastecart x y | x y . x \<in> s \<and> y \<in> t}"
  4342   unfolding compact_eq_bounded_closed using bounded_pastecart[of s t] closed_pastecart[of s t] by auto
  4343 
  4344 lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
  4345 by (induct x) simp
  4346 
  4347 lemma compact_Times: "compact s \<Longrightarrow> compact t \<Longrightarrow> compact (s \<times> t)"
  4348 unfolding compact_def
  4349 apply clarify
  4350 apply (drule_tac x="fst \<circ> f" in spec)
  4351 apply (drule mp, simp add: mem_Times_iff)
  4352 apply (clarify, rename_tac l1 r1)
  4353 apply (drule_tac x="snd \<circ> f \<circ> r1" in spec)
  4354 apply (drule mp, simp add: mem_Times_iff)
  4355 apply (clarify, rename_tac l2 r2)
  4356 apply (rule_tac x="(l1, l2)" in rev_bexI, simp)
  4357 apply (rule_tac x="r1 \<circ> r2" in exI)
  4358 apply (rule conjI, simp add: subseq_def)
  4359 apply (drule_tac r=r2 in lim_subseq [COMP swap_prems_rl], assumption)
  4360 apply (drule (1) tendsto_Pair) back
  4361 apply (simp add: o_def)
  4362 done
  4363 
  4364 text{* Hence some useful properties follow quite easily.                         *}
  4365 
  4366 lemma compact_scaling:
  4367   fixes s :: "'a::real_normed_vector set"
  4368   assumes "compact s"  shows "compact ((\<lambda>x. c *\<^sub>R x) ` s)"
  4369 proof-
  4370   let ?f = "\<lambda>x. scaleR c x"
  4371   have *:"bounded_linear ?f" by (rule scaleR.bounded_linear_right)
  4372   show ?thesis using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f]
  4373     using linear_continuous_at[OF *] assms by auto
  4374 qed
  4375 
  4376 lemma compact_negations:
  4377   fixes s :: "'a::real_normed_vector set"
  4378   assumes "compact s"  shows "compact ((\<lambda>x. -x) ` s)"
  4379   using compact_scaling [OF assms, of "- 1"] by auto
  4380 
  4381 lemma compact_sums:
  4382   fixes s t :: "'a::real_normed_vector set"
  4383   assumes "compact s"  "compact t"  shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
  4384 proof-
  4385   have *:"{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
  4386     apply auto unfolding image_iff apply(rule_tac x="(xa, y)" in bexI) by auto
  4387   have "continuous_on (s \<times> t) (\<lambda>z. fst z + snd z)"
  4388     unfolding continuous_on by (rule ballI) (intro tendsto_intros)
  4389   thus ?thesis unfolding * using compact_continuous_image compact_Times [OF assms] by auto
  4390 qed
  4391 
  4392 lemma compact_differences:
  4393   fixes s t :: "'a::real_normed_vector set"
  4394   assumes "compact s" "compact t"  shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
  4395 proof-
  4396   have "{x - y | x y. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
  4397     apply auto apply(rule_tac x= xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
  4398   thus ?thesis using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
  4399 qed
  4400 
  4401 lemma compact_translation:
  4402   fixes s :: "'a::real_normed_vector set"
  4403   assumes "compact s"  shows "compact ((\<lambda>x. a + x) ` s)"
  4404 proof-
  4405   have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s" by auto
  4406   thus ?thesis using compact_sums[OF assms compact_sing[of a]] by auto
  4407 qed
  4408 
  4409 lemma compact_affinity:
  4410   fixes s :: "'a::real_normed_vector set"
  4411   assumes "compact s"  shows "compact ((\<lambda>x. a + c *\<^sub>R x) ` s)"
  4412 proof-
  4413   have "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
  4414   thus ?thesis using compact_translation[OF compact_scaling[OF assms], of a c] by auto
  4415 qed
  4416 
  4417 text{* Hence we get the following.                                               *}
  4418 
  4419 lemma compact_sup_maxdistance:
  4420   fixes s :: "'a::real_normed_vector set"
  4421   assumes "compact s"  "s \<noteq> {}"
  4422   shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. norm(u - v) \<le> norm(x - y)"
  4423 proof-
  4424   have "{x - y | x y . x\<in>s \<and> y\<in>s} \<noteq> {}" using `s \<noteq> {}` by auto
  4425   then obtain x where x:"x\<in>{x - y |x y. x \<in> s \<and> y \<in> s}"  "\<forall>y\<in>{x - y |x y. x \<in> s \<and> y \<in> s}. norm y \<le> norm x"
  4426     using compact_differences[OF assms(1) assms(1)]
  4427     using distance_attains_sup[where 'a="'a", unfolded dist_norm, of "{x - y | x y . x\<in>s \<and> y\<in>s}" 0] by(auto simp add: norm_minus_cancel)
  4428   from x(1) obtain a b where "a\<in>s" "b\<in>s" "x = a - b" by auto
  4429   thus ?thesis using x(2)[unfolded `x = a - b`] by blast
  4430 qed
  4431 
  4432 text{* We can state this in terms of diameter of a set.                          *}
  4433 
  4434 definition "diameter s = (if s = {} then 0::real else Sup {norm(x - y) | x y. x \<in> s \<and> y \<in> s})"
  4435   (* TODO: generalize to class metric_space *)
  4436 
  4437 lemma diameter_bounded:
  4438   assumes "bounded s"
  4439   shows "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s"
  4440         "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)"
  4441 proof-
  4442   let ?D = "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}"
  4443   obtain a where a:"\<forall>x\<in>s. norm x \<le> a" using assms[unfolded bounded_iff] by auto
  4444   { fix x y assume "x \<in> s" "y \<in> s"
  4445     hence "norm (x - y) \<le> 2 * a" using norm_triangle_ineq[of x "-y", unfolded norm_minus_cancel] a[THEN bspec[where x=x]] a[THEN bspec[where x=y]] by (auto simp add: ring_simps)  }
  4446   note * = this
  4447   { fix x y assume "x\<in>s" "y\<in>s"  hence "s \<noteq> {}" by auto
  4448     have "norm(x - y) \<le> diameter s" unfolding diameter_def using `s\<noteq>{}` *[OF `x\<in>s` `y\<in>s`] `x\<in>s` `y\<in>s`  
  4449       by simp (blast intro!: Sup_upper *) }
  4450   moreover
  4451   { fix d::real assume "d>0" "d < diameter s"
  4452     hence "s\<noteq>{}" unfolding diameter_def by auto
  4453     have "\<exists>d' \<in> ?D. d' > d"
  4454     proof(rule ccontr)
  4455       assume "\<not> (\<exists>d'\<in>{norm (x - y) |x y. x \<in> s \<and> y \<in> s}. d < d')"
  4456       hence "\<forall>d'\<in>?D. d' \<le> d" by auto (metis not_leE) 
  4457       thus False using `d < diameter s` `s\<noteq>{}` 
  4458         apply (auto simp add: diameter_def) 
  4459         apply (drule Sup_real_iff [THEN [2] rev_iffD2])
  4460         apply (auto, force) 
  4461         done
  4462     qed
  4463     hence "\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d" by auto  }
  4464   ultimately show "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s"
  4465         "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)" by auto
  4466 qed
  4467 
  4468 lemma diameter_bounded_bound:
  4469  "bounded s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s ==> norm(x - y) \<le> diameter s"
  4470   using diameter_bounded by blast
  4471 
  4472 lemma diameter_compact_attained:
  4473   fixes s :: "'a::real_normed_vector set"
  4474   assumes "compact s"  "s \<noteq> {}"
  4475   shows "\<exists>x\<in>s. \<exists>y\<in>s. (norm(x - y) = diameter s)"
  4476 proof-
  4477   have b:"bounded s" using assms(1) by (rule compact_imp_bounded)
  4478   then obtain x y where xys:"x\<in>s" "y\<in>s" and xy:"\<forall>u\<in>s. \<forall>v\<in>s. norm (u - v) \<le> norm (x - y)" using compact_sup_maxdistance[OF assms] by auto
  4479   hence "diameter s \<le> norm (x - y)" 
  4480     by (force simp add: diameter_def intro!: Sup_least) 
  4481   thus ?thesis
  4482     by (metis b diameter_bounded_bound order_antisym xys) 
  4483 qed
  4484 
  4485 text{* Related results with closure as the conclusion.                           *}
  4486 
  4487 lemma closed_scaling:
  4488   fixes s :: "'a::real_normed_vector set"
  4489   assumes "closed s" shows "closed ((\<lambda>x. c *\<^sub>R x) ` s)"
  4490 proof(cases "s={}")
  4491   case True thus ?thesis by auto
  4492 next
  4493   case False
  4494   show ?thesis
  4495   proof(cases "c=0")
  4496     have *:"(\<lambda>x. 0) ` s = {0}" using `s\<noteq>{}` by auto
  4497     case True thus ?thesis apply auto unfolding * using closed_sing by auto
  4498   next
  4499     case False
  4500     { fix x l assume as:"\<forall>n::nat. x n \<in> scaleR c ` s"  "(x ---> l) sequentially"
  4501       { fix n::nat have "scaleR (1 / c) (x n) \<in> s"
  4502           using as(1)[THEN spec[where x=n]]
  4503           using `c\<noteq>0` by (auto simp add: vector_smult_assoc)
  4504       }
  4505       moreover
  4506       { fix e::real assume "e>0"
  4507         hence "0 < e *\<bar>c\<bar>"  using `c\<noteq>0` mult_pos_pos[of e "abs c"] by auto
  4508         then obtain N where "\<forall>n\<ge>N. dist (x n) l < e * \<bar>c\<bar>"
  4509           using as(2)[unfolded Lim_sequentially, THEN spec[where x="e * abs c"]] by auto
  4510         hence "\<exists>N. \<forall>n\<ge>N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e"
  4511           unfolding dist_norm unfolding scaleR_right_diff_distrib[THEN sym]
  4512           using mult_imp_div_pos_less[of "abs c" _ e] `c\<noteq>0` by auto  }
  4513       hence "((\<lambda>n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially" unfolding Lim_sequentially by auto
  4514       ultimately have "l \<in> scaleR c ` s"
  4515         using assms[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. scaleR (1/c) (x n)"], THEN spec[where x="scaleR (1/c) l"]]
  4516         unfolding image_iff using `c\<noteq>0` apply(rule_tac x="scaleR (1 / c) l" in bexI) by auto  }
  4517     thus ?thesis unfolding closed_sequential_limits by fast
  4518   qed
  4519 qed
  4520 
  4521 lemma closed_negations:
  4522   fixes s :: "'a::real_normed_vector set"
  4523   assumes "closed s"  shows "closed ((\<lambda>x. -x) ` s)"
  4524   using closed_scaling[OF assms, of "- 1"] by simp
  4525 
  4526 lemma compact_closed_sums:
  4527   fixes s :: "'a::real_normed_vector set"
  4528   assumes "compact s"  "closed t"  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
  4529 proof-
  4530   let ?S = "{x + y |x y. x \<in> s \<and> y \<in> t}"
  4531   { fix x l assume as:"\<forall>n. x n \<in> ?S"  "(x ---> l) sequentially"
  4532     from as(1) obtain f where f:"\<forall>n. x n = fst (f n) + snd (f n)"  "\<forall>n. fst (f n) \<in> s"  "\<forall>n. snd (f n) \<in> t"
  4533       using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> s \<and> snd y \<in> t"] by auto
  4534     obtain l' r where "l'\<in>s" and r:"subseq r" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially"
  4535       using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
  4536     have "((\<lambda>n. snd (f (r n))) ---> l - l') sequentially"
  4537       using Lim_sub[OF lim_subseq[OF r as(2)] lr] and f(1) unfolding o_def by auto
  4538     hence "l - l' \<in> t"
  4539       using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]]
  4540       using f(3) by auto
  4541     hence "l \<in> ?S" using `l' \<in> s` apply auto apply(rule_tac x=l' in exI) apply(rule_tac x="l - l'" in exI) by auto
  4542   }
  4543   thus ?thesis unfolding closed_sequential_limits by fast
  4544 qed
  4545 
  4546 lemma closed_compact_sums:
  4547   fixes s t :: "'a::real_normed_vector set"
  4548   assumes "closed s"  "compact t"
  4549   shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
  4550 proof-
  4551   have "{x + y |x y. x \<in> t \<and> y \<in> s} = {x + y |x y. x \<in> s \<and> y \<in> t}" apply auto
  4552     apply(rule_tac x=y in exI) apply auto apply(rule_tac x=y in exI) by auto
  4553   thus ?thesis using compact_closed_sums[OF assms(2,1)] by simp
  4554 qed
  4555 
  4556 lemma compact_closed_differences:
  4557   fixes s t :: "'a::real_normed_vector set"
  4558   assumes "compact s"  "closed t"
  4559   shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
  4560 proof-
  4561   have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} =  {x - y |x y. x \<in> s \<and> y \<in> t}"
  4562     apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
  4563   thus ?thesis using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto
  4564 qed
  4565 
  4566 lemma closed_compact_differences:
  4567   fixes s t :: "'a::real_normed_vector set"
  4568   assumes "closed s" "compact t"
  4569   shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
  4570 proof-
  4571   have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}"
  4572     apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
  4573  thus ?thesis using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp
  4574 qed
  4575 
  4576 lemma closed_translation:
  4577   fixes a :: "'a::real_normed_vector"
  4578   assumes "closed s"  shows "closed ((\<lambda>x. a + x) ` s)"
  4579 proof-
  4580   have "{a + y |y. y \<in> s} = (op + a ` s)" by auto
  4581   thus ?thesis using compact_closed_sums[OF compact_sing[of a] assms] by auto
  4582 qed
  4583 
  4584 lemma translation_Compl:
