src/HOL/Tools/BNF/bnf_fp_def_sugar.ML
author blanchet
Wed, 23 Apr 2014 11:29:39 +0200
changeset 57999 558afd429255
parent 57993 fc105315822a
child 58107 644f0d4820a1
permissions -rw-r--r--
made SML/NJ happier
     1 (*  Title:      HOL/Tools/BNF/bnf_fp_def_sugar.ML
     2     Author:     Jasmin Blanchette, TU Muenchen
     3     Copyright   2012, 2013
     4 
     5 Sugared datatype and codatatype constructions.
     6 *)
     7 
     8 signature BNF_FP_DEF_SUGAR =
     9 sig
    10   val fp_sugar_of: Proof.context -> string -> BNF_FP_Util.fp_sugar option
    11   val fp_sugars_of: Proof.context -> BNF_FP_Util.fp_sugar list
    12   val fp_sugar_interpretation: (BNF_FP_Util.fp_sugar list -> theory -> theory) -> theory -> theory
    13   val register_fp_sugars: BNF_FP_Util.fp_sugar list -> local_theory -> local_theory
    14 
    15   val co_induct_of: 'a list -> 'a
    16   val strong_co_induct_of: 'a list -> 'a
    17 
    18   val flat_corec_preds_predsss_gettersss: 'a list -> 'a list list list -> 'a list list list ->
    19     'a list
    20   val nesty_bnfs: Proof.context -> typ list list list -> typ list -> BNF_Def.bnf list
    21 
    22   type lfp_sugar_thms =
    23     (thm list * thm * Args.src list) * (thm list list * Args.src list)
    24 
    25   val morph_lfp_sugar_thms: morphism -> lfp_sugar_thms -> lfp_sugar_thms
    26   val transfer_lfp_sugar_thms: Proof.context -> lfp_sugar_thms -> lfp_sugar_thms
    27 
    28   type gfp_sugar_thms =
    29     ((thm list * thm) list * Args.src list)
    30     * (thm list list * Args.src list)
    31     * (thm list list * Args.src list)
    32     * (thm list list * Args.src list)
    33     * (thm list list list * Args.src list)
    34 
    35   val morph_gfp_sugar_thms: morphism -> gfp_sugar_thms -> gfp_sugar_thms
    36   val transfer_gfp_sugar_thms: Proof.context -> gfp_sugar_thms -> gfp_sugar_thms
    37 
    38   val mk_co_recs_prelims: BNF_Util.fp_kind -> typ list list list -> typ list -> typ list ->
    39      typ list -> typ list -> int list -> int list list -> term list -> Proof.context ->
    40      (term list
    41       * (typ list list * typ list list list list * term list list * term list list list list) option
    42       * (string * term list * term list list
    43          * ((term list list * term list list list) * typ list)) option)
    44      * Proof.context
    45   val repair_nullary_single_ctr: typ list list -> typ list list
    46   val mk_corec_p_pred_types: typ list -> int list -> typ list list
    47   val mk_corec_fun_arg_types: typ list list list -> typ list -> typ list -> typ list -> int list ->
    48     int list list -> term ->
    49     typ list list
    50     * (typ list list list list * typ list list list * typ list list list list * typ list)
    51   val define_rec:
    52     typ list list * typ list list list list * term list list * term list list list list ->
    53     (string -> binding) -> typ list -> typ list -> term list -> term -> Proof.context ->
    54     (term * thm) * Proof.context
    55   val define_corec: 'a * term list * term list list
    56       * ((term list list * term list list list) * typ list) -> (string -> binding) -> 'b list ->
    57     typ list -> term list -> term -> local_theory -> (term * thm) * local_theory
    58   val derive_induct_recs_thms_for_types: BNF_Def.bnf list ->
    59      ('a * typ list list list list * term list list * 'b) option -> thm -> thm list ->
    60      BNF_Def.bnf list -> BNF_Def.bnf list -> typ list -> typ list -> typ list ->
    61      typ list list list -> thm list -> thm list -> thm list -> term list list -> thm list list ->
    62      term list -> thm list -> Proof.context -> lfp_sugar_thms
    63   val derive_coinduct_corecs_thms_for_types: BNF_Def.bnf list ->
    64     string * term list * term list list * ((term list list * term list list list) * typ list) ->
    65     thm -> thm list -> thm list -> thm list -> BNF_Def.bnf list -> typ list -> typ list ->
    66     typ list -> typ list list list -> int list list -> int list list -> int list -> thm list ->
    67     thm list -> (thm -> thm) -> thm list list -> Ctr_Sugar.ctr_sugar list -> term list ->
    68     thm list -> (thm list -> thm list) -> Proof.context -> gfp_sugar_thms
    69 
    70   type co_datatype_spec =
    71     ((((binding option * (typ * sort)) list * binding) * (binding * binding)) * mixfix)
    72     * ((binding, binding * typ, term) Ctr_Sugar.ctr_spec * mixfix) list
    73 
    74   val co_datatypes: BNF_Util.fp_kind -> (mixfix list -> binding list -> binding list ->
    75       binding list list -> binding list -> (string * sort) list -> typ list * typ list list ->
    76       BNF_Def.bnf list -> BNF_Comp.absT_info list -> local_theory ->
    77       BNF_FP_Util.fp_result * local_theory) ->
    78     (bool * bool) * co_datatype_spec list ->
    79     local_theory -> local_theory
    80   val parse_co_datatype_cmd: BNF_Util.fp_kind -> (mixfix list -> binding list -> binding list ->
    81       binding list list -> binding list -> (string * sort) list -> typ list * typ list list ->
    82       BNF_Def.bnf list -> BNF_Comp.absT_info list -> local_theory ->
    83       BNF_FP_Util.fp_result * local_theory) ->
    84     (local_theory -> local_theory) parser
    85 end;
    86 
    87 structure BNF_FP_Def_Sugar : BNF_FP_DEF_SUGAR =
    88 struct
    89 
    90 open Ctr_Sugar
    91 open BNF_FP_Rec_Sugar_Util
    92 open BNF_Util
    93 open BNF_Comp
    94 open BNF_Def
    95 open BNF_FP_Util
    96 open BNF_FP_Def_Sugar_Tactics
    97 open BNF_LFP_Size
    98 
    99 val EqN = "Eq_";
   100 
   101 structure Data = Generic_Data
   102 (
   103   type T = fp_sugar Symtab.table;
   104   val empty = Symtab.empty;
   105   val extend = I;
   106   fun merge data : T = Symtab.merge (K true) data;
   107 );
   108 
   109 fun fp_sugar_of ctxt =
   110   Symtab.lookup (Data.get (Context.Proof ctxt))
   111   #> Option.map (transfer_fp_sugar ctxt);
   112 
   113 fun fp_sugars_of ctxt =
   114   Symtab.fold (cons o transfer_fp_sugar ctxt o snd) (Data.get (Context.Proof ctxt)) [];
   115 
   116 fun co_induct_of (i :: _) = i;
   117 fun strong_co_induct_of [_, s] = s;
   118 
   119 structure FP_Sugar_Interpretation = Interpretation
   120 (
   121   type T = fp_sugar list;
   122   val eq: T * T -> bool = op = o pairself (map #T);
   123 );
   124 
   125 (* FIXME naming *)
   126 fun with_repaired_path f (fp_sugars as ({T = Type (s, _), ...} : fp_sugar) :: _) thy =
   127   thy
   128   (*|> Sign.root_path*)
   129   (*|> Sign.add_path (Long_Name.qualifier s)*)
   130   |> f fp_sugars
   131   (*|> Sign.restore_naming thy*);
   132 
   133 fun fp_sugar_interpretation f = FP_Sugar_Interpretation.interpretation (with_repaired_path f);
   134 
   135 fun register_fp_sugars (fp_sugars as {fp, ...} :: _) =
   136   fold (fn fp_sugar as {T = Type (s, _), ...} =>
   137       Local_Theory.declaration {syntax = false, pervasive = true}
   138         (fn phi => Data.map (Symtab.update (s, morph_fp_sugar phi fp_sugar))))
   139     fp_sugars
   140   #> fp = Least_FP ? generate_lfp_size fp_sugars
   141   #> Local_Theory.background_theory (FP_Sugar_Interpretation.data fp_sugars);
   142 
   143 fun register_as_fp_sugars Ts BTs Xs fp pre_bnfs absT_infos nested_bnfs nesting_bnfs fp_res
   144     ctrXs_Tsss ctr_defss ctr_sugars co_recs co_rec_defs mapss common_co_inducts co_inductss
   145     co_rec_thmss disc_co_recss sel_co_recsss rel_injectss rel_distinctss =
   146   let
   147     val fp_sugars =
   148       map_index (fn (kk, T) =>