  4585   fixes a :: "'a::ab_group_add"
  4586   shows "(\<lambda>x. a + x) ` (- t) = - ((\<lambda>x. a + x) ` t)"
  4587   apply (auto simp add: image_iff) apply(rule_tac x="x - a" in bexI) by auto
  4588 
  4589 lemma translation_UNIV:
  4590   fixes a :: "'a::ab_group_add" shows "range (\<lambda>x. a + x) = UNIV"
  4591   apply (auto simp add: image_iff) apply(rule_tac x="x - a" in exI) by auto
  4592 
  4593 lemma translation_diff:
  4594   fixes a :: "'a::ab_group_add"
  4595   shows "(\<lambda>x. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)"
  4596   by auto
  4597 
  4598 lemma closure_translation:
  4599   fixes a :: "'a::real_normed_vector"
  4600   shows "closure ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (closure s)"
  4601 proof-
  4602   have *:"op + a ` (- s) = - op + a ` s"
  4603     apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto
  4604   show ?thesis unfolding closure_interior translation_Compl
  4605     using interior_translation[of a "- s"] unfolding * by auto
  4606 qed
  4607 
  4608 lemma frontier_translation:
  4609   fixes a :: "'a::real_normed_vector"
  4610   shows "frontier((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (frontier s)"
  4611   unfolding frontier_def translation_diff interior_translation closure_translation by auto
  4612 
  4613 subsection{* Separation between points and sets.                                       *}
  4614 
  4615 lemma separate_point_closed:
  4616   fixes s :: "'a::heine_borel set"
  4617   shows "closed s \<Longrightarrow> a \<notin> s  ==> (\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x)"
  4618 proof(cases "s = {}")
  4619   case True
  4620   thus ?thesis by(auto intro!: exI[where x=1])
  4621 next
  4622   case False
  4623   assume "closed s" "a \<notin> s"
  4624   then obtain x where "x\<in>s" "\<forall>y\<in>s. dist a x \<le> dist a y" using `s \<noteq> {}` distance_attains_inf [of s a] by blast
  4625   with `x\<in>s` show ?thesis using dist_pos_lt[of a x] and`a \<notin> s` by blast
  4626 qed
  4627 
  4628 lemma separate_compact_closed:
  4629   fixes s t :: "'a::{heine_borel, real_normed_vector} set"
  4630     (* TODO: does this generalize to heine_borel? *)
  4631   assumes "compact s" and "closed t" and "s \<inter> t = {}"
  4632   shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
  4633 proof-
  4634   have "0 \<notin> {x - y |x y. x \<in> s \<and> y \<in> t}" using assms(3) by auto
  4635   then obtain d where "d>0" and d:"\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. d \<le> dist 0 x"
  4636     using separate_point_closed[OF compact_closed_differences[OF assms(1,2)], of 0] by auto
  4637   { fix x y assume "x\<in>s" "y\<in>t"
  4638     hence "x - y \<in> {x - y |x y. x \<in> s \<and> y \<in> t}" by auto
  4639     hence "d \<le> dist (x - y) 0" using d[THEN bspec[where x="x - y"]] using dist_commute
  4640       by (auto  simp add: dist_commute)
  4641     hence "d \<le> dist x y" unfolding dist_norm by auto  }
  4642   thus ?thesis using `d>0` by auto
  4643 qed
  4644 
  4645 lemma separate_closed_compact:
  4646   fixes s t :: "'a::{heine_borel, real_normed_vector} set"
  4647   assumes "closed s" and "compact t" and "s \<inter> t = {}"
  4648   shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
  4649 proof-
  4650   have *:"t \<inter> s = {}" using assms(3) by auto
  4651   show ?thesis using separate_compact_closed[OF assms(2,1) *]
  4652     apply auto apply(rule_tac x=d in exI) apply auto apply (erule_tac x=y in ballE)
  4653     by (auto simp add: dist_commute)
  4654 qed
  4655 
  4656 (* A cute way of denoting open and closed intervals using overloading.       *)
  4657 
  4658 lemma interval: fixes a :: "'a::ord^'n" shows
  4659   "{a <..< b} = {x::'a^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and
  4660   "{a .. b} = {x::'a^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}"
  4661   by (auto simp add: expand_set_eq vector_less_def vector_le_def)
  4662 
  4663 lemma mem_interval: fixes a :: "'a::ord^'n" shows
  4664   "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)"
  4665   "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)"
  4666   using interval[of a b] by(auto simp add: expand_set_eq vector_less_def vector_le_def)
  4667 
  4668 lemma mem_interval_1: fixes x :: "real^1" shows
  4669  "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
  4670  "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
  4671 by(simp_all add: Cart_eq vector_less_def vector_le_def forall_1)
  4672 
  4673 lemma vec1_interval:fixes a::"real" shows
  4674   "vec1 ` {a .. b} = {vec1 a .. vec1 b}"
  4675   "vec1 ` {a<..<b} = {vec1 a<..<vec1 b}"
  4676   apply(rule_tac[!] set_ext) unfolding image_iff vector_less_def unfolding mem_interval
  4677   unfolding forall_1 unfolding vec1_dest_vec1_simps
  4678   apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) prefer 3 apply rule defer
  4679   apply(rule_tac x="dest_vec1 x" in bexI) by auto
  4680 
  4681 
  4682 lemma interval_eq_empty: fixes a :: "real^'n" shows
  4683  "({a <..< b} = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and
  4684  "({a  ..  b} = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2)
  4685 proof-
  4686   { fix i x assume as:"b$i \<le> a$i" and x:"x\<in>{a <..< b}"
  4687     hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval by auto
  4688     hence "a$i < b$i" by auto
  4689     hence False using as by auto  }
  4690   moreover
  4691   { assume as:"\<forall>i. \<not> (b$i \<le> a$i)"
  4692     let ?x = "(1/2) *\<^sub>R (a + b)"
  4693     { fix i
  4694       have "a$i < b$i" using as[THEN spec[where x=i]] by auto
  4695       hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i"
  4696         unfolding vector_smult_component and vector_add_component
  4697         by (auto simp add: less_divide_eq_number_of1)  }
  4698     hence "{a <..< b} \<noteq> {}" using mem_interval(1)[of "?x" a b] by auto  }
  4699   ultimately show ?th1 by blast
  4700 
  4701   { fix i x assume as:"b$i < a$i" and x:"x\<in>{a .. b}"
  4702     hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval by auto
  4703     hence "a$i \<le> b$i" by auto
  4704     hence False using as by auto  }
  4705   moreover
  4706   { assume as:"\<forall>i. \<not> (b$i < a$i)"
  4707     let ?x = "(1/2) *\<^sub>R (a + b)"
  4708     { fix i
  4709       have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto
  4710       hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i"
  4711         unfolding vector_smult_component and vector_add_component
  4712         by (auto simp add: less_divide_eq_number_of1)  }
  4713     hence "{a .. b} \<noteq> {}" using mem_interval(2)[of "?x" a b] by auto  }
  4714   ultimately show ?th2 by blast
  4715 qed
  4716 
  4717 lemma interval_ne_empty: fixes a :: "real^'n" shows
  4718   "{a  ..  b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)" and
  4719   "{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
  4720   unfolding interval_eq_empty[of a b] by (auto simp add: not_less not_le) (* BH: Why doesn't just "auto" work here? *)
  4721 
  4722 lemma subset_interval_imp: fixes a :: "real^'n" shows
  4723  "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and
  4724  "(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and
  4725  "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and
  4726  "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}"
  4727   unfolding subset_eq[unfolded Ball_def] unfolding mem_interval
  4728   by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *)
  4729 
  4730 lemma interval_sing: fixes a :: "'a::linorder^'n" shows
  4731  "{a .. a} = {a} \<and> {a<..<a} = {}"
  4732 apply(auto simp add: expand_set_eq vector_less_def vector_le_def Cart_eq)
  4733 apply (simp add: order_eq_iff)
  4734 apply (auto simp add: not_less less_imp_le)
  4735 done
  4736 
  4737 lemma interval_open_subset_closed:  fixes a :: "'a::preorder^'n" shows
  4738  "{a<..<b} \<subseteq> {a .. b}"
  4739 proof(simp add: subset_eq, rule)
  4740   fix x
  4741   assume x:"x \<in>{a<..<b}"
  4742   { fix i
  4743     have "a $ i \<le> x $ i"
  4744       using x order_less_imp_le[of "a$i" "x$i"]
  4745       by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq)
  4746   }
  4747   moreover
  4748   { fix i
  4749     have "x $ i \<le> b $ i"
  4750       using x order_less_imp_le[of "x$i" "b$i"]
  4751       by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq)
  4752   }
  4753   ultimately
  4754   show "a \<le> x \<and> x \<le> b"
  4755     by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq)
  4756 qed
  4757 
  4758 lemma subset_interval: fixes a :: "real^'n" shows
  4759  "{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and
  4760  "{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2) and
  4761  "{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and
  4762  "{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4)
  4763 proof-
  4764   show ?th1 unfolding subset_eq and Ball_def and mem_interval by (auto intro: order_trans)
  4765   show ?th2 unfolding subset_eq and Ball_def and mem_interval by (auto intro: le_less_trans less_le_trans order_trans less_imp_le)
  4766   { assume as: "{c<..<d} \<subseteq> {a .. b}" "\<forall>i. c$i < d$i"
  4767     hence "{c<..<d} \<noteq> {}" unfolding interval_eq_empty by (auto, drule_tac x=i in spec, simp) (* BH: Why doesn't just "auto" work? *)
  4768     fix i
  4769     (** TODO combine the following two parts as done in the HOL_light version. **)
  4770     { let ?x = "(\<chi> j. (if j=i then ((min (a$j) (d$j))+c$j)/2 else (c$j+d$j)/2))::real^'n"
  4771       assume as2: "a$i > c$i"
  4772       { fix j
  4773         have "c $ j < ?x $ j \<and> ?x $ j < d $ j" unfolding Cart_lambda_beta
  4774           apply(cases "j=i") using as(2)[THEN spec[where x=j]]
  4775           by (auto simp add: less_divide_eq_number_of1 as2)  }
  4776       hence "?x\<in>{c<..<d}" unfolding mem_interval by auto
  4777       moreover
  4778       have "?x\<notin>{a .. b}"
  4779         unfolding mem_interval apply auto apply(rule_tac x=i in exI)
  4780         using as(2)[THEN spec[where x=i]] and as2
  4781         by (auto simp add: less_divide_eq_number_of1)
  4782       ultimately have False using as by auto  }
  4783     hence "a$i \<le> c$i" by(rule ccontr)auto
  4784     moreover
  4785     { let ?x = "(\<chi> j. (if j=i then ((max (b$j) (c$j))+d$j)/2 else (c$j+d$j)/2))::real^'n"
  4786       assume as2: "b$i < d$i"
  4787       { fix j
  4788         have "d $ j > ?x $ j \<and> ?x $ j > c $ j" unfolding Cart_lambda_beta
  4789           apply(cases "j=i") using as(2)[THEN spec[where x=j]]
  4790           by (auto simp add: less_divide_eq_number_of1 as2)  }
  4791       hence "?x\<in>{c<..<d}" unfolding mem_interval by auto
  4792       moreover
  4793       have "?x\<notin>{a .. b}"
  4794         unfolding mem_interval apply auto apply(rule_tac x=i in exI)
  4795         using as(2)[THEN spec[where x=i]] and as2
  4796         by (auto simp add: less_divide_eq_number_of1)
  4797       ultimately have False using as by auto  }
  4798     hence "b$i \<ge> d$i" by(rule ccontr)auto
  4799     ultimately
  4800     have "a$i \<le> c$i \<and> d$i \<le> b$i" by auto
  4801   } note part1 = this
  4802   thus ?th3 unfolding subset_eq and Ball_def and mem_interval apply auto apply (erule_tac x=ia in allE, simp)+ by (erule_tac x=i in allE, erule_tac x=i in allE, simp)+
  4803   { assume as:"{c<..<d} \<subseteq> {a<..<b}" "\<forall>i. c$i < d$i"
  4804     fix i
  4805     from as(1) have "{c<..<d} \<subseteq> {a..b}" using interval_open_subset_closed[of a b] by auto
  4806     hence "a$i \<le> c$i \<and> d$i \<le> b$i" using part1 and as(2) by auto  } note * = this
  4807   thus ?th4 unfolding subset_eq and Ball_def and mem_interval apply auto apply (erule_tac x=ia in allE, simp)+ by (erule_tac x=i in allE, erule_tac x=i in allE, simp)+
  4808 qed
  4809 
  4810 lemma disjoint_interval: fixes a::"real^'n" shows
  4811   "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and
  4812   "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and
  4813   "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and
  4814   "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4)
  4815 proof-
  4816   let ?z = "(\<chi> i. ((max (a$i) (c$i)) + (min (b$i) (d$i))) / 2)::real^'n"
  4817   show ?th1 ?th2 ?th3 ?th4
  4818   unfolding expand_set_eq and Int_iff and empty_iff and mem_interval and all_conj_distrib[THEN sym] and eq_False
  4819   apply (auto elim!: allE[where x="?z"])
  4820   apply ((rule_tac x=x in exI, force) | (rule_tac x=i in exI, force))+
  4821   done
  4822 qed
  4823 
  4824 lemma inter_interval: fixes a :: "'a::linorder^'n" shows
  4825  "{a .. b} \<inter> {c .. d} =  {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