   149         {T = T, BT = nth BTs kk, X = nth Xs kk, fp = fp, fp_res = fp_res, fp_res_index = kk,
   150          pre_bnf = nth pre_bnfs kk, absT_info = nth absT_infos kk, nested_bnfs = nested_bnfs,
   151          nesting_bnfs = nesting_bnfs, ctrXs_Tss = nth ctrXs_Tsss kk, ctr_defs = nth ctr_defss kk,
   152          ctr_sugar = nth ctr_sugars kk, co_rec = nth co_recs kk, co_rec_def = nth co_rec_defs kk,
   153          maps = nth mapss kk, common_co_inducts = common_co_inducts,
   154          co_inducts = nth co_inductss kk, co_rec_thms = nth co_rec_thmss kk,
   155          disc_co_recs = nth disc_co_recss kk, sel_co_recss = nth sel_co_recsss kk,
   156          rel_injects = nth rel_injectss kk, rel_distincts = nth rel_distinctss kk}) Ts
   157   in
   158     register_fp_sugars fp_sugars
   159   end;
   160 
   161 (* This function could produce (fairly harmless) clashes in contrived examples (e.g., "x.A",
   162    "x.x_A", "y.A"). *)
   163 fun quasi_unambiguous_case_names names =
   164   let
   165     val ps = map (`Long_Name.base_name) names;
   166     val dups = Library.duplicates (op =) (map fst ps);
   167     fun underscore s =
   168       let val ss = space_explode Long_Name.separator s in
   169         space_implode "_" (drop (length ss - 2) ss)
   170       end;
   171   in
   172     map (fn (base, full) => if member (op =) dups base then underscore full else base) ps
   173   end;
   174 
   175 val id_def = @{thm id_def};
   176 val mp_conj = @{thm mp_conj};
   177 
   178 val fundefcong_attrs = @{attributes [fundef_cong]};
   179 val nitpicksimp_attrs = @{attributes [nitpick_simp]};
   180 val code_nitpicksimp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs;
   181 val simp_attrs = @{attributes [simp]};
   182 
   183 val lists_bmoc = fold (fn xs => fn t => Term.list_comb (t, xs));
   184 
   185 fun flat_corec_predss_getterss qss gss = maps (op @) (qss ~~ gss);
   186 
   187 fun flat_corec_preds_predsss_gettersss [] [qss] [gss] = flat_corec_predss_getterss qss gss
   188   | flat_corec_preds_predsss_gettersss (p :: ps) (qss :: qsss) (gss :: gsss) =
   189     p :: flat_corec_predss_getterss qss gss @ flat_corec_preds_predsss_gettersss ps qsss gsss;
   190 
   191 fun mk_flip (x, Type (_, [T1, Type (_, [T2, T3])])) =
   192   Abs ("x", T1, Abs ("y", T2, Var (x, T2 --> T1 --> T3) $ Bound 0 $ Bound 1));
   193 
   194 fun flip_rels lthy n thm =
   195   let
   196     val Rs = Term.add_vars (prop_of thm) [];
   197     val Rs' = rev (drop (length Rs - n) Rs);
   198     val cRs = map (fn f => (certify lthy (Var f), certify lthy (mk_flip f))) Rs';
   199   in
   200     Drule.cterm_instantiate cRs thm
   201   end;
   202 
   203 fun mk_ctor_or_dtor get_T Ts t =
   204   let val Type (_, Ts0) = get_T (fastype_of t) in
   205     Term.subst_atomic_types (Ts0 ~~ Ts) t
   206   end;
   207 
   208 val mk_ctor = mk_ctor_or_dtor range_type;
   209 val mk_dtor = mk_ctor_or_dtor domain_type;
   210 
   211 fun mk_xtor_co_recs thy fp fpTs Cs ts0 =
   212   let
   213     val nn = length fpTs;
   214     val (fpTs0, Cs0) =
   215       map ((fp = Greatest_FP ? swap) o dest_funT o snd o strip_typeN nn o fastype_of) ts0
   216       |> split_list;
   217     val rho = tvar_subst thy (fpTs0 @ Cs0) (fpTs @ Cs);
   218   in
   219     map (Term.subst_TVars rho) ts0
   220   end;
   221 
   222 fun unzip_recT (Type (@{type_name prod}, _)) T = [T]
   223   | unzip_recT _ (Type (@{type_name prod}, Ts)) = Ts
   224   | unzip_recT _ T = [T];
   225 
   226 fun unzip_corecT (Type (@{type_name sum}, _)) T = [T]
   227   | unzip_corecT _ (Type (@{type_name sum}, Ts)) = Ts
   228   | unzip_corecT _ T = [T];
   229 
   230 fun liveness_of_fp_bnf n bnf =
   231   (case T_of_bnf bnf of
   232     Type (_, Ts) => map (not o member (op =) (deads_of_bnf bnf)) Ts
   233   | _ => replicate n false);
   234 
   235 fun cannot_merge_types fp =
   236   error ("Mutually " ^ co_prefix fp ^ "recursive types must have the same type parameters");
   237 
   238 fun merge_type_arg fp T T' = if T = T' then T else cannot_merge_types fp;
   239 
   240 fun merge_type_args fp (As, As') =
   241   if length As = length As' then map2 (merge_type_arg fp) As As' else cannot_merge_types fp;
   242 
   243 fun reassoc_conjs thm =
   244   reassoc_conjs (thm RS @{thm conj_assoc[THEN iffD1]})
   245   handle THM _ => thm;
   246 
   247 type co_datatype_spec =
   248   ((((binding option * (typ * sort)) list * binding) * (binding * binding)) * mixfix)
   249   * ((binding, binding * typ, term) ctr_spec * mixfix) list;
   250 
   251 fun type_args_named_constrained_of_spec ((((ncAs, _), _), _), _) = ncAs;
   252 fun type_binding_of_spec ((((_, b), _), _), _) = b;
   253 fun map_binding_of_spec (((_, (b, _)), _), _) = b;
   254 fun rel_binding_of_spec (((_, (_, b)), _), _) = b;
   255 fun mixfix_of_spec ((_, mx), _) = mx;
   256 fun mixfixed_ctr_specs_of_spec (_, mx_ctr_specs) = mx_ctr_specs;
   257 
   258 fun add_nesty_bnf_names Us =
   259   let
   260     fun add (Type (s, Ts)) ss =
   261         let val (needs, ss') = fold_map add Ts ss in
   262           if exists I needs then (true, insert (op =) s ss') else (false, ss')
   263         end
   264       | add T ss = (member (op =) Us T, ss);
   265   in snd oo add end;
   266 
   267 fun nesty_bnfs ctxt ctr_Tsss Us =
   268   map_filter (bnf_of ctxt) (fold (fold (fold (add_nesty_bnf_names Us))) ctr_Tsss []);
   269 
   270 fun indexify proj xs f p = f (find_index (curry (op =) (proj p)) xs) p;
   271 
   272 type lfp_sugar_thms =
   273   (thm list * thm * Args.src list) * (thm list list * Args.src list);
   274 
   275 fun morph_lfp_sugar_thms phi ((inducts, induct, induct_attrs), (recss, rec_attrs)) =
   276   ((map (Morphism.thm phi) inducts, Morphism.thm phi induct, induct_attrs),
   277    (map (map (Morphism.thm phi)) recss, rec_attrs))
   278   : lfp_sugar_thms;
   279 
   280 val transfer_lfp_sugar_thms =
   281   morph_lfp_sugar_thms o Morphism.transfer_morphism o Proof_Context.theory_of;
   282 
   283 type gfp_sugar_thms =
   284   ((thm list * thm) list * Args.src list)
   285   * (thm list list * Args.src list)
   286   * (thm list list * Args.src list)
   287   * (thm list list * Args.src list)
   288   * (thm list list list * Args.src list);
   289 
   290 fun morph_gfp_sugar_thms phi ((coinducts_pairs, coinduct_attrs),
   291     (corecss, corec_attrs), (disc_corecss, disc_corec_attrs),
   292     (disc_corec_iffss, disc_corec_iff_attrs), (sel_corecsss, sel_corec_attrs)) =
   293   ((map (apfst (map (Morphism.thm phi)) o apsnd (Morphism.thm phi)) coinducts_pairs,
   294     coinduct_attrs),
   295    (map (map (Morphism.thm phi)) corecss, corec_attrs),
   296    (map (map (Morphism.thm phi)) disc_corecss, disc_corec_attrs),
   297    (map (map (Morphism.thm phi)) disc_corec_iffss, disc_corec_iff_attrs),
   298    (map (map (map (Morphism.thm phi))) sel_corecsss, sel_corec_attrs)) : gfp_sugar_thms;
   299 
   300 val transfer_gfp_sugar_thms =
   301   morph_gfp_sugar_thms o Morphism.transfer_morphism o Proof_Context.theory_of;
   302 
   303 fun mk_recs_args_types ctr_Tsss Cs absTs repTs ns mss ctor_rec_fun_Ts lthy =
   304   let
   305     val Css = map2 replicate ns Cs;
   306     val x_Tssss =
   307       map6 (fn absT => fn repT => fn n => fn ms => fn ctr_Tss => fn ctor_rec_fun_T =>
   308           map2 (map2 unzip_recT)
   309             ctr_Tss (dest_absumprodT absT repT n ms (domain_type ctor_rec_fun_T)))
   310         absTs repTs ns mss ctr_Tsss ctor_rec_fun_Ts;
   311 
   312     val x_Tsss' = map (map flat_rec_arg_args) x_Tssss;
   313     val f_Tss = map2 (map2 (curry (op --->))) x_Tsss' Css;
   314 
   315     val ((fss, xssss), lthy) =
   316       lthy
   317       |> mk_Freess "f" f_Tss
   318       ||>> mk_Freessss "x" x_Tssss;
   319   in
   320     ((f_Tss, x_Tssss, fss, xssss), lthy)
   321   end;
   322 
   323 (*avoid "'a itself" arguments in corecursors*)
   324 fun repair_nullary_single_ctr [[]] = [[HOLogic.unitT]]
   325   | repair_nullary_single_ctr Tss = Tss;
   326 
   327 fun mk_corec_fun_arg_types0 ctr_Tsss Cs absTs repTs ns mss fun_Ts =
   328   let
   329     val ctr_Tsss' = map repair_nullary_single_ctr ctr_Tsss;
   330     val g_absTs = map range_type fun_Ts;
   331     val g_Tsss = map repair_nullary_single_ctr (map5 dest_absumprodT absTs repTs ns mss g_absTs);
   332     val g_Tssss = map3 (fn C => map2 (map2 (map (curry (op -->) C) oo unzip_corecT)))
   333       Cs ctr_Tsss' g_Tsss;
   334     val q_Tssss = map (map (map (fn [_] => [] | [_, T] => [mk_pred1T (domain_type T)]))) g_Tssss;
   335   in
   336     (q_Tssss, g_Tsss, g_Tssss, g_absTs)
   337   end;
   338 
   339 fun mk_corec_p_pred_types Cs ns = map2 (fn n => replicate (Int.max (0, n - 1)) o mk_pred1T) ns Cs;
   340 
   341 fun mk_corec_fun_arg_types ctr_Tsss Cs absTs repTs ns mss dtor_corec =
   342   (mk_corec_p_pred_types Cs ns,
   343    mk_corec_fun_arg_types0 ctr_Tsss Cs absTs repTs ns mss
   344      (binder_fun_types (fastype_of dtor_corec)));
   345 
   346 fun mk_corecs_args_types ctr_Tsss Cs absTs repTs ns mss dtor_corec_fun_Ts lthy =
   347   let
   348     val p_Tss = mk_corec_p_pred_types Cs ns;
   349 
   350     val (q_Tssss, g_Tsss, g_Tssss, corec_types) =
   351       mk_corec_fun_arg_types0 ctr_Tsss Cs absTs repTs ns mss dtor_corec_fun_Ts;
   352 
   353     val (((((Free (x, _), cs), pss), qssss), gssss), lthy) =
   354       lthy
   355       |> yield_singleton (mk_Frees "x") dummyT
   356       ||>> mk_Frees "a" Cs
   357       ||>> mk_Freess "p" p_Tss
   358       ||>> mk_Freessss "q" q_Tssss
   359       ||>> mk_Freessss "g" g_Tssss;
   360 
   361     val cpss = map2 (map o rapp) cs pss;
   362 
   363     fun build_sum_inj mk_inj = build_map lthy (uncurry mk_inj o dest_sumT o snd);
   364 
   365     fun build_dtor_corec_arg _ [] [cg] = cg
   366       | build_dtor_corec_arg T [cq] [cg, cg'] =
   367         mk_If cq (build_sum_inj Inl_const (fastype_of cg, T) $ cg)
   368           (build_sum_inj Inr_const (fastype_of cg', T) $ cg');
   369 
   370     val pgss = map3 flat_corec_preds_predsss_gettersss pss qssss gssss;
   371     val cqssss = map2 (map o map o map o rapp) cs qssss;
   372     val cgssss = map2 (map o map o map o rapp) cs gssss;
   373     val cqgsss = map3 (map3 (map3 build_dtor_corec_arg)) g_Tsss cqssss cgssss;
   374   in
   375     ((x, cs, cpss, ((pgss, cqgsss), corec_types)), lthy)
   376   end;
   377 
   378 fun mk_co_recs_prelims fp ctr_Tsss fpTs Cs absTs repTs ns mss xtor_co_recs0 lthy =
   379   let
   380     val thy = Proof_Context.theory_of lthy;
   381 
   382     val (xtor_co_rec_fun_Ts, xtor_co_recs) =
   383       mk_xtor_co_recs thy fp fpTs Cs xtor_co_recs0 |> `(binder_fun_types o fastype_of o hd);
   384 
   385     val ((recs_args_types, corecs_args_types), lthy') =
   386       if fp = Least_FP then
   387         mk_recs_args_types ctr_Tsss Cs absTs repTs ns mss xtor_co_rec_fun_Ts lthy
   388         |>> (rpair NONE o SOME)
   389       else
   390         mk_corecs_args_types ctr_Tsss Cs absTs repTs ns mss xtor_co_rec_fun_Ts lthy
   391         |>> (pair NONE o SOME);
   392   in
   393     ((xtor_co_recs, recs_args_types, corecs_args_types), lthy')
   394   end;
   395 
   396 fun mk_preds_getterss_join c cps absT abs cqgss =
   397   let
   398     val n = length cqgss;
   399     val ts = map2 (mk_absumprod absT abs n) (1 upto n) cqgss;
   400   in
   401     Term.lambda c (mk_IfN absT cps ts)
   402   end;
   403 
   404 fun define_co_rec fp fpT Cs b rhs lthy0 =
   405   let
   406     val thy = Proof_Context.theory_of lthy0;
   407 
   408     val maybe_conceal_def_binding = Thm.def_binding
   409       #> Config.get lthy0 bnf_note_all = false ? Binding.conceal;
   410 
   411     val ((cst, (_, def)), (lthy', lthy)) = lthy0
   412       |> Local_Theory.define ((b, NoSyn), ((maybe_conceal_def_binding b, []), rhs))
   413       ||> `Local_Theory.restore;
   414 
   415     val phi = Proof_Context.export_morphism lthy lthy';
   416 
   417     val cst' = mk_co_rec thy fp fpT Cs (Morphism.term phi cst);
   418     val def' = Morphism.thm phi def;
   419   in
   420     ((cst', def'), lthy')
   421   end;
   422 
   423 fun define_rec (_, _, fss, xssss) mk_binding fpTs Cs reps ctor_rec =
   424   let
   425     val nn = length fpTs;
   426     val (ctor_rec_absTs, fpT) = strip_typeN nn (fastype_of ctor_rec)
   427       |>> map domain_type ||> domain_type;
   428   in
   429     define_co_rec Least_FP fpT Cs (mk_binding recN)
   430       (fold_rev (fold_rev Term.lambda) fss (Term.list_comb (ctor_rec,
   431          map4 (fn ctor_rec_absT => fn rep => fn fs => fn xsss =>
   432              mk_case_absumprod ctor_rec_absT rep fs (map (map HOLogic.mk_tuple) xsss)
   433                (map flat_rec_arg_args xsss))
   434            ctor_rec_absTs reps fss xssss)))
   435   end;
   436 
   437 fun define_corec (_, cs, cpss, ((pgss, cqgsss), f_absTs)) mk_binding fpTs Cs abss dtor_corec =
   438   let
   439     val nn = length fpTs;
   440     val fpT = range_type (snd (strip_typeN nn (fastype_of dtor_corec)));
   441   in
   442     define_co_rec Greatest_FP fpT Cs (mk_binding corecN)
   443       (fold_rev (fold_rev Term.lambda) pgss (Term.list_comb (dtor_corec,
   444          map5 mk_preds_getterss_join cs cpss f_absTs abss cqgsss)))
   445   end;
   446 
   447 fun derive_induct_recs_thms_for_types pre_bnfs rec_args_typess ctor_induct ctor_rec_thms
   448     nesting_bnfs nested_bnfs fpTs Cs Xs ctrXs_Tsss fp_abs_inverses fp_type_definitions abs_inverses
   449     ctrss ctr_defss recs rec_defs lthy =
   450   let
   451     val ctr_Tsss = map (map (binder_types o fastype_of)) ctrss;
   452 
   453     val nn = length pre_bnfs;
   454     val ns = map length ctr_Tsss;
   455     val mss = map (map length) ctr_Tsss;
   456 
   457     val pre_map_defs = map map_def_of_bnf pre_bnfs;
   458     val pre_set_defss = map set_defs_of_bnf pre_bnfs;
   459     val nesting_map_idents = map (unfold_thms lthy [id_def] o map_id0_of_bnf) nesting_bnfs;
   460     val nested_map_idents = map (unfold_thms lthy [id_def] o map_id0_of_bnf) nested_bnfs;
   461     val nested_set_maps = maps set_map_of_bnf nested_bnfs;
   462 
   463     val fp_b_names = map base_name_of_typ fpTs;
   464 
   465     val ((((ps, ps'), xsss), us'), names_lthy) =
   466       lthy
   467       |> mk_Frees' "P" (map mk_pred1T fpTs)
   468       ||>> mk_Freesss "x" ctr_Tsss
   469       ||>> Variable.variant_fixes fp_b_names;
   470 
   471     val us = map2 (curry Free) us' fpTs;
   472 
   473     fun mk_sets_nested bnf =
   474       let
   475         val Type (T_name, Us) = T_of_bnf bnf;
   476         val lives = lives_of_bnf bnf;
   477         val sets = sets_of_bnf bnf;
   478         fun mk_set U =
   479           (case find_index (curry (op =) U) lives of
   480             ~1 => Term.dummy
   481           | i => nth sets i);
   482       in
   483         (T_name, map mk_set Us)
   484       end;
   485 
   486     val setss_nested = map mk_sets_nested nested_bnfs;
   487 
   488     val (induct_thms, induct_thm) =
   489       let
   490         fun mk_set Ts t =
   491           let val Type (_, Ts0) = domain_type (fastype_of t) in