  4826   unfolding expand_set_eq and Int_iff and mem_interval
  4827   by (auto simp add: less_divide_eq_number_of1 intro!: bexI)
  4828 
  4829 (* Moved interval_open_subset_closed a bit upwards *)
  4830 
  4831 lemma open_interval_lemma: fixes x :: "real" shows
  4832  "a < x \<Longrightarrow> x < b ==> (\<exists>d>0. \<forall>x'. abs(x' - x) < d --> a < x' \<and> x' < b)"
  4833   by(rule_tac x="min (x - a) (b - x)" in exI, auto)
  4834 
  4835 lemma open_interval[intro]: fixes a :: "real^'n" shows "open {a<..<b}"
  4836 proof-
  4837   { fix x assume x:"x\<in>{a<..<b}"
  4838     { fix i
  4839       have "\<exists>d>0. \<forall>x'. abs (x' - (x$i)) < d \<longrightarrow> a$i < x' \<and> x' < b$i"
  4840         using x[unfolded mem_interval, THEN spec[where x=i]]
  4841         using open_interval_lemma[of "a$i" "x$i" "b$i"] by auto  }
  4842 
  4843     hence "\<forall>i. \<exists>d>0. \<forall>x'. abs (x' - (x$i)) < d \<longrightarrow> a$i < x' \<and> x' < b$i" by auto
  4844     then obtain d where d:"\<forall>i. 0 < d i \<and> (\<forall>x'. \<bar>x' - x $ i\<bar> < d i \<longrightarrow> a $ i < x' \<and> x' < b $ i)"
  4845       using bchoice[of "UNIV" "\<lambda>i d. d>0 \<and> (\<forall>x'. \<bar>x' - x $ i\<bar> < d \<longrightarrow> a $ i < x' \<and> x' < b $ i)"] by auto
  4846 
  4847     let ?d = "Min (range d)"
  4848     have **:"finite (range d)" "range d \<noteq> {}" by auto
  4849     have "?d>0" unfolding Min_gr_iff[OF **] using d by auto
  4850     moreover
  4851     { fix x' assume as:"dist x' x < ?d"
  4852       { fix i
  4853         have "\<bar>x'$i - x $ i\<bar> < d i"
  4854           using norm_bound_component_lt[OF as[unfolded dist_norm], of i]
  4855           unfolding vector_minus_component and Min_gr_iff[OF **] by auto
  4856         hence "a $ i < x' $ i" "x' $ i < b $ i" using d[THEN spec[where x=i]] by auto  }
  4857       hence "a < x' \<and> x' < b" unfolding vector_less_def by auto  }
  4858     ultimately have "\<exists>e>0. \<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a<..<b}" by (auto, rule_tac x="?d" in exI, simp)
  4859   }
  4860   thus ?thesis unfolding open_dist using open_interval_lemma by auto
  4861 qed
  4862 
  4863 lemma open_interval_real[intro]: fixes a :: "real" shows "open {a<..<b}"
  4864   using open_interval[of "vec1 a" "vec1 b"] unfolding open_contains_ball
  4865   apply-apply(rule,erule_tac x="vec1 x" in ballE) apply(erule exE,rule_tac x=e in exI)
  4866   unfolding subset_eq mem_ball apply(rule) defer apply(rule,erule conjE,erule_tac x="vec1 xa" in ballE)
  4867   by(auto simp add: vec1_dest_vec1_simps vector_less_def forall_1) 
  4868 
  4869 lemma closed_interval[intro]: fixes a :: "real^'n" shows "closed {a .. b}"
  4870 proof-
  4871   { fix x i assume as:"\<forall>e>0. \<exists>x'\<in>{a..b}. x' \<noteq> x \<and> dist x' x < e"(* and xab:"a$i > x$i \<or> b$i < x$i"*)
  4872     { assume xa:"a$i > x$i"
  4873       with as obtain y where y:"y\<in>{a..b}" "y \<noteq> x" "dist y x < a$i - x$i" by(erule_tac x="a$i - x$i" in allE)auto
  4874       hence False unfolding mem_interval and dist_norm
  4875         using component_le_norm[of "y-x" i, unfolded vector_minus_component] and xa by(auto elim!: allE[where x=i])
  4876     } hence "a$i \<le> x$i" by(rule ccontr)auto
  4877     moreover
  4878     { assume xb:"b$i < x$i"
  4879       with as obtain y where y:"y\<in>{a..b}" "y \<noteq> x" "dist y x < x$i - b$i" by(erule_tac x="x$i - b$i" in allE)auto
  4880       hence False unfolding mem_interval and dist_norm
  4881         using component_le_norm[of "y-x" i, unfolded vector_minus_component] and xb by(auto elim!: allE[where x=i])
  4882     } hence "x$i \<le> b$i" by(rule ccontr)auto
  4883     ultimately
  4884     have "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" by auto }
  4885   thus ?thesis unfolding closed_limpt islimpt_approachable mem_interval by auto
  4886 qed
  4887 
  4888 lemma interior_closed_interval[intro]: fixes a :: "real^'n" shows
  4889  "interior {a .. b} = {a<..<b}" (is "?L = ?R")
  4890 proof(rule subset_antisym)
  4891   show "?R \<subseteq> ?L" using interior_maximal[OF interval_open_subset_closed open_interval] by auto
  4892 next
  4893   { fix x assume "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> {a..b}"
  4894     then obtain s where s:"open s" "x \<in> s" "s \<subseteq> {a..b}" by auto
  4895     then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a..b}" unfolding open_dist and subset_eq by auto
  4896     { fix i
  4897       have "dist (x - (e / 2) *\<^sub>R basis i) x < e"
  4898            "dist (x + (e / 2) *\<^sub>R basis i) x < e"
  4899         unfolding dist_norm apply auto
  4900         unfolding norm_minus_cancel using norm_basis[of i] and `e>0` by auto
  4901       hence "a $ i \<le> (x - (e / 2) *\<^sub>R basis i) $ i"
  4902                     "(x + (e / 2) *\<^sub>R basis i) $ i \<le> b $ i"
  4903         using e[THEN spec[where x="x - (e/2) *\<^sub>R basis i"]]
  4904         and   e[THEN spec[where x="x + (e/2) *\<^sub>R basis i"]]
  4905         unfolding mem_interval by (auto elim!: allE[where x=i])
  4906       hence "a $ i < x $ i" and "x $ i < b $ i"
  4907         unfolding vector_minus_component and vector_add_component
  4908         unfolding vector_smult_component and basis_component using `e>0` by auto   }
  4909     hence "x \<in> {a<..<b}" unfolding mem_interval by auto  }
  4910   thus "?L \<subseteq> ?R" unfolding interior_def and subset_eq by auto
  4911 qed
  4912 
  4913 lemma bounded_closed_interval: fixes a :: "real^'n" shows
  4914  "bounded {a .. b}"
  4915 proof-
  4916   let ?b = "\<Sum>i\<in>UNIV. \<bar>a$i\<bar> + \<bar>b$i\<bar>"
  4917   { fix x::"real^'n" assume x:"\<forall>i. a $ i \<le> x $ i \<and> x $ i \<le> b $ i"
  4918     { fix i
  4919       have "\<bar>x$i\<bar> \<le> \<bar>a$i\<bar> + \<bar>b$i\<bar>" using x[THEN spec[where x=i]] by auto  }
  4920     hence "(\<Sum>i\<in>UNIV. \<bar>x $ i\<bar>) \<le> ?b" by(rule setsum_mono)
  4921     hence "norm x \<le> ?b" using norm_le_l1[of x] by auto  }
  4922   thus ?thesis unfolding interval and bounded_iff by auto
  4923 qed
  4924 
  4925 lemma bounded_interval: fixes a :: "real^'n" shows
  4926  "bounded {a .. b} \<and> bounded {a<..<b}"
  4927   using bounded_closed_interval[of a b]
  4928   using interval_open_subset_closed[of a b]
  4929   using bounded_subset[of "{a..b}" "{a<..<b}"]
  4930   by simp
  4931 
  4932 lemma not_interval_univ: fixes a :: "real^'n" shows
  4933  "({a .. b} \<noteq> UNIV) \<and> ({a<..<b} \<noteq> UNIV)"
  4934   using bounded_interval[of a b]
  4935   by auto
  4936 
  4937 lemma compact_interval: fixes a :: "real^'n" shows
  4938  "compact {a .. b}"
  4939   using bounded_closed_imp_compact using bounded_interval[of a b] using closed_interval[of a b] by auto
  4940 
  4941 lemma open_interval_midpoint: fixes a :: "real^'n"
  4942   assumes "{a<..<b} \<noteq> {}" shows "((1/2) *\<^sub>R (a + b)) \<in> {a<..<b}"
  4943 proof-
  4944   { fix i
  4945     have "a $ i < ((1 / 2) *\<^sub>R (a + b)) $ i \<and> ((1 / 2) *\<^sub>R (a + b)) $ i < b $ i"
  4946       using assms[unfolded interval_ne_empty, THEN spec[where x=i]]
  4947       unfolding vector_smult_component and vector_add_component
  4948       by(auto simp add: less_divide_eq_number_of1)  }
  4949   thus ?thesis unfolding mem_interval by auto
  4950 qed
  4951 
  4952 lemma open_closed_interval_convex: fixes x :: "real^'n"
  4953   assumes x:"x \<in> {a<..<b}" and y:"y \<in> {a .. b}" and e:"0 < e" "e \<le> 1"
  4954   shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<in> {a<..<b}"
  4955 proof-
  4956   { fix i
  4957     have "a $ i = e * a$i + (1 - e) * a$i" unfolding left_diff_distrib by simp
  4958     also have "\<dots> < e * x $ i + (1 - e) * y $ i" apply(rule add_less_le_mono)
  4959       using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all
  4960       using x unfolding mem_interval  apply simp
  4961       using y unfolding mem_interval  apply simp
  4962       done
  4963     finally have "a $ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i" by auto
  4964     moreover {
  4965     have "b $ i = e * b$i + (1 - e) * b$i" unfolding left_diff_distrib by simp
  4966     also have "\<dots> > e * x $ i + (1 - e) * y $ i" apply(rule add_less_le_mono)
  4967       using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all
  4968       using x unfolding mem_interval  apply simp
  4969       using y unfolding mem_interval  apply simp
  4970       done
  4971     finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i < b $ i" by auto
  4972     } ultimately have "a $ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i \<and> (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i < b $ i" by auto }
  4973   thus ?thesis unfolding mem_interval by auto
  4974 qed
  4975 
  4976 lemma closure_open_interval: fixes a :: "real^'n"
  4977   assumes "{a<..<b} \<noteq> {}"
  4978   shows "closure {a<..<b} = {a .. b}"
  4979 proof-
  4980   have ab:"a < b" using assms[unfolded interval_ne_empty] unfolding vector_less_def by auto
  4981   let ?c = "(1 / 2) *\<^sub>R (a + b)"
  4982   { fix x assume as:"x \<in> {a .. b}"
  4983     def f == "\<lambda>n::nat. x + (inverse (real n + 1)) *\<^sub>R (?c - x)"
  4984     { fix n assume fn:"f n < b \<longrightarrow> a < f n \<longrightarrow> f n = x" and xc:"x \<noteq> ?c"
  4985       have *:"0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1" unfolding inverse_le_1_iff by auto
  4986       have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x =
  4987         x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)"
  4988         by (auto simp add: algebra_simps)
  4989       hence "f n < b" and "a < f n" using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] unfolding f_def by auto
  4990       hence False using fn unfolding f_def using xc by(auto simp add: vector_mul_lcancel vector_ssub_ldistrib)  }
  4991     moreover
  4992     { assume "\<not> (f ---> x) sequentially"
  4993       { fix e::real assume "e>0"
  4994         hence "\<exists>N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto
  4995         then obtain N::nat where "inverse (real (N + 1)) < e" by auto
  4996         hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
  4997         hence "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto  }
  4998       hence "((\<lambda>n. inverse (real n + 1)) ---> 0) sequentially"
  4999         unfolding Lim_sequentially by(auto simp add: dist_norm)
  5000       hence "(f ---> x) sequentially" unfolding f_def
  5001         using Lim_add[OF Lim_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
  5002         using Lim_vmul[of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto  }
  5003     ultimately have "x \<in> closure {a<..<b}"
  5004       using as and open_interval_midpoint[OF assms] unfolding closure_def unfolding islimpt_sequential by(cases "x=?c")auto  }
  5005   thus ?thesis using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast
  5006 qed
  5007 
  5008 lemma bounded_subset_open_interval_symmetric: fixes s::"(real^'n) set"
  5009   assumes "bounded s"  shows "\<exists>a. s \<subseteq> {-a<..<a}"
  5010 proof-
  5011   obtain b where "b>0" and b:"\<forall>x\<in>s. norm x \<le> b" using assms[unfolded bounded_pos] by auto
  5012   def a \<equiv> "(\<chi> i. b+1)::real^'n"
  5013   { fix x assume "x\<in>s"
  5014     fix i
  5015     have "(-a)$i < x$i" and "x$i < a$i" using b[THEN bspec[where x=x], OF `x\<in>s`] and component_le_norm[of x i]
  5016       unfolding vector_uminus_component and a_def and Cart_lambda_beta by auto
  5017   }
  5018   thus ?thesis by(auto intro: exI[where x=a] simp add: vector_less_def)
  5019 qed
  5020 
  5021 lemma bounded_subset_open_interval:
  5022   fixes s :: "(real ^ 'n) set"
  5023   shows "bounded s ==> (\<exists>a b. s \<subseteq> {a<..<b})"
  5024   by (auto dest!: bounded_subset_open_interval_symmetric)
  5025 
  5026 lemma bounded_subset_closed_interval_symmetric:
  5027   fixes s :: "(real ^ 'n) set"
  5028   assumes "bounded s" shows "\<exists>a. s \<subseteq> {-a .. a}"
  5029 proof-
  5030   obtain a where "s \<subseteq> {- a<..<a}" using bounded_subset_open_interval_symmetric[OF assms] by auto
  5031   thus ?thesis using interval_open_subset_closed[of "-a" a] by auto
  5032 qed
  5033 
  5034 lemma bounded_subset_closed_interval:
  5035   fixes s :: "(real ^ 'n) set"
  5036   shows "bounded s ==> (\<exists>a b. s \<subseteq> {a .. b})"
  5037   using bounded_subset_closed_interval_symmetric[of s] by auto
  5038 
  5039 lemma frontier_closed_interval:
  5040   fixes a b :: "real ^ _"
  5041   shows "frontier {a .. b} = {a .. b} - {a<..<b}"
  5042   unfolding frontier_def unfolding interior_closed_interval and closure_closed[OF closed_interval] ..
  5043 
  5044 lemma frontier_open_interval:
  5045   fixes a b :: "real ^ _"
  5046   shows "frontier {a<..<b} = (if {a<..<b} = {} then {} else {a .. b} - {a<..<b})"
  5047 proof(cases "{a<..<b} = {}")
  5048   case True thus ?thesis using frontier_empty by auto
  5049 next
  5050   case False thus ?thesis unfolding frontier_def and closure_open_interval[OF False] and interior_open[OF open_interval] by auto
  5051 qed
  5052 
  5053 lemma inter_interval_mixed_eq_empty: fixes a :: "real^'n"
  5054   assumes "{c<..<d} \<noteq> {}"  shows "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> {a<..<b} \<inter> {c<..<d} = {}"
  5055   unfolding closure_open_interval[OF assms, THEN sym] unfolding open_inter_closure_eq_empty[OF open_interval] ..
  5056 
  5057 
  5058 (* Some special cases for intervals in R^1.                                  *)
  5059 
  5060 lemma interval_cases_1: fixes x :: "real^1" shows
  5061  "x \<in> {a .. b} ==> x \<in> {a<..<b} \<or> (x = a) \<or> (x = b)"
  5062   unfolding Cart_eq vector_less_def vector_le_def mem_interval by(auto simp del:dest_vec1_eq)
  5063 
  5064 lemma in_interval_1: fixes x :: "real^1" shows
  5065  "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b) \<and>
  5066   (x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
  5067   unfolding Cart_eq vector_less_def vector_le_def mem_interval by(auto simp del:dest_vec1_eq)
  5068 
  5069 lemma interval_eq_empty_1: fixes a :: "real^1" shows
  5070   "{a .. b} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a"
  5071   "{a<..<b} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
  5072   unfolding interval_eq_empty and ex_1 by auto
  5073 
  5074 lemma subset_interval_1: fixes a :: "real^1" shows
  5075  "({a .. b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
  5076                 dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
  5077  "({a .. b} \<subseteq> {c<..<d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
  5078                 dest_vec1 c < dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b < dest_vec1 d)"
  5079  "({a<..<b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b \<le> dest_vec1 a \<or>
  5080                 dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
  5081  "({a<..<b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or>
  5082                 dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
  5083   unfolding subset_interval[of a b c d] unfolding forall_1 by auto
  5084 
  5085 lemma eq_interval_1: fixes a :: "real^1" shows
  5086  "{a .. b} = {c .. d} \<longleftrightarrow>
  5087           dest_vec1 b < dest_vec1 a \<and> dest_vec1 d < dest_vec1 c \<or>
  5088           dest_vec1 a = dest_vec1 c \<and> dest_vec1 b = dest_vec1 d"
  5089 unfolding set_eq_subset[of "{a .. b}" "{c .. d}"]
  5090 unfolding subset_interval_1(1)[of a b c d]
  5091 unfolding subset_interval_1(1)[of c d a b]
  5092 by auto
  5093 
  5094 lemma disjoint_interval_1: fixes a :: "real^1" shows
  5095   "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b < dest_vec1 c \<or> dest_vec1 d < dest_vec1 a"
  5096   "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
  5097   "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
  5098   "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
  5099   unfolding disjoint_interval and ex_1 by auto
  5100 
  5101 lemma open_closed_interval_1: fixes a :: "real^1" shows
  5102  "{a<..<b} = {a .. b} - {a, b}"
  5103   unfolding expand_set_eq apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
  5104 
  5105 lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}"
  5106   unfolding expand_set_eq apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
  5107 
  5108 (* Some stuff for half-infinite intervals too; FIXME: notation?  *)
  5109 
  5110 lemma closed_interval_left: fixes b::"real^'n"
  5111   shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}"
  5112 proof-
  5113   { fix i
  5114     fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. x $ i \<le> b $ i}. x' \<noteq> x \<and> dist x' x < e"
  5115     { assume "x$i > b$i"
  5116       then obtain y where "y $ i \<le> b $ i"  "y \<noteq> x"  "dist y x < x$i - b$i" using x[THEN spec[where x="x$i - b$i"]] by auto
  5117       hence False using component_le_norm[of "y - x" i] unfolding dist_norm and vector_minus_component by auto   }
  5118     hence "x$i \<le> b$i" by(rule ccontr)auto  }
  5119   thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
  5120 qed
  5121 
  5122 lemma closed_interval_right: fixes a::"real^'n"
  5123   shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}"
  5124 proof-
  5125   { fix i
  5126     fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. a $ i \<le> x $ i}. x' \<noteq> x \<and> dist x' x < e"
  5127     { assume "a$i > x$i"
  5128       then obtain y where "a $ i \<le> y $ i"  "y \<noteq> x"  "dist y x < a$i - x$i" using x[THEN spec[where x="a$i - x$i"]] by auto
  5129       hence False using component_le_norm[of "y - x" i] unfolding dist_norm and vector_minus_component by auto   }
  5130     hence "a$i \<le> x$i" by(rule ccontr)auto  }
  5131   thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
  5132 qed
  5133 
  5134 subsection{* Intervals in general, including infinite and mixtures of open and closed. *}
  5135 
  5136 definition "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i)))  \<longrightarrow> x \<in> s)"
  5137 
  5138 lemma is_interval_interval: "is_interval {a .. b::real^'n}" (is ?th1) "is_interval {a<..<b}" (is ?th2) proof - 
  5139   have *:"\<And>x y z::real. x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" by auto
  5140   show ?th1 ?th2  unfolding is_interval_def mem_interval Ball_def atLeastAtMost_iff
  5141     by(meson real_le_trans le_less_trans less_le_trans *)+ qed
  5142 
  5143 lemma is_interval_empty:
  5144  "is_interval {}"
  5145   unfolding is_interval_def
  5146   by simp
  5147 
  5148 lemma is_interval_univ:
  5149  "is_interval UNIV"
  5150   unfolding is_interval_def
  5151   by simp
  5152 
  5153 subsection{* Closure of halfspaces and hyperplanes.                                    *}
  5154 
  5155 lemma Lim_inner:
  5156   assumes "(f ---> l) net"  shows "((\<lambda>y. inner a (f y)) ---> inner a l) net"
  5157   by (intro tendsto_intros assms)
  5158 
  5159 lemma continuous_at_inner: "continuous (at x) (inner a)"
  5160   unfolding continuous_at by (intro tendsto_intros)
  5161 
  5162 lemma continuous_on_inner:
  5163   fixes s :: "'a::real_inner set"
  5164   shows "continuous_on s (inner a)"
  5165   unfolding continuous_on by (rule ballI) (intro tendsto_intros)
  5166 
  5167 lemma closed_halfspace_le: "closed {x. inner a x \<le> b}"
  5168 proof-
  5169   have "\<forall>x. continuous (at x) (inner a)"
  5170     unfolding continuous_at by (rule allI) (intro tendsto_intros)
  5171   hence "closed (inner a -` {..b})"
  5172     using closed_real_atMost by (rule continuous_closed_vimage)
  5173   moreover have "{x. inner a x \<le> b} = inner a -` {..b}" by auto
  5174   ultimately show ?thesis by simp
  5175 qed
  5176 
  5177 lemma closed_halfspace_ge: "closed {x. inner a x \<ge> b}"
  5178   using closed_halfspace_le[of "-a" "-b"] unfolding inner_minus_left by auto
  5179 
  5180 lemma closed_hyperplane: "closed {x. inner a x = b}"
  5181 proof-
  5182   have "{x. inner a x = b} = {x. inner a x \<ge> b} \<inter> {x. inner a x \<le> b}" by auto
  5183   thus ?thesis using closed_halfspace_le[of a b] and closed_halfspace_ge[of b a] using closed_Int by auto
  5184 qed
  5185 
  5186 lemma closed_halfspace_component_le:
  5187   shows "closed {x::real^'n. x$i \<le> a}"
  5188   using closed_halfspace_le[of "(basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
  5189 
  5190 lemma closed_halfspace_component_ge:
  5191   shows "closed {x::real^'n. x$i \<ge> a}"
  5192   using closed_halfspace_ge[of a "(basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
  5193 
  5194 text{* Openness of halfspaces.                                                   *}
  5195 
  5196 lemma open_halfspace_lt: "open {x. inner a x < b}"
  5197 proof-
  5198   have "- {x. b \<le> inner a x} = {x. inner a x < b}" by auto
  5199   thus ?thesis using closed_halfspace_ge[unfolded closed_def, of b a] by auto
  5200 qed
  5201 
  5202 lemma open_halfspace_gt: "open {x. inner a x > b}"
  5203 proof-
  5204   have "- {x. b \<ge> inner a x} = {x. inner a x > b}" by auto
  5205   thus ?thesis using closed_halfspace_le[unfolded closed_def, of a b] by auto
  5206 qed
  5207 
  5208 lemma open_halfspace_component_lt:
  5209   shows "open {x::real^'n. x$i < a}"
  5210   using open_halfspace_lt[of "(basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
  5211 
  5212 lemma open_halfspace_component_gt:
  5213   shows "open {x::real^'n. x$i  > a}"
  5214   using open_halfspace_gt[of a "(basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
  5215 
  5216 text{* This gives a simple derivation of limit component bounds.                 *}
  5217 
  5218 lemma Lim_component_le: fixes f :: "'a \<Rightarrow> real^'n"
  5219   assumes "(f ---> l) net" "\<not> (trivial_limit net)"  "eventually (\<lambda>x. f(x)$i \<le> b) net"
  5220   shows "l$i \<le> b"
  5221 proof-
  5222   { fix x have "x \<in> {x::real^'n. inner (basis i) x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding inner_basis by auto } note * = this
  5223   show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<le> b}" f net l] unfolding *
  5224     using closed_halfspace_le[of "(basis i)::real^'n" b] and assms(1,2,3) by auto
  5225 qed
  5226 
  5227 lemma Lim_component_ge: fixes f :: "'a \<Rightarrow> real^'n"
  5228   assumes "(f ---> l) net"  "\<not> (trivial_limit net)"  "eventually (\<lambda>x. b \<le> (f x)$i) net"
  5229   shows "b \<le> l$i"
  5230 proof-
  5231   { fix x have "x \<in> {x::real^'n. inner (basis i) x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding inner_basis by auto } note * = this
  5232   show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<ge> b}" f net l] unfolding *
  5233     using closed_halfspace_ge[of b "(basis i)::real^'n"] and assms(1,2,3) by auto
  5234 qed
  5235 
  5236 lemma Lim_component_eq: fixes f :: "'a \<Rightarrow> real^'n"
  5237   assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net"
  5238   shows "l$i = b"
  5239   using ev[unfolded order_eq_iff eventually_and] using Lim_component_ge[OF net, of b i] and Lim_component_le[OF net, of i b] by auto
  5240 
  5241 lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows
  5242   "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b"
  5243   using Lim_component_le[of f l net 1 b] by auto
  5244 
  5245 lemma Lim_drop_ge: fixes f :: "'a \<Rightarrow> real^1" shows
  5246  "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. b \<le> dest_vec1 (f x)) net ==> b \<le> dest_vec1 l"
  5247   using Lim_component_ge[of f l net b 1] by auto
  5248 
  5249 text{* Limits relative to a union.                                               *}
  5250 
  5251 lemma eventually_within_Un:
  5252   "eventually P (net within (s \<union> t)) \<longleftrightarrow>
  5253     eventually P (net within s) \<and> eventually P (net within t)"
  5254   unfolding Limits.eventually_within
  5255   by (auto elim!: eventually_rev_mp)
  5256 
  5257 lemma Lim_within_union:
  5258  "(f ---> l) (net within (s \<union> t)) \<longleftrightarrow>
  5259   (f ---> l) (net within s) \<and> (f ---> l) (net within t)"
  5260   unfolding tendsto_def
  5261   by (auto simp add: eventually_within_Un)
  5262 
  5263 lemma continuous_on_union:
  5264   assumes "closed s" "closed t" "continuous_on s f" "continuous_on t f"
  5265   shows "continuous_on (s \<union> t) f"
  5266   using assms unfolding continuous_on unfolding Lim_within_union
  5267   unfolding Lim unfolding trivial_limit_within unfolding closed_limpt by auto