   492             Term.subst_atomic_types (Ts0 ~~ Ts) t
   493           end;
   494 
   495         fun mk_raw_prem_prems _ (x as Free (_, Type _)) (X as TFree _) =
   496             [([], (find_index (curry (op =) X) Xs + 1, x))]
   497           | mk_raw_prem_prems names_lthy (x as Free (s, Type (T_name, Ts0))) (Type (_, Xs_Ts0)) =
   498             (case AList.lookup (op =) setss_nested T_name of
   499               NONE => []
   500             | SOME raw_sets0 =>
   501               let
   502                 val (Xs_Ts, (Ts, raw_sets)) =
   503                   filter (exists_subtype_in Xs o fst) (Xs_Ts0 ~~ (Ts0 ~~ raw_sets0))
   504                   |> split_list ||> split_list;
   505                 val sets = map (mk_set Ts0) raw_sets;
   506                 val (ys, names_lthy') = names_lthy |> mk_Frees s Ts;
   507                 val xysets = map (pair x) (ys ~~ sets);
   508                 val ppremss = map2 (mk_raw_prem_prems names_lthy') ys Xs_Ts;
   509               in
   510                 flat (map2 (map o apfst o cons) xysets ppremss)
   511               end)
   512           | mk_raw_prem_prems _ _ _ = [];
   513 
   514         fun close_prem_prem xs t =
   515           fold_rev Logic.all (map Free (drop (nn + length xs)
   516             (rev (Term.add_frees t (map dest_Free xs @ ps'))))) t;
   517 
   518         fun mk_prem_prem xs (xysets, (j, x)) =
   519           close_prem_prem xs (Logic.list_implies (map (fn (x', (y, set)) =>
   520               HOLogic.mk_Trueprop (HOLogic.mk_mem (y, set $ x'))) xysets,
   521             HOLogic.mk_Trueprop (nth ps (j - 1) $ x)));
   522 
   523         fun mk_raw_prem phi ctr ctr_Ts ctrXs_Ts =
   524           let
   525             val (xs, names_lthy') = names_lthy |> mk_Frees "x" ctr_Ts;
   526             val pprems = flat (map2 (mk_raw_prem_prems names_lthy') xs ctrXs_Ts);
   527           in (xs, pprems, HOLogic.mk_Trueprop (phi $ Term.list_comb (ctr, xs))) end;
   528 
   529         fun mk_prem (xs, raw_pprems, concl) =
   530           fold_rev Logic.all xs (Logic.list_implies (map (mk_prem_prem xs) raw_pprems, concl));
   531 
   532         val raw_premss = map4 (map3 o mk_raw_prem) ps ctrss ctr_Tsss ctrXs_Tsss;
   533 
   534         val goal =
   535           Library.foldr (Logic.list_implies o apfst (map mk_prem)) (raw_premss,
   536             HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 (curry (op $)) ps us)));
   537 
   538         val kksss = map (map (map (fst o snd) o #2)) raw_premss;
   539 
   540         val ctor_induct' = ctor_induct OF (map2 mk_absumprodE fp_type_definitions mss);
   541 
   542         val thm =
   543           Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
   544             mk_induct_tac ctxt nn ns mss kksss (flat ctr_defss) ctor_induct' fp_abs_inverses
   545               abs_inverses nested_set_maps pre_set_defss)
   546           |> singleton (Proof_Context.export names_lthy lthy)
   547           (* for "datatype_realizer.ML": *)
   548           |> Thm.name_derivation (fst (dest_Type (hd fpTs)) ^ Long_Name.separator ^
   549             (if nn > 1 then space_implode "_" (tl fp_b_names) ^ Long_Name.separator else "") ^
   550             inductN);
   551       in
   552         `(conj_dests nn) thm
   553       end;
   554 
   555     val induct_cases = quasi_unambiguous_case_names (maps (map name_of_ctr) ctrss);
   556     val induct_case_names_attr = Attrib.internal (K (Rule_Cases.case_names induct_cases));
   557 
   558     val xctrss = map2 (map2 (curry Term.list_comb)) ctrss xsss;
   559 
   560     fun mk_rec_thmss (_, x_Tssss, fss, _) recs rec_defs ctor_rec_thms =
   561       let
   562         val frecs = map (lists_bmoc fss) recs;
   563 
   564         fun mk_goal frec xctr f xs fxs =
   565           fold_rev (fold_rev Logic.all) (xs :: fss)
   566             (mk_Trueprop_eq (frec $ xctr, Term.list_comb (f, fxs)));
   567 
   568         fun maybe_tick (T, U) u f =
   569           if try (fst o HOLogic.dest_prodT) U = SOME T then
   570             Term.lambda u (HOLogic.mk_prod (u, f $ u))
   571           else
   572             f;
   573 
   574         fun build_rec (x as Free (_, T)) U =
   575           if T = U then
   576             x
   577           else
   578             build_map lthy (indexify (perhaps (try (snd o HOLogic.dest_prodT)) o snd) Cs
   579               (fn kk => fn TU => maybe_tick TU (nth us kk) (nth frecs kk))) (T, U) $ x;
   580 
   581         val fxsss = map2 (map2 (flat_rec_arg_args oo map2 (map o build_rec))) xsss x_Tssss;
   582         val goalss = map5 (map4 o mk_goal) frecs xctrss fss xsss fxsss;
   583 
   584         val tacss =
   585           map4 (map ooo mk_rec_tac pre_map_defs (nested_map_idents @ nesting_map_idents) rec_defs)
   586             ctor_rec_thms fp_abs_inverses abs_inverses ctr_defss;
   587 
   588         fun prove goal tac =
   589           Goal.prove_sorry lthy [] [] goal (tac o #context)
   590           |> Thm.close_derivation;
   591       in
   592         map2 (map2 prove) goalss tacss
   593       end;
   594 
   595     val rec_thmss = mk_rec_thmss (the rec_args_typess) recs rec_defs ctor_rec_thms;
   596   in
   597     ((induct_thms, induct_thm, [induct_case_names_attr]),
   598      (rec_thmss, code_nitpicksimp_attrs @ simp_attrs))
   599   end;
   600 
   601 fun derive_coinduct_corecs_thms_for_types pre_bnfs (x, cs, cpss, ((pgss, cqgsss), _))
   602     dtor_coinduct dtor_injects dtor_ctors dtor_corec_thms nesting_bnfs fpTs Cs Xs ctrXs_Tsss kss
   603     mss ns fp_abs_inverses abs_inverses mk_vimage2p ctr_defss (ctr_sugars : ctr_sugar list)
   604     corecs corec_defs export_args lthy =
   605   let
   606     fun mk_ctor_dtor_corec_thm dtor_inject dtor_ctor corec =
   607       iffD1 OF [dtor_inject, trans OF [corec, dtor_ctor RS sym]];
   608 
   609     val ctor_dtor_corec_thms = map3 mk_ctor_dtor_corec_thm dtor_injects dtor_ctors dtor_corec_thms;
   610 
   611     val nn = length pre_bnfs;
   612 
   613     val pre_map_defs = map map_def_of_bnf pre_bnfs;
   614     val pre_rel_defs = map rel_def_of_bnf pre_bnfs;
   615     val nesting_map_idents = map (unfold_thms lthy [id_def] o map_id0_of_bnf) nesting_bnfs;
   616     val nesting_rel_eqs = map rel_eq_of_bnf nesting_bnfs;
   617 
   618     val fp_b_names = map base_name_of_typ fpTs;
   619 
   620     val ctrss = map #ctrs ctr_sugars;
   621     val discss = map #discs ctr_sugars;
   622     val selsss = map #selss ctr_sugars;
   623     val exhausts = map #exhaust ctr_sugars;
   624     val disc_thmsss = map #disc_thmss ctr_sugars;
   625     val discIss = map #discIs ctr_sugars;
   626     val sel_thmsss = map #sel_thmss ctr_sugars;
   627 
   628     val (((rs, us'), vs'), names_lthy) =
   629       lthy
   630       |> mk_Frees "R" (map (fn T => mk_pred2T T T) fpTs)
   631       ||>> Variable.variant_fixes fp_b_names
   632       ||>> Variable.variant_fixes (map (suffix "'") fp_b_names);
   633 
   634     val us = map2 (curry Free) us' fpTs;
   635     val udiscss = map2 (map o rapp) us discss;
   636     val uselsss = map2 (map o map o rapp) us selsss;
   637 
   638     val vs = map2 (curry Free) vs' fpTs;
   639     val vdiscss = map2 (map o rapp) vs discss;
   640     val vselsss = map2 (map o map o rapp) vs selsss;
   641 
   642     val coinduct_thms_pairs =
   643       let
   644         val uvrs = map3 (fn r => fn u => fn v => r $ u $ v) rs us vs;
   645         val uv_eqs = map2 (curry HOLogic.mk_eq) us vs;
   646         val strong_rs =
   647           map4 (fn u => fn v => fn uvr => fn uv_eq =>