  5268 
  5269 lemma continuous_on_cases:
  5270   assumes "closed s" "closed t" "continuous_on s f" "continuous_on t g"
  5271           "\<forall>x. (x\<in>s \<and> \<not> P x) \<or> (x \<in> t \<and> P x) \<longrightarrow> f x = g x"
  5272   shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
  5273 proof-
  5274   let ?h = "(\<lambda>x. if P x then f x else g x)"
  5275   have "\<forall>x\<in>s. f x = (if P x then f x else g x)" using assms(5) by auto
  5276   hence "continuous_on s ?h" using continuous_on_eq[of s f ?h] using assms(3) by auto
  5277   moreover
  5278   have "\<forall>x\<in>t. g x = (if P x then f x else g x)" using assms(5) by auto
  5279   hence "continuous_on t ?h" using continuous_on_eq[of t g ?h] using assms(4) by auto
  5280   ultimately show ?thesis using continuous_on_union[OF assms(1,2), of ?h] by auto
  5281 qed
  5282 
  5283 
  5284 text{* Some more convenient intermediate-value theorem formulations.             *}
  5285 
  5286 lemma connected_ivt_hyperplane:
  5287   assumes "connected s" "x \<in> s" "y \<in> s" "inner a x \<le> b" "b \<le> inner a y"
  5288   shows "\<exists>z \<in> s. inner a z = b"
  5289 proof(rule ccontr)
  5290   assume as:"\<not> (\<exists>z\<in>s. inner a z = b)"
  5291   let ?A = "{x. inner a x < b}"
  5292   let ?B = "{x. inner a x > b}"
  5293   have "open ?A" "open ?B" using open_halfspace_lt and open_halfspace_gt by auto
  5294   moreover have "?A \<inter> ?B = {}" by auto
  5295   moreover have "s \<subseteq> ?A \<union> ?B" using as by auto
  5296   ultimately show False using assms(1)[unfolded connected_def not_ex, THEN spec[where x="?A"], THEN spec[where x="?B"]] and assms(2-5) by auto
  5297 qed
  5298 
  5299 lemma connected_ivt_component: fixes x::"real^'n" shows
  5300  "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s.  z$k = a)"
  5301   using connected_ivt_hyperplane[of s x y "(basis k)::real^'n" a] by (auto simp add: inner_basis)
  5302 
  5303 text{* Also more convenient formulations of monotone convergence.                *}
  5304 
  5305 lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real^1"
  5306   assumes "bounded {s n| n::nat. True}"  "\<forall>n. dest_vec1(s n) \<le> dest_vec1(s(Suc n))"
  5307   shows "\<exists>l. (s ---> l) sequentially"
  5308 proof-
  5309   obtain a where a:"\<forall>n. \<bar>dest_vec1 (s n)\<bar> \<le>  a" using assms(1)[unfolded bounded_iff abs_dest_vec1] by auto
  5310   { fix m::nat
  5311     have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)"
  5312       apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq)  }
  5313   hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto
  5314   then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] unfolding monoseq_def by auto
  5315   thus ?thesis unfolding Lim_sequentially apply(rule_tac x="vec1 l" in exI)
  5316     unfolding dist_norm unfolding abs_dest_vec1  by auto
  5317 qed
  5318 
  5319 subsection{* Basic homeomorphism definitions.                                          *}
  5320 
  5321 definition "homeomorphism s t f g \<equiv>
  5322      (\<forall>x\<in>s. (g(f x) = x)) \<and> (f ` s = t) \<and> continuous_on s f \<and>
  5323      (\<forall>y\<in>t. (f(g y) = y)) \<and> (g ` t = s) \<and> continuous_on t g"
  5324 
  5325 definition
  5326   homeomorphic :: "'a::metric_space set \<Rightarrow> 'b::metric_space set \<Rightarrow> bool"
  5327     (infixr "homeomorphic" 60) where
  5328   homeomorphic_def: "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)"
  5329 
  5330 lemma homeomorphic_refl: "s homeomorphic s"
  5331   unfolding homeomorphic_def
  5332   unfolding homeomorphism_def
  5333   using continuous_on_id
  5334   apply(rule_tac x = "(\<lambda>x. x)" in exI)
  5335   apply(rule_tac x = "(\<lambda>x. x)" in exI)
  5336   by blast
  5337 
  5338 lemma homeomorphic_sym:
  5339  "s homeomorphic t \<longleftrightarrow> t homeomorphic s"
  5340 unfolding homeomorphic_def
  5341 unfolding homeomorphism_def
  5342 by blast 
  5343 
  5344 lemma homeomorphic_trans:
  5345   assumes "s homeomorphic t" "t homeomorphic u" shows "s homeomorphic u"
  5346 proof-
  5347   obtain f1 g1 where fg1:"\<forall>x\<in>s. g1 (f1 x) = x"  "f1 ` s = t" "continuous_on s f1" "\<forall>y\<in>t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1"
  5348     using assms(1) unfolding homeomorphic_def homeomorphism_def by auto
  5349   obtain f2 g2 where fg2:"\<forall>x\<in>t. g2 (f2 x) = x"  "f2 ` t = u" "continuous_on t f2" "\<forall>y\<in>u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2"
  5350     using assms(2) unfolding homeomorphic_def homeomorphism_def by auto
  5351 
  5352   { fix x assume "x\<in>s" hence "(g1 \<circ> g2) ((f2 \<circ> f1) x) = x" using fg1(1)[THEN bspec[where x=x]] and fg2(1)[THEN bspec[where x="f1 x"]] and fg1(2) by auto }
  5353   moreover have "(f2 \<circ> f1) ` s = u" using fg1(2) fg2(2) by auto
  5354   moreover have "continuous_on s (f2 \<circ> f1)" using continuous_on_compose[OF fg1(3)] and fg2(3) unfolding fg1(2) by auto
  5355   moreover { fix y assume "y\<in>u" hence "(f2 \<circ> f1) ((g1 \<circ> g2) y) = y" using fg2(4)[THEN bspec[where x=y]] and fg1(4)[THEN bspec[where x="g2 y"]] and fg2(5) by auto }
  5356   moreover have "(g1 \<circ> g2) ` u = s" using fg1(5) fg2(5) by auto
  5357   moreover have "continuous_on u (g1 \<circ> g2)" using continuous_on_compose[OF fg2(6)] and fg1(6)  unfolding fg2(5) by auto
  5358   ultimately show ?thesis unfolding homeomorphic_def homeomorphism_def apply(rule_tac x="f2 \<circ> f1" in exI) apply(rule_tac x="g1 \<circ> g2" in exI) by auto
  5359 qed
  5360 
  5361 lemma homeomorphic_minimal:
  5362  "s homeomorphic t \<longleftrightarrow>
  5363     (\<exists>f g. (\<forall>x\<in>s. f(x) \<in> t \<and> (g(f(x)) = x)) \<and>
  5364            (\<forall>y\<in>t. g(y) \<in> s \<and> (f(g(y)) = y)) \<and>
  5365            continuous_on s f \<and> continuous_on t g)"
  5366 unfolding homeomorphic_def homeomorphism_def
  5367 apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI)
  5368 apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI) apply auto
  5369 unfolding image_iff
  5370 apply(erule_tac x="g x" in ballE) apply(erule_tac x="x" in ballE)
  5371 apply auto apply(rule_tac x="g x" in bexI) apply auto
  5372 apply(erule_tac x="f x" in ballE) apply(erule_tac x="x" in ballE)
  5373 apply auto apply(rule_tac x="f x" in bexI) by auto
  5374 
  5375 subsection{* Relatively weak hypotheses if a set is compact.                           *}
  5376 
  5377 definition "inv_on f s = (\<lambda>x. SOME y. y\<in>s \<and> f y = x)"
  5378 
  5379 lemma assumes "inj_on f s" "x\<in>s"
  5380   shows "inv_on f s (f x) = x"
  5381  using assms unfolding inj_on_def inv_on_def by auto
  5382 
  5383 lemma homeomorphism_compact:
  5384   fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel"
  5385     (* class constraint due to continuous_on_inverse *)
  5386   assumes "compact s" "continuous_on s f"  "f ` s = t"  "inj_on f s"
  5387   shows "\<exists>g. homeomorphism s t f g"
  5388 proof-
  5389   def g \<equiv> "\<lambda>x. SOME y. y\<in>s \<and> f y = x"
  5390   have g:"\<forall>x\<in>s. g (f x) = x" using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto
  5391   { fix y assume "y\<in>t"
  5392     then obtain x where x:"f x = y" "x\<in>s" using assms(3) by auto
  5393     hence "g (f x) = x" using g by auto
  5394     hence "f (g y) = y" unfolding x(1)[THEN sym] by auto  }
  5395   hence g':"\<forall>x\<in>t. f (g x) = x" by auto
  5396   moreover
  5397   { fix x
  5398     have "x\<in>s \<Longrightarrow> x \<in> g ` t" using g[THEN bspec[where x=x]] unfolding image_iff using assms(3) by(auto intro!: bexI[where x="f x"])
  5399     moreover
  5400     { assume "x\<in>g ` t"
  5401       then obtain y where y:"y\<in>t" "g y = x" by auto
  5402       then obtain x' where x':"x'\<in>s" "f x' = y" using assms(3) by auto
  5403       hence "x \<in> s" unfolding g_def using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"] unfolding y(2)[THEN sym] and g_def by auto }
  5404     ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" by auto  }
  5405   hence "g ` t = s" by auto
  5406   ultimately
  5407   show ?thesis unfolding homeomorphism_def homeomorphic_def
  5408     apply(rule_tac x=g in exI) using g and assms(3) and continuous_on_inverse[OF assms(2,1), of g, unfolded assms(3)] and assms(2) by auto
  5409 qed
  5410 
  5411 lemma homeomorphic_compact:
  5412   fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel"
  5413     (* class constraint due to continuous_on_inverse *)
  5414   shows "compact s \<Longrightarrow> continuous_on s f \<Longrightarrow> (f ` s = t) \<Longrightarrow> inj_on f s
  5415           \<Longrightarrow> s homeomorphic t"
  5416   unfolding homeomorphic_def by(metis homeomorphism_compact)
  5417 
  5418 text{* Preservation of topological properties.                                   *}
  5419 
  5420 lemma homeomorphic_compactness:
  5421  "s homeomorphic t ==> (compact s \<longleftrightarrow> compact t)"
  5422 unfolding homeomorphic_def homeomorphism_def
  5423 by (metis compact_continuous_image)
  5424 
  5425 text{* Results on translation, scaling etc.                                      *}
  5426 
  5427 lemma homeomorphic_scaling:
  5428   fixes s :: "'a::real_normed_vector set"
  5429   assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. c *\<^sub>R x) ` s)"
  5430   unfolding homeomorphic_minimal
  5431   apply(rule_tac x="\<lambda>x. c *\<^sub>R x" in exI)
  5432   apply(rule_tac x="\<lambda>x. (1 / c) *\<^sub>R x" in exI)
  5433   using assms apply auto
  5434   using continuous_on_cmul[OF continuous_on_id] by auto
  5435 
  5436 lemma homeomorphic_translation:
  5437   fixes s :: "'a::real_normed_vector set"
  5438   shows "s homeomorphic ((\<lambda>x. a + x) ` s)"
  5439   unfolding homeomorphic_minimal
  5440   apply(rule_tac x="\<lambda>x. a + x" in exI)
  5441   apply(rule_tac x="\<lambda>x. -a + x" in exI)
  5442   using continuous_on_add[OF continuous_on_const continuous_on_id] by auto
  5443 
  5444 lemma homeomorphic_affinity:
  5445   fixes s :: "'a::real_normed_vector set"
  5446   assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. a + c *\<^sub>R x) ` s)"
  5447 proof-
  5448   have *:"op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
  5449   show ?thesis
  5450     using homeomorphic_trans
  5451     using homeomorphic_scaling[OF assms, of s]
  5452     using homeomorphic_translation[of "(\<lambda>x. c *\<^sub>R x) ` s" a] unfolding * by auto
  5453 qed
  5454 
  5455 lemma homeomorphic_balls:
  5456   fixes a b ::"'a::real_normed_vector" (* FIXME: generalize to metric_space *)
  5457   assumes "0 < d"  "0 < e"
  5458   shows "(ball a d) homeomorphic  (ball b e)" (is ?th)
  5459         "(cball a d) homeomorphic (cball b e)" (is ?cth)
  5460 proof-
  5461   have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
  5462   show ?th unfolding homeomorphic_minimal
  5463     apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
  5464     apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
  5465     using assms apply (auto simp add: dist_commute)
  5466     unfolding dist_norm
  5467     apply (auto simp add: pos_divide_less_eq mult_strict_left_mono)
  5468     unfolding continuous_on
  5469     by (intro ballI tendsto_intros, simp, assumption)+
  5470 next
  5471   have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
  5472   show ?cth unfolding homeomorphic_minimal
  5473     apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
  5474     apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
  5475     using assms apply (auto simp add: dist_commute)
  5476     unfolding dist_norm
  5477     apply (auto simp add: pos_divide_le_eq)
  5478     unfolding continuous_on