   648             fold_rev Term.lambda [u, v] (HOLogic.mk_disj (uvr, uv_eq))) us vs uvrs uv_eqs;
   649 
   650         fun build_the_rel rs' T Xs_T =
   651           build_rel lthy (fn (_, X) => nth rs' (find_index (curry (op =) X) Xs)) (T, Xs_T)
   652           |> Term.subst_atomic_types (Xs ~~ fpTs);
   653 
   654         fun build_rel_app rs' usel vsel Xs_T =
   655           fold rapp [usel, vsel] (build_the_rel rs' (fastype_of usel) Xs_T);
   656 
   657         fun mk_prem_ctr_concls rs' n k udisc usels vdisc vsels ctrXs_Ts =
   658           (if k = n then [] else [HOLogic.mk_eq (udisc, vdisc)]) @
   659           (if null usels then
   660              []
   661            else
   662              [Library.foldr HOLogic.mk_imp (if n = 1 then [] else [udisc, vdisc],
   663                 Library.foldr1 HOLogic.mk_conj (map3 (build_rel_app rs') usels vsels ctrXs_Ts))]);
   664 
   665         fun mk_prem_concl rs' n udiscs uselss vdiscs vselss ctrXs_Tss =
   666           Library.foldr1 HOLogic.mk_conj (flat (map6 (mk_prem_ctr_concls rs' n)
   667             (1 upto n) udiscs uselss vdiscs vselss ctrXs_Tss))
   668           handle List.Empty => @{term True};
   669 
   670         fun mk_prem rs' uvr u v n udiscs uselss vdiscs vselss ctrXs_Tss =
   671           fold_rev Logic.all [u, v] (Logic.mk_implies (HOLogic.mk_Trueprop uvr,
   672             HOLogic.mk_Trueprop (mk_prem_concl rs' n udiscs uselss vdiscs vselss ctrXs_Tss)));
   673 
   674         val concl =
   675           HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
   676             (map3 (fn uvr => fn u => fn v => HOLogic.mk_imp (uvr, HOLogic.mk_eq (u, v)))
   677                uvrs us vs));
   678 
   679         fun mk_goal rs' =
   680           Logic.list_implies (map9 (mk_prem rs') uvrs us vs ns udiscss uselsss vdiscss vselsss
   681             ctrXs_Tsss, concl);
   682 
   683         val goals = map mk_goal [rs, strong_rs];
   684 
   685         fun prove dtor_coinduct' goal =
   686           Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
   687             mk_coinduct_tac ctxt nesting_rel_eqs nn ns dtor_coinduct' pre_rel_defs fp_abs_inverses
   688               abs_inverses dtor_ctors exhausts ctr_defss disc_thmsss sel_thmsss)
   689           |> singleton (Proof_Context.export names_lthy lthy)
   690           |> Thm.close_derivation;
   691 
   692         fun postproc nn thm =
   693           Thm.permute_prems 0 nn
   694             (if nn = 1 then thm RS mp else funpow nn (fn thm => reassoc_conjs (thm RS mp_conj)) thm)
   695           |> Drule.zero_var_indexes
   696           |> `(conj_dests nn);
   697 
   698         val rel_eqs = map rel_eq_of_bnf pre_bnfs;
   699         val rel_monos = map rel_mono_of_bnf pre_bnfs;
   700         val dtor_coinducts =
   701           [dtor_coinduct, mk_strong_coinduct_thm dtor_coinduct rel_eqs rel_monos mk_vimage2p lthy]
   702       in
   703         map2 (postproc nn oo prove) dtor_coinducts goals
   704       end;
   705 
   706     fun mk_coinduct_concls ms discs ctrs =
   707       let
   708         fun mk_disc_concl disc = [name_of_disc disc];
   709         fun mk_ctr_concl 0 _ = []
   710           | mk_ctr_concl _ ctor = [name_of_ctr ctor];
   711         val disc_concls = map mk_disc_concl (fst (split_last discs)) @ [[]];
   712         val ctr_concls = map2 mk_ctr_concl ms ctrs;
   713       in
   714         flat (map2 append disc_concls ctr_concls)
   715       end;
   716 
   717     val coinduct_cases = quasi_unambiguous_case_names (map (prefix EqN) fp_b_names);
   718     val coinduct_conclss =
   719       map3 (quasi_unambiguous_case_names ooo mk_coinduct_concls) mss discss ctrss;
   720 
   721     fun mk_maybe_not pos = not pos ? HOLogic.mk_not;
   722 
   723     val gcorecs = map (lists_bmoc pgss) corecs;
   724 
   725     val corec_thmss =
   726       let
   727         fun mk_goal c cps gcorec n k ctr m cfs' =
   728           fold_rev (fold_rev Logic.all) ([c] :: pgss)
   729             (Logic.list_implies (seq_conds (HOLogic.mk_Trueprop oo mk_maybe_not) n k cps,
   730                mk_Trueprop_eq (gcorec $ c, Term.list_comb (ctr, take m cfs'))));
   731 
   732         val mk_U = typ_subst_nonatomic (map2 (fn C => fn fpT => (mk_sumT (fpT, C), fpT)) Cs fpTs);
   733 
   734         fun tack (c, u) f =
   735           let val x' = Free (x, mk_sumT (fastype_of u, fastype_of c)) in
   736             Term.lambda x' (mk_case_sum (Term.lambda u u, Term.lambda c (f $ c)) $ x')
   737           end;
   738 
   739         fun build_corec cqg =
   740           let val T = fastype_of cqg in
   741             if exists_subtype_in Cs T then
   742               let val U = mk_U T in
   743                 build_map lthy (indexify fst (map2 (curry mk_sumT) fpTs Cs) (fn kk => fn _ =>
   744                   tack (nth cs kk, nth us kk) (nth gcorecs kk))) (T, U) $ cqg
   745               end
   746             else
   747               cqg
   748           end;
   749 
   750         val cqgsss' = map (map (map build_corec)) cqgsss;
   751         val goalss = map8 (map4 oooo mk_goal) cs cpss gcorecs ns kss ctrss mss cqgsss';
   752 
   753         val tacss =
   754           map4 (map ooo mk_corec_tac corec_defs nesting_map_idents)
   755             ctor_dtor_corec_thms pre_map_defs abs_inverses ctr_defss;
   756 
   757         fun prove goal tac =
   758           Goal.prove_sorry lthy [] [] goal (tac o #context)
   759           |> Thm.close_derivation;
   760       in
   761         map2 (map2 prove) goalss tacss
   762         |> map (map (unfold_thms lthy @{thms case_sum_if}))
   763       end;
   764 
   765     val disc_corec_iff_thmss =
   766       let
   767         fun mk_goal c cps gcorec n k disc =
   768           mk_Trueprop_eq (disc $ (gcorec $ c),
   769             if n = 1 then @{const True}
   770             else Library.foldr1 HOLogic.mk_conj (seq_conds mk_maybe_not n k cps));
   771 
   772         val goalss = map6 (map2 oooo mk_goal) cs cpss gcorecs ns kss discss;
   773 
   774         fun mk_case_split' cp = Drule.instantiate' [] [SOME (certify lthy cp)] @{thm case_split};
   775 
   776         val case_splitss' = map (map mk_case_split') cpss;
   777 
   778         val tacss = map3 (map oo mk_disc_corec_iff_tac) case_splitss' corec_thmss disc_thmsss;
   779 
   780         fun prove goal tac =
   781           Goal.prove_sorry lthy [] [] goal (tac o #context)
   782           |> singleton export_args
   783           |> singleton (Proof_Context.export names_lthy lthy)
   784           |> Thm.close_derivation;
   785 
   786         fun proves [_] [_] = []
   787           | proves goals tacs = map2 prove goals tacs;
   788       in
   789         map2 proves goalss tacss
   790       end;
   791 
   792     fun mk_disc_corec_thms corecs discIs = map (op RS) (corecs ~~ discIs);
   793 
   794     val disc_corec_thmss = map2 mk_disc_corec_thms corec_thmss discIss;
   795 
   796     fun mk_sel_corec_thm corec_thm sel sel_thm =
   797       let
   798         val (domT, ranT) = dest_funT (fastype_of sel);
   799         val arg_cong' =
   800           Drule.instantiate' (map (SOME o certifyT lthy) [domT, ranT])
   801             [NONE, NONE, SOME (certify lthy sel)] arg_cong
   802           |> Thm.varifyT_global;
   803         val sel_thm' = sel_thm RSN (2, trans);
   804       in
   805         corec_thm RS arg_cong' RS sel_thm'
   806       end;
   807 
   808     fun mk_sel_corec_thms corec_thmss =
   809       map3 (map3 (map2 o mk_sel_corec_thm)) corec_thmss selsss sel_thmsss;
   810 