  5479     by (intro ballI tendsto_intros, simp, assumption)+
  5480 qed
  5481 
  5482 text{* "Isometry" (up to constant bounds) of injective linear map etc.           *}
  5483 
  5484 lemma cauchy_isometric:
  5485   fixes x :: "nat \<Rightarrow> real ^ 'n"
  5486   assumes e:"0 < e" and s:"subspace s" and f:"bounded_linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and xs:"\<forall>n::nat. x n \<in> s" and cf:"Cauchy(f o x)"
  5487   shows "Cauchy x"
  5488 proof-
  5489   interpret f: bounded_linear f by fact
  5490   { fix d::real assume "d>0"
  5491     then obtain N where N:"\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d"
  5492       using cf[unfolded cauchy o_def dist_norm, THEN spec[where x="e*d"]] and e and mult_pos_pos[of e d] by auto
  5493     { fix n assume "n\<ge>N"
  5494       hence "norm (f (x n - x N)) < e * d" using N[THEN spec[where x=n]] unfolding f.diff[THEN sym] by auto
  5495       moreover have "e * norm (x n - x N) \<le> norm (f (x n - x N))"
  5496         using subspace_sub[OF s, of "x n" "x N"] using xs[THEN spec[where x=N]] and xs[THEN spec[where x=n]]
  5497         using normf[THEN bspec[where x="x n - x N"]] by auto
  5498       ultimately have "norm (x n - x N) < d" using `e>0`
  5499         using mult_left_less_imp_less[of e "norm (x n - x N)" d] by auto   }
  5500     hence "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" by auto }
  5501   thus ?thesis unfolding cauchy and dist_norm by auto
  5502 qed
  5503 
  5504 lemma complete_isometric_image:
  5505   fixes f :: "real ^ _ \<Rightarrow> real ^ _"
  5506   assumes "0 < e" and s:"subspace s" and f:"bounded_linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and cs:"complete s"
  5507   shows "complete(f ` s)"
  5508 proof-
  5509   { fix g assume as:"\<forall>n::nat. g n \<in> f ` s" and cfg:"Cauchy g"
  5510     then obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)" 
  5511       using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"] by auto
  5512     hence x:"\<forall>n. x n \<in> s"  "\<forall>n. g n = f (x n)" by auto
  5513     hence "f \<circ> x = g" unfolding expand_fun_eq by auto
  5514     then obtain l where "l\<in>s" and l:"(x ---> l) sequentially"
  5515       using cs[unfolded complete_def, THEN spec[where x="x"]]
  5516       using cauchy_isometric[OF `0<e` s f normf] and cfg and x(1) by auto
  5517     hence "\<exists>l\<in>f ` s. (g ---> l) sequentially"
  5518       using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l]
  5519       unfolding `f \<circ> x = g` by auto  }
  5520   thus ?thesis unfolding complete_def by auto
  5521 qed
  5522 
  5523 lemma dist_0_norm:
  5524   fixes x :: "'a::real_normed_vector"
  5525   shows "dist 0 x = norm x"
  5526 unfolding dist_norm by simp
  5527 
  5528 lemma injective_imp_isometric: fixes f::"real^'m \<Rightarrow> real^'n"
  5529   assumes s:"closed s"  "subspace s"  and f:"bounded_linear f" "\<forall>x\<in>s. (f x = 0) \<longrightarrow> (x = 0)"
  5530   shows "\<exists>e>0. \<forall>x\<in>s. norm (f x) \<ge> e * norm(x)"
  5531 proof(cases "s \<subseteq> {0::real^'m}")
  5532   case True
  5533   { fix x assume "x \<in> s"
  5534     hence "x = 0" using True by auto
  5535     hence "norm x \<le> norm (f x)" by auto  }
  5536   thus ?thesis by(auto intro!: exI[where x=1])
  5537 next
  5538   interpret f: bounded_linear f by fact
  5539   case False
  5540   then obtain a where a:"a\<noteq>0" "a\<in>s" by auto
  5541   from False have "s \<noteq> {}" by auto
  5542   let ?S = "{f x| x. (x \<in> s \<and> norm x = norm a)}"
  5543   let ?S' = "{x::real^'m. x\<in>s \<and> norm x = norm a}"
  5544   let ?S'' = "{x::real^'m. norm x = norm a}"
  5545 
  5546   have "?S'' = frontier(cball 0 (norm a))" unfolding frontier_cball and dist_norm by (auto simp add: norm_minus_cancel)
  5547   hence "compact ?S''" using compact_frontier[OF compact_cball, of 0 "norm a"] by auto
  5548   moreover have "?S' = s \<inter> ?S''" by auto
  5549   ultimately have "compact ?S'" using closed_inter_compact[of s ?S''] using s(1) by auto
  5550   moreover have *:"f ` ?S' = ?S" by auto
  5551   ultimately have "compact ?S" using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto
  5552   hence "closed ?S" using compact_imp_closed by auto
  5553   moreover have "?S \<noteq> {}" using a by auto
  5554   ultimately obtain b' where "b'\<in>?S" "\<forall>y\<in>?S. norm b' \<le> norm y" using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto
  5555   then obtain b where "b\<in>s" and ba:"norm b = norm a" and b:"\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)" unfolding *[THEN sym] unfolding image_iff by auto
  5556 
  5557   let ?e = "norm (f b) / norm b"
  5558   have "norm b > 0" using ba and a and norm_ge_zero by auto
  5559   moreover have "norm (f b) > 0" using f(2)[THEN bspec[where x=b], OF `b\<in>s`] using `norm b >0` unfolding zero_less_norm_iff by auto
  5560   ultimately have "0 < norm (f b) / norm b" by(simp only: divide_pos_pos)
  5561   moreover
  5562   { fix x assume "x\<in>s"
  5563     hence "norm (f b) / norm b * norm x \<le> norm (f x)"
  5564     proof(cases "x=0")
  5565       case True thus "norm (f b) / norm b * norm x \<le> norm (f x)" by auto
  5566     next
  5567       case False
  5568       hence *:"0 < norm a / norm x" using `a\<noteq>0` unfolding zero_less_norm_iff[THEN sym] by(simp only: divide_pos_pos)
  5569       have "\<forall>c. \<forall>x\<in>s. c *\<^sub>R x \<in> s" using s[unfolded subspace_def smult_conv_scaleR] by auto
  5570       hence "(norm a / norm x) *\<^sub>R x \<in> {x \<in> s. norm x = norm a}" using `x\<in>s` and `x\<noteq>0` by auto
  5571       thus "norm (f b) / norm b * norm x \<le> norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]]
  5572         unfolding f.scaleR and ba using `x\<noteq>0` `a\<noteq>0`
  5573         by (auto simp add: real_mult_commute pos_le_divide_eq pos_divide_le_eq)
  5574     qed }
  5575   ultimately
  5576   show ?thesis by auto
  5577 qed
  5578 
  5579 lemma closed_injective_image_subspace:
  5580   fixes f :: "real ^ _ \<Rightarrow> real ^ _"
  5581   assumes "subspace s" "bounded_linear f" "\<forall>x\<in>s. f x = 0 --> x = 0" "closed s"
  5582   shows "closed(f ` s)"
  5583 proof-
  5584   obtain e where "e>0" and e:"\<forall>x\<in>s. e * norm x \<le> norm (f x)" using injective_imp_isometric[OF assms(4,1,2,3)] by auto
  5585   show ?thesis using complete_isometric_image[OF `e>0` assms(1,2) e] and assms(4)
  5586     unfolding complete_eq_closed[THEN sym] by auto
  5587 qed
  5588 
  5589 subsection{* Some properties of a canonical subspace.                                  *}
  5590 
  5591 lemma subspace_substandard:
  5592  "subspace {x::real^_. (\<forall>i. P i \<longrightarrow> x$i = 0)}"
  5593   unfolding subspace_def by(auto simp add: vector_add_component vector_smult_component elim!: ballE)
  5594 
  5595 lemma closed_substandard:
  5596  "closed {x::real^'n. \<forall>i. P i --> x$i = 0}" (is "closed ?A")
  5597 proof-
  5598   let ?D = "{i. P i}"
  5599   let ?Bs = "{{x::real^'n. inner (basis i) x = 0}| i. i \<in> ?D}"
  5600   { fix x
  5601     { assume "x\<in>?A"
  5602       hence x:"\<forall>i\<in>?D. x $ i = 0" by auto
  5603       hence "x\<in> \<Inter> ?Bs" by(auto simp add: inner_basis x) }
  5604     moreover
  5605     { assume x:"x\<in>\<Inter>?Bs"
  5606       { fix i assume i:"i \<in> ?D"
  5607         then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. inner (basis i) x = 0}" by auto
  5608         hence "x $ i = 0" unfolding B using x unfolding inner_basis by auto  }
  5609       hence "x\<in>?A" by auto }
  5610     ultimately have "x\<in>?A \<longleftrightarrow> x\<in> \<Inter>?Bs" by auto }
  5611   hence "?A = \<Inter> ?Bs" by auto
  5612   thus ?thesis by(auto simp add: closed_Inter closed_hyperplane)
  5613 qed
  5614 
  5615 lemma dim_substandard:
  5616   shows "dim {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d" (is "dim ?A = _")
  5617 proof-
  5618   let ?D = "UNIV::'n set"
  5619   let ?B = "(basis::'n\<Rightarrow>real^'n) ` d"
  5620 
  5621     let ?bas = "basis::'n \<Rightarrow> real^'n"
  5622 
  5623   have "?B \<subseteq> ?A" by auto
  5624 
  5625   moreover
  5626   { fix x::"real^'n" assume "x\<in>?A"
  5627     with finite[of d]
  5628     have "x\<in> span ?B"
  5629     proof(induct d arbitrary: x)
  5630       case empty hence "x=0" unfolding Cart_eq by auto
  5631       thus ?case using subspace_0[OF subspace_span[of "{}"]] by auto
  5632     next
  5633       case (insert k F)
  5634       hence *:"\<forall>i. i \<notin> insert k F \<longrightarrow> x $ i = 0" by auto
  5635       have **:"F \<subseteq> insert k F" by auto
  5636       def y \<equiv> "x - x$k *\<^sub>R basis k"
  5637       have y:"x = y + (x$k) *\<^sub>R basis k" unfolding y_def by auto
  5638       { fix i assume i':"i \<notin> F"
  5639         hence "y $ i = 0" unfolding y_def unfolding vector_minus_component
  5640           and vector_smult_component and basis_component
  5641           using *[THEN spec[where x=i]] by auto }
  5642       hence "y \<in> span (basis ` (insert k F))" using insert(3)
  5643         using span_mono[of "?bas ` F" "?bas ` (insert k F)"]
  5644         using image_mono[OF **, of basis] by auto
  5645       moreover
  5646       have "basis k \<in> span (?bas ` (insert k F))" by(rule span_superset, auto)
  5647       hence "x$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))"
  5648         using span_mul [where 'a=real, unfolded smult_conv_scaleR] by auto
  5649       ultimately
  5650       have "y + x$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))"
  5651         using span_add by auto
  5652       thus ?case using y by auto
  5653     qed
  5654   }
  5655   hence "?A \<subseteq> span ?B" by auto
  5656 
  5657   moreover
  5658   { fix x assume "x \<in> ?B"
  5659     hence "x\<in>{(basis i)::real^'n |i. i \<in> ?D}" using assms by auto  }
  5660   hence "independent ?B" using independent_mono[OF independent_stdbasis, of ?B] and assms by auto
  5661 
  5662   moreover
  5663   have "d \<subseteq> ?D" unfolding subset_eq using assms by auto
  5664   hence *:"inj_on (basis::'n\<Rightarrow>real^'n) d" using subset_inj_on[OF basis_inj, of "d"] by auto
  5665   have "card ?B = card d" unfolding card_image[OF *] by auto
  5666 
  5667   ultimately show ?thesis using dim_unique[of "basis ` d" ?A] by auto
  5668 qed
  5669 
  5670 text{* Hence closure and completeness of all subspaces.                          *}
  5671 
  5672 lemma closed_subspace_lemma: "n \<le> card (UNIV::'n::finite set) \<Longrightarrow> \<exists>A::'n set. card A = n"
  5673 apply (induct n)
  5674 apply (rule_tac x="{}" in exI, simp)
  5675 apply clarsimp
  5676 apply (subgoal_tac "\<exists>x. x \<notin> A")
  5677 apply (erule exE)
  5678 apply (rule_tac x="insert x A" in exI, simp)
  5679 apply (subgoal_tac "A \<noteq> UNIV", auto)
  5680 done
  5681 
  5682 lemma closed_subspace: fixes s::"(real^'n) set"
  5683   assumes "subspace s" shows "closed s"
  5684 proof-
  5685   have "dim s \<le> card (UNIV :: 'n set)" using dim_subset_univ by auto
  5686   then obtain d::"'n set" where t: "card d = dim s"
  5687     using closed_subspace_lemma by auto
  5688   let ?t = "{x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0}"
  5689   obtain f where f:"bounded_linear f"  "f ` ?t = s" "inj_on f ?t"
  5690     using subspace_isomorphism[unfolded linear_conv_bounded_linear, OF subspace_substandard[of "\<lambda>i. i \<notin> d"] assms]
  5691     using dim_substandard[of d] and t by auto
  5692   interpret f: bounded_linear f by fact
  5693   have "\<forall>x\<in>?t. f x = 0 \<longrightarrow> x = 0" using f.zero using f(3)[unfolded inj_on_def]
  5694     by(erule_tac x=0 in ballE) auto
  5695   moreover have "closed ?t" using closed_substandard .