   811     val sel_corec_thmsss = mk_sel_corec_thms corec_thmss;
   812 
   813     val coinduct_consumes_attr = Attrib.internal (K (Rule_Cases.consumes nn));
   814     val coinduct_case_names_attr = Attrib.internal (K (Rule_Cases.case_names coinduct_cases));
   815     val coinduct_case_concl_attrs =
   816       map2 (fn casex => fn concls =>
   817           Attrib.internal (K (Rule_Cases.case_conclusion (casex, concls))))
   818         coinduct_cases coinduct_conclss;
   819     val coinduct_case_attrs =
   820       coinduct_consumes_attr :: coinduct_case_names_attr :: coinduct_case_concl_attrs;
   821   in
   822     ((coinduct_thms_pairs, coinduct_case_attrs),
   823      (corec_thmss, code_nitpicksimp_attrs),
   824      (disc_corec_thmss, []),
   825      (disc_corec_iff_thmss, simp_attrs),
   826      (sel_corec_thmsss, simp_attrs))
   827   end;
   828 
   829 fun define_co_datatypes prepare_constraint prepare_typ prepare_term fp construct_fp
   830     (wrap_opts as (no_discs_sels, _), specs) no_defs_lthy0 =
   831   let
   832     (* TODO: sanity checks on arguments *)
   833 
   834     val _ = if fp = Greatest_FP andalso no_discs_sels then
   835         error "Cannot define codatatypes without discriminators and selectors"
   836       else
   837         ();
   838 
   839     val nn = length specs;
   840     val fp_bs = map type_binding_of_spec specs;
   841     val fp_b_names = map Binding.name_of fp_bs;
   842     val fp_common_name = mk_common_name fp_b_names;
   843     val map_bs = map map_binding_of_spec specs;
   844     val rel_bs = map rel_binding_of_spec specs;
   845 
   846     fun prepare_type_arg (_, (ty, c)) =
   847       let val TFree (s, _) = prepare_typ no_defs_lthy0 ty in
   848         TFree (s, prepare_constraint no_defs_lthy0 c)
   849       end;
   850 
   851     val Ass0 = map (map prepare_type_arg o type_args_named_constrained_of_spec) specs;
   852     val unsorted_Ass0 = map (map (resort_tfree @{sort type})) Ass0;
   853     val unsorted_As = Library.foldr1 (merge_type_args fp) unsorted_Ass0;
   854     val num_As = length unsorted_As;
   855 
   856     val set_boss = map (map fst o type_args_named_constrained_of_spec) specs;
   857     val set_bss = map (map (the_default Binding.empty)) set_boss;
   858 
   859     val (((Bs0, Cs), Xs), no_defs_lthy) =
   860       no_defs_lthy0
   861       |> fold (Variable.declare_typ o resort_tfree dummyS) unsorted_As
   862       |> mk_TFrees num_As
   863       ||>> mk_TFrees nn
   864       ||>> variant_tfrees fp_b_names;
   865 
   866     fun add_fake_type spec =
   867       Typedecl.basic_typedecl (type_binding_of_spec spec, num_As, mixfix_of_spec spec);
   868 
   869     val (fake_T_names, fake_lthy) = fold_map add_fake_type specs no_defs_lthy0;
   870 
   871     val qsoty = quote o Syntax.string_of_typ fake_lthy;
   872 
   873     val _ = (case Library.duplicates (op =) unsorted_As of [] => ()
   874       | A :: _ => error ("Duplicate type parameter " ^ qsoty A ^ " in " ^ co_prefix fp ^
   875           "datatype specification"));
   876 
   877     val bad_args =
   878       map (Logic.type_map (singleton (Variable.polymorphic no_defs_lthy0))) unsorted_As
   879       |> filter_out Term.is_TVar;
   880     val _ = null bad_args orelse
   881       error ("Locally fixed type argument " ^ qsoty (hd bad_args) ^ " in " ^ co_prefix fp ^
   882         "datatype specification");
   883 
   884     val mixfixes = map mixfix_of_spec specs;
   885 
   886     val _ = (case Library.duplicates Binding.eq_name fp_bs of [] => ()
   887       | b :: _ => error ("Duplicate type name declaration " ^ quote (Binding.name_of b)));
   888 
   889     val mx_ctr_specss = map mixfixed_ctr_specs_of_spec specs;
   890     val ctr_specss = map (map fst) mx_ctr_specss;
   891     val ctr_mixfixess = map (map snd) mx_ctr_specss;
   892 
   893     val disc_bindingss = map (map disc_of_ctr_spec) ctr_specss;
   894     val ctr_bindingss =
   895       map2 (fn fp_b_name => map (Binding.qualify false fp_b_name o ctr_of_ctr_spec)) fp_b_names
   896         ctr_specss;
   897     val ctr_argsss = map (map args_of_ctr_spec) ctr_specss;
   898 
   899     val sel_bindingsss = map (map (map fst)) ctr_argsss;
   900     val fake_ctr_Tsss0 = map (map (map (prepare_typ fake_lthy o snd))) ctr_argsss;
   901     val raw_sel_defaultsss = map (map sel_defaults_of_ctr_spec) ctr_specss;
   902 
   903     val (As :: _) :: fake_ctr_Tsss =
   904       burrow (burrow (Syntax.check_typs fake_lthy)) (Ass0 :: fake_ctr_Tsss0);
   905     val As' = map dest_TFree As;
   906 
   907     val rhs_As' = fold (fold (fold Term.add_tfreesT)) fake_ctr_Tsss [];
   908     val _ = (case subtract (op =) As' rhs_As' of [] => ()
   909       | extras => error ("Extra type variables on right-hand side: " ^
   910           commas (map (qsoty o TFree) extras)));
   911 
   912     val fake_Ts = map (fn s => Type (s, As)) fake_T_names;
   913 
   914     fun eq_fpT_check (T as Type (s, Ts)) (T' as Type (s', Ts')) =
   915         s = s' andalso (Ts = Ts' orelse
   916           error ("Wrong type arguments in " ^ co_prefix fp ^ "recursive type " ^ qsoty T ^
   917             " (expected " ^ qsoty T' ^ ")"))
   918       | eq_fpT_check _ _ = false;
   919 
   920     fun freeze_fp (T as Type (s, Ts)) =
   921         (case find_index (eq_fpT_check T) fake_Ts of
   922           ~1 => Type (s, map freeze_fp Ts)
   923         | kk => nth Xs kk)
   924       | freeze_fp T = T;
   925 
   926     val unfreeze_fp = Term.typ_subst_atomic (Xs ~~ fake_Ts);
   927 
   928     val ctrXs_Tsss = map (map (map freeze_fp)) fake_ctr_Tsss;
   929     val ctrXs_repTs = map mk_sumprodT_balanced ctrXs_Tsss;
   930 
   931     val fp_eqs =
   932       map dest_TFree Xs ~~ map (Term.typ_subst_atomic (As ~~ unsorted_As)) ctrXs_repTs;
   933 
   934     val rhsXs_As' = fold (fold (fold Term.add_tfreesT)) ctrXs_Tsss [];
   935     val _ = (case subtract (op =) rhsXs_As' As' of [] => ()
   936       | extras => List.app (fn extra => warning ("Unused type variable on right-hand side of " ^
   937           co_prefix fp ^ "datatype definition: " ^ qsoty (TFree extra))) extras);
   938 
   939     val killed_As =
   940       map_filter (fn (A, set_bos) => if exists is_none set_bos then SOME A else NONE)
   941         (unsorted_As ~~ transpose set_boss);
   942 
   943     val ((pre_bnfs, absT_infos), (fp_res as {bnfs = fp_bnfs as any_fp_bnf :: _, ctors = ctors0,
   944              dtors = dtors0, xtor_co_recs = xtor_co_recs0, xtor_co_induct, dtor_ctors,
   945              ctor_dtors, ctor_injects, dtor_injects, xtor_map_thms, xtor_set_thmss, xtor_rel_thms,
   946              xtor_co_rec_thms, ...},
   947            lthy)) =
   948       fp_bnf (construct_fp mixfixes map_bs rel_bs set_bss) fp_bs (map dest_TFree unsorted_As)
   949         (map dest_TFree killed_As) fp_eqs no_defs_lthy0
   950       handle BAD_DEAD (X, X_backdrop) =>
   951         (case X_backdrop of
   952           Type (bad_tc, _) =>
   953           let
   954             val fake_T = qsoty (unfreeze_fp X);
   955             val fake_T_backdrop = qsoty (unfreeze_fp X_backdrop);
   956             fun register_hint () =
   957               "\nUse the " ^ quote (fst (fst @{command_spec "bnf"})) ^ " command to register " ^
   958               quote bad_tc ^ " as a bounded natural functor to allow nested (co)recursion through \
   959               \it";
   960           in
   961             if is_some (bnf_of no_defs_lthy bad_tc) orelse
   962                is_some (fp_sugar_of no_defs_lthy bad_tc) then