  5696   moreover have "subspace ?t" using subspace_substandard .
  5697   ultimately show ?thesis using closed_injective_image_subspace[of ?t f]
  5698     unfolding f(2) using f(1) by auto
  5699 qed
  5700 
  5701 lemma complete_subspace:
  5702   fixes s :: "(real ^ _) set" shows "subspace s ==> complete s"
  5703   using complete_eq_closed closed_subspace
  5704   by auto
  5705 
  5706 lemma dim_closure:
  5707   fixes s :: "(real ^ _) set"
  5708   shows "dim(closure s) = dim s" (is "?dc = ?d")
  5709 proof-
  5710   have "?dc \<le> ?d" using closure_minimal[OF span_inc, of s]
  5711     using closed_subspace[OF subspace_span, of s]
  5712     using dim_subset[of "closure s" "span s"] unfolding dim_span by auto
  5713   thus ?thesis using dim_subset[OF closure_subset, of s] by auto
  5714 qed
  5715 
  5716 text{* Affine transformations of intervals.                                      *}
  5717 
  5718 lemma affinity_inverses:
  5719   assumes m0: "m \<noteq> (0::'a::field)"
  5720   shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
  5721   "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
  5722   using m0
  5723 apply (auto simp add: expand_fun_eq vector_add_ldistrib vector_smult_assoc)
  5724 by (simp add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
  5725 
  5726 lemma real_affinity_le:
  5727  "0 < (m::'a::linordered_field) ==> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))"
  5728   by (simp add: field_simps inverse_eq_divide)
  5729 
  5730 lemma real_le_affinity:
  5731  "0 < (m::'a::linordered_field) ==> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)"
  5732   by (simp add: field_simps inverse_eq_divide)
  5733 
  5734 lemma real_affinity_lt:
  5735  "0 < (m::'a::linordered_field) ==> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))"
  5736   by (simp add: field_simps inverse_eq_divide)
  5737 
  5738 lemma real_lt_affinity:
  5739  "0 < (m::'a::linordered_field) ==> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)"
  5740   by (simp add: field_simps inverse_eq_divide)
  5741 
  5742 lemma real_affinity_eq:
  5743  "(m::'a::linordered_field) \<noteq> 0 ==> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))"
  5744   by (simp add: field_simps inverse_eq_divide)
  5745 
  5746 lemma real_eq_affinity:
  5747  "(m::'a::linordered_field) \<noteq> 0 ==> (y = m * x + c  \<longleftrightarrow> inverse(m) * y + -(c / m) = x)"
  5748   by (simp add: field_simps inverse_eq_divide)
  5749 
  5750 lemma vector_affinity_eq:
  5751   assumes m0: "(m::'a::field) \<noteq> 0"
  5752   shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
  5753 proof
  5754   assume h: "m *s x + c = y"
  5755   hence "m *s x = y - c" by (simp add: ring_simps)
  5756   hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
  5757   then show "x = inverse m *s y + - (inverse m *s c)"
  5758     using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
  5759 next
  5760   assume h: "x = inverse m *s y + - (inverse m *s c)"
  5761   show "m *s x + c = y" unfolding h diff_minus[symmetric]
  5762     using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
  5763 qed
  5764 
  5765 lemma vector_eq_affinity:
  5766  "(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
  5767   using vector_affinity_eq[where m=m and x=x and y=y and c=c]
  5768   by metis
  5769 
  5770 lemma image_affinity_interval: fixes m::real
  5771   fixes a b c :: "real^'n"
  5772   shows "(\<lambda>x. m *\<^sub>R x + c) ` {a .. b} =
  5773             (if {a .. b} = {} then {}
  5774             else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
  5775             else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))"
  5776 proof(cases "m=0")
  5777   { fix x assume "x \<le> c" "c \<le> x"
  5778     hence "x=c" unfolding vector_le_def and Cart_eq by (auto intro: order_antisym) }
  5779   moreover case True
  5780   moreover have "c \<in> {m *\<^sub>R a + c..m *\<^sub>R b + c}" unfolding True by(auto simp add: vector_le_def)
  5781   ultimately show ?thesis by auto
  5782 next
  5783   case False
  5784   { fix y assume "a \<le> y" "y \<le> b" "m > 0"
  5785     hence "m *\<^sub>R a + c \<le> m *\<^sub>R y + c"  "m *\<^sub>R y + c \<le> m *\<^sub>R b + c"
  5786       unfolding vector_le_def by(auto simp add: vector_smult_component vector_add_component)
  5787   } moreover
  5788   { fix y assume "a \<le> y" "y \<le> b" "m < 0"
  5789     hence "m *\<^sub>R b + c \<le> m *\<^sub>R y + c"  "m *\<^sub>R y + c \<le> m *\<^sub>R a + c"
  5790       unfolding vector_le_def by(auto simp add: vector_smult_component vector_add_component mult_left_mono_neg elim!:ballE)
  5791   } moreover
  5792   { fix y assume "m > 0"  "m *\<^sub>R a + c \<le> y"  "y \<le> m *\<^sub>R b + c"
  5793     hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
  5794       unfolding image_iff Bex_def mem_interval vector_le_def
  5795       apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
  5796         intro!: exI[where x="(1 / m) *\<^sub>R (y - c)"])
  5797       by(auto simp add: pos_le_divide_eq pos_divide_le_eq real_mult_commute diff_le_iff)
  5798   } moreover
  5799   { fix y assume "m *\<^sub>R b + c \<le> y" "y \<le> m *\<^sub>R a + c" "m < 0"
  5800     hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
  5801       unfolding image_iff Bex_def mem_interval vector_le_def
  5802       apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
  5803         intro!: exI[where x="(1 / m) *\<^sub>R (y - c)"])
  5804       by(auto simp add: neg_le_divide_eq neg_divide_le_eq real_mult_commute diff_le_iff)
  5805   }
  5806   ultimately show ?thesis using False by auto
  5807 qed
  5808 
  5809 lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n)) ` {a..b} =
  5810   (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
  5811   using image_affinity_interval[of m 0 a b] by auto
  5812 
  5813 subsection{* Banach fixed point theorem (not really topological...) *}
  5814 
  5815 lemma banach_fix:
  5816   assumes s:"complete s" "s \<noteq> {}" and c:"0 \<le> c" "c < 1" and f:"(f ` s) \<subseteq> s" and
  5817           lipschitz:"\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
  5818   shows "\<exists>! x\<in>s. (f x = x)"
  5819 proof-
  5820   have "1 - c > 0" using c by auto
  5821 
  5822   from s(2) obtain z0 where "z0 \<in> s" by auto
  5823   def z \<equiv> "\<lambda>n. (f ^^ n) z0"
  5824   { fix n::nat
  5825     have "z n \<in> s" unfolding z_def
  5826     proof(induct n) case 0 thus ?case using `z0 \<in>s` by auto
  5827     next case Suc thus ?case using f by auto qed }
  5828   note z_in_s = this
  5829 
  5830   def d \<equiv> "dist (z 0) (z 1)"
  5831 
  5832   have fzn:"\<And>n. f (z n) = z (Suc n)" unfolding z_def by auto
  5833   { fix n::nat
  5834     have "dist (z n) (z (Suc n)) \<le> (c ^ n) * d"
  5835     proof(induct n)
  5836       case 0 thus ?case unfolding d_def by auto
  5837     next
  5838       case (Suc m)
  5839       hence "c * dist (z m) (z (Suc m)) \<le> c ^ Suc m * d"
  5840         using `0 \<le> c` using mult_mono1_class.mult_mono1[of "dist (z m) (z (Suc m))" "c ^ m * d" c] by auto
  5841       thus ?case using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s]
  5842         unfolding fzn and mult_le_cancel_left by auto
  5843     qed
  5844   } note cf_z = this
  5845 
  5846   { fix n m::nat
  5847     have "(1 - c) * dist (z m) (z (m+n)) \<le> (c ^ m) * d * (1 - c ^ n)"
  5848     proof(induct n)
  5849       case 0 show ?case by auto
  5850     next
  5851       case (Suc k)
  5852       have "(1 - c) * dist (z m) (z (m + Suc k)) \<le> (1 - c) * (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))"
  5853         using dist_triangle and c by(auto simp add: dist_triangle)
  5854       also have "\<dots> \<le> (1 - c) * (dist (z m) (z (m + k)) + c ^ (m + k) * d)"
  5855         using cf_z[of "m + k"] and c by auto
  5856       also have "\<dots> \<le> c ^ m * d * (1 - c ^ k) + (1 - c) * c ^ (m + k) * d"
  5857         using Suc by (auto simp add: ring_simps)
  5858       also have "\<dots> = (c ^ m) * (d * (1 - c ^ k) + (1 - c) * c ^ k * d)"
  5859         unfolding power_add by (auto simp add: ring_simps)
  5860       also have "\<dots> \<le> (c ^ m) * d * (1 - c ^ Suc k)"
  5861         using c by (auto simp add: ring_simps)
  5862       finally show ?case by auto
  5863     qed
  5864   } note cf_z2 = this
  5865   { fix e::real assume "e>0"
  5866     hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (z m) (z n) < e"
  5867     proof(cases "d = 0")
  5868       case True
  5869       hence "\<And>n. z n = z0" using cf_z2[of 0] and c unfolding z_def by (auto simp add: pos_prod_le[OF `1 - c > 0`])
  5870       thus ?thesis using `e>0` by auto
  5871     next
  5872       case False hence "d>0" unfolding d_def using zero_le_dist[of "z 0" "z 1"]
  5873         by (metis False d_def real_less_def)
  5874       hence "0 < e * (1 - c) / d" using `e>0` and `1-c>0`
  5875         using divide_pos_pos[of "e * (1 - c)" d] and mult_pos_pos[of e "1 - c"] by auto
  5876       then obtain N where N:"c ^ N < e * (1 - c) / d" using real_arch_pow_inv[of "e * (1 - c) / d" c] and c by auto
  5877       { fix m n::nat assume "m>n" and as:"m\<ge>N" "n\<ge>N"
  5878         have *:"c ^ n \<le> c ^ N" using `n\<ge>N` and c using power_decreasing[OF `n\<ge>N`, of c] by auto
  5879         have "1 - c ^ (m - n) > 0" using c and power_strict_mono[of c 1 "m - n"] using `m>n` by auto
  5880         hence **:"d * (1 - c ^ (m - n)) / (1 - c) > 0"
  5881           using real_mult_order[OF `d>0`, of "1 - c ^ (m - n)"]
  5882           using divide_pos_pos[of "d * (1 - c ^ (m - n))" "1 - c"]
  5883           using `0 < 1 - c` by auto
  5884 
  5885         have "dist (z m) (z n) \<le> c ^ n * d * (1 - c ^ (m - n)) / (1 - c)"
  5886           using cf_z2[of n "m - n"] and `m>n` unfolding pos_le_divide_eq[OF `1-c>0`]
  5887           by (auto simp add: real_mult_commute dist_commute)
  5888         also have "\<dots> \<le> c ^ N * d * (1 - c ^ (m - n)) / (1 - c)"
  5889           using mult_right_mono[OF * order_less_imp_le[OF **]]
  5890           unfolding real_mult_assoc by auto
  5891         also have "\<dots> < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)"
  5892           using mult_strict_right_mono[OF N **] unfolding real_mult_assoc by auto
  5893         also have "\<dots> = e * (1 - c ^ (m - n))" using c and `d>0` and `1 - c > 0` by auto
  5894         also have "\<dots> \<le> e" using c and `1 - c ^ (m - n) > 0` and `e>0` using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto
  5895         finally have  "dist (z m) (z n) < e" by auto
  5896       } note * = this
  5897       { fix m n::nat assume as:"N\<le>m" "N\<le>n"
  5898         hence "dist (z n) (z m) < e"
  5899         proof(cases "n = m")
  5900           case True thus ?thesis using `e>0` by auto
  5901         next
  5902           case False thus ?thesis using as and *[of n m] *[of m n] unfolding nat_neq_iff by (auto simp add: dist_commute)
  5903         qed }
  5904       thus ?thesis by auto
  5905     qed
  5906   }
  5907   hence "Cauchy z" unfolding cauchy_def by auto
  5908   then obtain x where "x\<in>s" and x:"(z ---> x) sequentially" using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto
  5909 
  5910   def e \<equiv> "dist (f x) x"
  5911   have "e = 0" proof(rule ccontr)
  5912     assume "e \<noteq> 0" hence "e>0" unfolding e_def using zero_le_dist[of "f x" x]
  5913       by (metis dist_eq_0_iff dist_nz e_def)
  5914     then obtain N where N:"\<forall>n\<ge>N. dist (z n) x < e / 2"
  5915       using x[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
  5916     hence N':"dist (z N) x < e / 2" by auto
  5917 
  5918     have *:"c * dist (z N) x \<le> dist (z N) x" unfolding mult_le_cancel_right2
  5919       using zero_le_dist[of "z N" x] and c
  5920       by (metis dist_eq_0_iff dist_nz order_less_asym real_less_def)
  5921     have "dist (f (z N)) (f x) \<le> c * dist (z N) x" using lipschitz[THEN bspec[where x="z N"], THEN bspec[where x=x]]
  5922       using z_in_s[of N] `x\<in>s` using c by auto
  5923     also have "\<dots> < e / 2" using N' and c using * by auto
  5924     finally show False unfolding fzn
  5925       using N[THEN spec[where x="Suc N"]] and dist_triangle_half_r[of "z (Suc N)" "f x" e x]
  5926       unfolding e_def by auto
  5927   qed
  5928   hence "f x = x" unfolding e_def by auto
  5929   moreover
  5930   { fix y assume "f y = y" "y\<in>s"
  5931     hence "dist x y \<le> c * dist x y" using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]]
  5932       using `x\<in>s` and `f x = x` by auto
  5933     hence "dist x y = 0" unfolding mult_le_cancel_right1
  5934       using c and zero_le_dist[of x y] by auto
  5935     hence "y = x" by auto
  5936   }
  5937   ultimately show ?thesis using `x\<in>s` by blast+
  5938 qed
  5939 
  5940 subsection{* Edelstein fixed point theorem.                                            *}
  5941 
  5942 lemma edelstein_fix:
  5943   fixes s :: "'a::real_normed_vector set"
  5944   assumes s:"compact s" "s \<noteq> {}" and gs:"(g ` s) \<subseteq> s"
  5945       and dist:"\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y"
  5946   shows "\<exists>! x\<in>s. g x = x"
  5947 proof(cases "\<exists>x\<in>s. g x \<noteq> x")
  5948   obtain x where "x\<in>s" using s(2) by auto
  5949   case False hence g:"\<forall>x\<in>s. g x = x" by auto
  5950   { fix y assume "y\<in>s"
  5951     hence "x = y" using `x\<in>s` and dist[THEN bspec[where x=x], THEN bspec[where x=y]]
  5952       unfolding g[THEN bspec[where x=x], OF `x\<in>s`]
  5953       unfolding g[THEN bspec[where x=y], OF `y\<in>s`] by auto  }
  5954   thus ?thesis using `x\<in>s` and g by blast+
  5955 next
  5956   case True
  5957   then obtain x where [simp]:"x\<in>s" and "g x \<noteq> x" by auto
  5958   { fix x y assume "x \<in> s" "y \<in> s"
  5959     hence "dist (g x) (g y) \<le> dist x y"
  5960       using dist[THEN bspec[where x=x], THEN bspec[where x=y]] by auto } note dist' = this
  5961   def y \<equiv> "g x"
  5962   have [simp]:"y\<in>s" unfolding y_def using gs[unfolded image_subset_iff] and `x\<in>s` by blast
  5963   def f \<equiv> "\<lambda>n. g ^^ n"
  5964   have [simp]:"\<And>n z. g (f n z) = f (Suc n) z" unfolding f_def by auto
  5965   have [simp]:"\<And>z. f 0 z = z" unfolding f_def by auto
  5966   { fix n::nat and z assume "z\<in>s"
  5967     have "f n z \<in> s" unfolding f_def
  5968     proof(induct n)
  5969       case 0 thus ?case using `z\<in>s` by simp
  5970     next
  5971       case (Suc n) thus ?case using gs[unfolded image_subset_iff] by auto
  5972     qed } note fs = this
  5973   { fix m n ::nat assume "m\<le>n"
  5974     fix w z assume "w\<in>s" "z\<in>s"
  5975     have "dist (f n w) (f n z) \<le> dist (f m w) (f m z)" using `m\<le>n`
  5976     proof(induct n)
  5977       case 0 thus ?case by auto
  5978     next
  5979       case (Suc n)
  5980       thus ?case proof(cases "m\<le>n")
  5981         case True thus ?thesis using Suc(1)
  5982           using dist'[OF fs fs, OF `w\<in>s` `z\<in>s`, of n n] by auto
  5983       next
  5984         case False hence mn:"m = Suc n" using Suc(2) by simp
  5985         show ?thesis unfolding mn  by auto
  5986       qed
  5987     qed } note distf = this
  5988 
  5989   def h \<equiv> "\<lambda>n. (f n x, f n y)"
  5990   let ?s2 = "s \<times> s"
  5991   obtain l r where "l\<in>?s2" and r:"subseq r" and lr:"((h \<circ> r) ---> l) sequentially"
  5992     using compact_Times [OF s(1) s(1), unfolded compact_def, THEN spec[where x=h]] unfolding  h_def
  5993     using fs[OF `x\<in>s`] and fs[OF `y\<in>s`] by blast
  5994   def a \<equiv> "fst l" def b \<equiv> "snd l"
  5995   have lab:"l = (a, b)" unfolding a_def b_def by simp
  5996   have [simp]:"a\<in>s" "b\<in>s" unfolding a_def b_def using `l\<in>?s2` by auto
  5997 
  5998   have lima:"((fst \<circ> (h \<circ> r)) ---> a) sequentially"
  5999    and limb:"((snd \<circ> (h \<circ> r)) ---> b) sequentially"
  6000     using lr
  6001     unfolding o_def a_def b_def by (simp_all add: tendsto_intros)
  6002 
  6003   { fix n::nat
  6004     have *:"\<And>fx fy (x::'a) y. dist fx fy \<le> dist x y \<Longrightarrow> \<not> (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_norm by norm
  6005     { fix x y :: 'a
  6006       have "dist (-x) (-y) = dist x y" unfolding dist_norm
  6007         using norm_minus_cancel[of "x - y"] by (auto simp add: uminus_add_conv_diff) } note ** = this
  6008 
  6009     { assume as:"dist a b > dist (f n x) (f n y)"
  6010       then obtain Na Nb where "\<forall>m\<ge>Na. dist (f (r m) x) a < (dist a b - dist (f n x) (f n y)) / 2"
  6011         and "\<forall>m\<ge>Nb. dist (f (r m) y) b < (dist a b - dist (f n x) (f n y)) / 2"
  6012         using lima limb unfolding h_def Lim_sequentially by (fastsimp simp del: less_divide_eq_number_of1)
  6013       hence "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) < dist a b - dist (f n x) (f n y)"
  6014         apply(erule_tac x="Na+Nb+n" in allE)
  6015         apply(erule_tac x="Na+Nb+n" in allE) apply simp
  6016         using dist_triangle_add_half[of a "f (r (Na + Nb + n)) x" "dist a b - dist (f n x) (f n y)"
  6017           "-b"  "- f (r (Na + Nb + n)) y"]
  6018         unfolding ** unfolding group_simps(12) by (auto simp add: dist_commute)
  6019       moreover
  6020       have "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) \<ge> dist a b - dist (f n x) (f n y)"
  6021         using distf[of n "r (Na+Nb+n)", OF _ `x\<in>s` `y\<in>s`]
  6022         using subseq_bigger[OF r, of "Na+Nb+n"]
  6023         using *[of "f (r (Na + Nb + n)) x" "f (r (Na + Nb + n)) y" "f n x" "f n y"] by auto
  6024       ultimately have False by simp
  6025     }
  6026     hence "dist a b \<le> dist (f n x) (f n y)" by(rule ccontr)auto }
  6027   note ab_fn = this
  6028 
  6029   have [simp]:"a = b" proof(rule ccontr)
  6030     def e \<equiv> "dist a b - dist (g a) (g b)"
  6031     assume "a\<noteq>b" hence "e > 0" unfolding e_def using dist by fastsimp
  6032     hence "\<exists>n. dist (f n x) a < e/2 \<and> dist (f n y) b < e/2"
  6033       using lima limb unfolding Lim_sequentially
  6034       apply (auto elim!: allE[where x="e/2"]) apply(rule_tac x="r (max N Na)" in exI) unfolding h_def by fastsimp
  6035     then obtain n where n:"dist (f n x) a < e/2 \<and> dist (f n y) b < e/2" by auto
  6036     have "dist (f (Suc n) x) (g a) \<le> dist (f n x) a"
  6037       using dist[THEN bspec[where x="f n x"], THEN bspec[where x="a"]] and fs by auto
  6038     moreover have "dist (f (Suc n) y) (g b) \<le> dist (f n y) b"
  6039       using dist[THEN bspec[where x="f n y"], THEN bspec[where x="b"]] and fs by auto
  6040     ultimately have "dist (f (Suc n) x) (g a) + dist (f (Suc n) y) (g b) < e" using n by auto
  6041     thus False unfolding e_def using ab_fn[of "Suc n"] by norm
  6042   qed
  6043 
  6044   have [simp]:"\<And>n. f (Suc n) x = f n y" unfolding f_def y_def by(induct_tac n)auto
  6045   { fix x y assume "x\<in>s" "y\<in>s" moreover
  6046     fix e::real assume "e>0" ultimately
  6047     have "dist y x < e \<longrightarrow> dist (g y) (g x) < e" using dist by fastsimp }
  6048   hence "continuous_on s g" unfolding continuous_on_def by auto
  6049 
  6050   hence "((snd \<circ> h \<circ> r) ---> g a) sequentially" unfolding continuous_on_sequentially
  6051     apply (rule allE[where x="\<lambda>n. (fst \<circ> h \<circ> r) n"]) apply (erule ballE[where x=a])
  6052     using lima unfolding h_def o_def using fs[OF `x\<in>s`] by (auto simp add: y_def)
  6053   hence "g a = a" using Lim_unique[OF trivial_limit_sequentially limb, of "g a"]
  6054     unfolding `a=b` and o_assoc by auto
  6055   moreover
  6056   { fix x assume "x\<in>s" "g x = x" "x\<noteq>a"
  6057     hence "False" using dist[THEN bspec[where x=a], THEN bspec[where x=x]]
  6058       using `g a = a` and `a\<in>s` by auto  }
  6059   ultimately show "\<exists>!x\<in>s. g x = x" using `a\<in>s` by blast
  6060 qed
  6061 
  6062 end