   963               error ("Inadmissible " ^ co_prefix fp ^ "recursive occurrence of type " ^ fake_T ^
   964                 " in type expression " ^ fake_T_backdrop)
   965             else if is_some (Datatype_Data.get_info (Proof_Context.theory_of no_defs_lthy)
   966                 bad_tc) then
   967               error ("Unsupported " ^ co_prefix fp ^ "recursive occurrence of type " ^ fake_T ^
   968                 " via the old-style datatype " ^ quote bad_tc ^ " in type expression " ^
   969                 fake_T_backdrop ^ register_hint ())
   970             else
   971               error ("Unsupported " ^ co_prefix fp ^ "recursive occurrence of type " ^ fake_T ^
   972                 " via type constructor " ^ quote bad_tc ^ " in type expression " ^ fake_T_backdrop ^
   973                 register_hint ())
   974           end);
   975 
   976     val abss = map #abs absT_infos;
   977     val reps = map #rep absT_infos;
   978     val absTs = map #absT absT_infos;
   979     val repTs = map #repT absT_infos;
   980     val abs_injects = map #abs_inject absT_infos;
   981     val abs_inverses = map #abs_inverse absT_infos;
   982     val type_definitions = map #type_definition absT_infos;
   983 
   984     val time = time lthy;
   985     val timer = time (Timer.startRealTimer ());
   986 
   987     val nesting_bnfs = nesty_bnfs lthy ctrXs_Tsss As;
   988     val nested_bnfs = nesty_bnfs lthy ctrXs_Tsss Xs;
   989 
   990     val pre_map_defs = map map_def_of_bnf pre_bnfs;
   991     val pre_set_defss = map set_defs_of_bnf pre_bnfs;
   992     val pre_rel_defs = map rel_def_of_bnf pre_bnfs;
   993     val nesting_set_maps = maps set_map_of_bnf nesting_bnfs;
   994     val nested_set_maps = maps set_map_of_bnf nested_bnfs;
   995 
   996     val live = live_of_bnf any_fp_bnf;
   997     val _ =
   998       if live = 0 andalso exists (not o Binding.is_empty) (map_bs @ rel_bs) then
   999         warning "Map function and relator names ignored"
  1000       else
  1001         ();
  1002 
  1003     val Bs =
  1004       map3 (fn alive => fn A as TFree (_, S) => fn B => if alive then resort_tfree S B else A)
  1005         (liveness_of_fp_bnf num_As any_fp_bnf) As Bs0;
  1006 
  1007     val B_ify = Term.typ_subst_atomic (As ~~ Bs);
  1008 
  1009     val ctors = map (mk_ctor As) ctors0;
  1010     val dtors = map (mk_dtor As) dtors0;
  1011 
  1012     val fpTs = map (domain_type o fastype_of) dtors;
  1013     val fpBTs = map B_ify fpTs;
  1014 
  1015     fun massage_simple_notes base =
  1016       filter_out (null o #2)
  1017       #> map (fn (thmN, thms, attrs) =>
  1018         ((Binding.qualify true base (Binding.name thmN), attrs), [(thms, [])]));
  1019 
  1020     val massage_multi_notes =
  1021       maps (fn (thmN, thmss, attrs) =>
  1022         map3 (fn fp_b_name => fn Type (T_name, _) => fn thms =>
  1023             ((Binding.qualify true fp_b_name (Binding.name thmN), attrs T_name), [(thms, [])]))
  1024           fp_b_names fpTs thmss)
  1025       #> filter_out (null o fst o hd o snd);
  1026 
  1027     val ctr_Tsss = map (map (map (Term.typ_subst_atomic (Xs ~~ fpTs)))) ctrXs_Tsss;
  1028     val ns = map length ctr_Tsss;
  1029     val kss = map (fn n => 1 upto n) ns;
  1030     val mss = map (map length) ctr_Tsss;
  1031 
  1032     val ((xtor_co_recs, recs_args_types, corecs_args_types), lthy') =
  1033       mk_co_recs_prelims fp ctr_Tsss fpTs Cs absTs repTs ns mss xtor_co_recs0 lthy;
  1034 
  1035     fun define_ctrs_dtrs_for_type (((((((((((((((((((((((((((fp_bnf, fp_b), fpT), ctor), dtor),
  1036               xtor_co_rec), ctor_dtor), dtor_ctor), ctor_inject), pre_map_def), pre_set_defs),
  1037             pre_rel_def), fp_map_thm), fp_set_thms), fp_rel_thm), n), ks), ms), abs),
  1038           abs_inject), abs_inverse), type_definition), ctr_bindings), ctr_mixfixes), ctr_Tss),
  1039         disc_bindings), sel_bindingss), raw_sel_defaultss) no_defs_lthy =
  1040       let
  1041         val fp_b_name = Binding.name_of fp_b;
  1042 
  1043         val ctr_absT = domain_type (fastype_of ctor);
  1044 
  1045         val ((((w, xss), yss), u'), names_lthy) =
  1046           no_defs_lthy
  1047           |> yield_singleton (mk_Frees "w") ctr_absT
  1048           ||>> mk_Freess "x" ctr_Tss
  1049           ||>> mk_Freess "y" (map (map B_ify) ctr_Tss)
  1050           ||>> yield_singleton Variable.variant_fixes fp_b_name;
  1051 
  1052         val u = Free (u', fpT);
  1053 
  1054         val ctr_rhss =
  1055           map2 (fn k => fn xs => fold_rev Term.lambda xs (ctor $ mk_absumprod ctr_absT abs n k xs))
  1056             ks xss;
  1057 
  1058         val maybe_conceal_def_binding = Thm.def_binding
  1059           #> Config.get no_defs_lthy bnf_note_all = false ? Binding.conceal;
  1060 
  1061         val ((raw_ctrs, raw_ctr_defs), (lthy', lthy)) = no_defs_lthy
  1062           |> apfst split_list o fold_map3 (fn b => fn mx => fn rhs =>
  1063               Local_Theory.define ((b, mx), ((maybe_conceal_def_binding b, []), rhs)) #>> apsnd snd)
  1064             ctr_bindings ctr_mixfixes ctr_rhss
  1065           ||> `Local_Theory.restore;
  1066 
  1067         val phi = Proof_Context.export_morphism lthy lthy';
  1068 
  1069         val ctr_defs = map (Morphism.thm phi) raw_ctr_defs;
  1070         val ctr_defs' =
  1071           map2 (fn m => fn def => mk_unabs_def m (def RS meta_eq_to_obj_eq)) ms ctr_defs;
  1072 
  1073         val ctrs0 = map (Morphism.term phi) raw_ctrs;
  1074         val ctrs = map (mk_ctr As) ctrs0;
  1075 
  1076         fun wrap_ctrs lthy =
  1077           let
  1078             fun exhaust_tac {context = ctxt, prems = _} =
  1079               let
  1080                 val ctor_iff_dtor_thm =
  1081                   let
  1082                     val goal =
  1083                       fold_rev Logic.all [w, u]
  1084                         (mk_Trueprop_eq (HOLogic.mk_eq (u, ctor $ w), HOLogic.mk_eq (dtor $ u, w)));
  1085                   in
  1086                     Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
  1087                       mk_ctor_iff_dtor_tac ctxt (map (SOME o certifyT lthy) [ctr_absT, fpT])
  1088                         (certify lthy ctor) (certify lthy dtor) ctor_dtor dtor_ctor)
  1089                     |> Morphism.thm phi
  1090                     |> Thm.close_derivation
  1091                   end;
  1092 
  1093                 val sumEN_thm' =
  1094                   unfold_thms lthy @{thms unit_all_eq1} (mk_absumprodE type_definition ms)
  1095                   |> Morphism.thm phi;
  1096               in
  1097                 mk_exhaust_tac ctxt n ctr_defs ctor_iff_dtor_thm sumEN_thm'
  1098               end;
  1099 
  1100             val inject_tacss =
  1101               map2 (fn ctr_def => fn 0 => [] | _ => [fn {context = ctxt, ...} =>
  1102                 mk_inject_tac ctxt ctr_def ctor_inject abs_inject]) ctr_defs ms;
  1103 
  1104             val half_distinct_tacss =
  1105               map (map (fn (def, def') => fn {context = ctxt, ...} =>
  1106                   mk_half_distinct_tac ctxt ctor_inject abs_inject [def, def']))
  1107                 (mk_half_pairss (`I ctr_defs));
  1108 
  1109             val tacss = [exhaust_tac] :: inject_tacss @ half_distinct_tacss;
  1110 
  1111             val sel_defaultss = map (map (apsnd (prepare_term lthy))) raw_sel_defaultss
  1112 
  1113             fun ctr_spec_of disc_b ctr0 sel_bs sel_defs = (((disc_b, ctr0), sel_bs), sel_defs);
  1114             val ctr_specs = map4 ctr_spec_of disc_bindings ctrs0 sel_bindingss sel_defaultss;
  1115           in
  1116             free_constructors tacss ((wrap_opts, standard_binding), ctr_specs) lthy
  1117           end;
  1118 
  1119         fun derive_maps_sets_rels (ctr_sugar as {case_cong, ...} : ctr_sugar, lthy) =
  1120           if live = 0 then
  1121             ((([], [], [], []), ctr_sugar), lthy)
  1122           else
  1123             let
  1124               val rel_flip = rel_flip_of_bnf fp_bnf;
  1125               val nones = replicate live NONE;
  1126 
  1127               val ctor_cong =
  1128                 if fp = Least_FP then
  1129                   Drule.dummy_thm
  1130                 else
  1131                   let val ctor' = mk_ctor Bs ctor in
  1132                     cterm_instantiate_pos [NONE, NONE, SOME (certify lthy ctor')] arg_cong
  1133                   end;
  1134 
  1135               fun mk_cIn ctor k xs =
  1136                 let val absT = domain_type (fastype_of ctor) in
  1137                   mk_absumprod absT abs n k xs
  1138                   |> fp = Greatest_FP ? curry (op $) ctor
  1139                   |> certify lthy
  1140                 end;
  1141 
  1142               val cxIns = map2 (mk_cIn ctor) ks xss;
  1143               val cyIns = map2 (mk_cIn (Term.map_types B_ify ctor)) ks yss;
  1144 
  1145               fun mk_map_thm ctr_def' cxIn =
  1146                 fold_thms lthy [ctr_def']
  1147                   (unfold_thms lthy (o_apply :: pre_map_def ::
  1148                        (if fp = Least_FP then [] else [ctor_dtor, dtor_ctor]) @ sumprod_thms_map @
  1149                        abs_inverses)
  1150                      (cterm_instantiate_pos (nones @ [SOME cxIn])
  1151                         (if fp = Least_FP then fp_map_thm else fp_map_thm RS ctor_cong)))
  1152                 |> singleton (Proof_Context.export names_lthy no_defs_lthy);
  1153 
  1154               fun mk_set_thm fp_set_thm ctr_def' cxIn =
  1155                 fold_thms lthy [ctr_def']
  1156                   (unfold_thms lthy (pre_set_defs @ nested_set_maps @ nesting_set_maps @
  1157                        (if fp = Least_FP then [] else [dtor_ctor]) @ sumprod_thms_set @
  1158                        abs_inverses)
  1159                      (cterm_instantiate_pos [SOME cxIn] fp_set_thm))
  1160                 |> singleton (Proof_Context.export names_lthy no_defs_lthy);
  1161 
  1162               fun mk_set_thms fp_set_thm = map2 (mk_set_thm fp_set_thm) ctr_defs' cxIns;
  1163 
  1164               val map_thms = map2 mk_map_thm ctr_defs' cxIns;
  1165               val set_thmss = map mk_set_thms fp_set_thms;
  1166               val set_thms = flat set_thmss;
  1167 
  1168               val rel_infos = (ctr_defs' ~~ cxIns, ctr_defs' ~~ cyIns);
  1169 
  1170               fun mk_rel_thm postproc ctr_defs' cxIn cyIn =
  1171                 fold_thms lthy ctr_defs'
  1172                   (unfold_thms lthy (pre_rel_def :: abs_inverse ::
  1173                        (if fp = Least_FP then [] else [dtor_ctor]) @ sumprod_thms_rel @
  1174                        @{thms vimage2p_def sum.inject Inl_Inr_False})
  1175                      (cterm_instantiate_pos (nones @ [SOME cxIn, SOME cyIn]) fp_rel_thm))
  1176                 |> postproc
  1177                 |> singleton (Proof_Context.export names_lthy no_defs_lthy);
  1178 
  1179               fun mk_rel_inject_thm ((ctr_def', cxIn), (_, cyIn)) =
  1180                 mk_rel_thm (unfold_thms lthy @{thms eq_sym_Unity_conv}) [ctr_def'] cxIn cyIn;
  1181 
  1182               val rel_inject_thms = map mk_rel_inject_thm (op ~~ rel_infos);
  1183 
  1184               fun mk_half_rel_distinct_thm ((xctr_def', cxIn), (yctr_def', cyIn)) =
  1185                 mk_rel_thm (fn thm => thm RS @{thm eq_False[THEN iffD1]}) [xctr_def', yctr_def']
  1186                   cxIn cyIn;
  1187 
  1188               fun mk_other_half_rel_distinct_thm thm =
  1189                 flip_rels lthy live thm
  1190                 RS (rel_flip RS sym RS @{thm arg_cong[of _ _ Not]} RS iffD2);
  1191 
  1192               val half_rel_distinct_thmss =
  1193                 map (map mk_half_rel_distinct_thm) (mk_half_pairss rel_infos);
  1194               val other_half_rel_distinct_thmss =
  1195                 map (map mk_other_half_rel_distinct_thm) half_rel_distinct_thmss;
  1196               val (rel_distinct_thms, _) =
  1197                 join_halves n half_rel_distinct_thmss other_half_rel_distinct_thmss;
  1198 
  1199               val rel_eq_thms =
  1200                 map (fn th => th RS @{thm eq_False[THEN iffD2]}) rel_distinct_thms @
  1201                 map2 (fn th => fn 0 => th RS @{thm eq_True[THEN iffD2]} | _ => th)
  1202                   rel_inject_thms ms;
  1203 
  1204               val anonymous_notes =
  1205                 [([case_cong], fundefcong_attrs),
  1206                  (rel_eq_thms, code_nitpicksimp_attrs)]
  1207                 |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])]));
  1208 
  1209               val notes =
  1210                 [(mapN, map_thms, code_nitpicksimp_attrs @ simp_attrs),
  1211                  (rel_distinctN, rel_distinct_thms, simp_attrs),
  1212                  (rel_injectN, rel_inject_thms, simp_attrs),
  1213                  (setN, set_thms, code_nitpicksimp_attrs @ simp_attrs)]
  1214                 |> massage_simple_notes fp_b_name;
  1215             in
  1216               (((map_thms, rel_inject_thms, rel_distinct_thms, set_thmss), ctr_sugar),
  1217                lthy
  1218                |> Spec_Rules.add Spec_Rules.Equational (`(single o lhs_head_of o hd) map_thms)
  1219                |> fp = Least_FP
  1220                  ? Spec_Rules.add Spec_Rules.Equational (`(single o lhs_head_of o hd) rel_eq_thms)
  1221                |> Spec_Rules.add Spec_Rules.Equational (`(single o lhs_head_of o hd) set_thms)
  1222                |> Local_Theory.notes (anonymous_notes @ notes)
  1223                |> snd)
  1224             end;
  1225 
  1226         fun mk_binding pre = Binding.qualify false fp_b_name (Binding.prefix_name (pre ^ "_") fp_b);
  1227 
  1228         fun massage_res (((maps_sets_rels, ctr_sugar), co_rec_res), lthy) =
  1229           (((maps_sets_rels, (ctrs, xss, ctr_defs, ctr_sugar)), co_rec_res), lthy);
  1230       in
  1231         (wrap_ctrs
  1232          #> derive_maps_sets_rels
  1233          ##>>
  1234            (if fp = Least_FP then define_rec (the recs_args_types) mk_binding fpTs Cs reps
  1235            else define_corec (the corecs_args_types) mk_binding fpTs Cs abss) xtor_co_rec
  1236          #> massage_res, lthy')
  1237       end;
  1238 
  1239     fun wrap_types_etc (wrap_types_etcs, lthy) =
  1240       fold_map I wrap_types_etcs lthy
  1241       |>> apsnd split_list o apfst (apsnd split_list4 o apfst split_list4 o split_list)
  1242         o split_list;
  1243 
  1244     fun mk_simp_thms ({injects, distincts, case_thms, ...} : ctr_sugar) co_recs mapsx rel_injects
  1245         rel_distincts setss =
  1246       injects @ distincts @ case_thms @ co_recs @ mapsx @ rel_injects @ rel_distincts @ flat setss;
  1247 
  1248     fun derive_note_induct_recs_thms_for_types
  1249         ((((mapss, rel_injectss, rel_distinctss, setss), (ctrss, _, ctr_defss, ctr_sugars)),
  1250           (recs, rec_defs)), lthy) =
  1251       let
  1252         val ((induct_thms, induct_thm, induct_attrs), (rec_thmss, rec_attrs)) =
  1253           derive_induct_recs_thms_for_types pre_bnfs recs_args_types xtor_co_induct xtor_co_rec_thms
  1254             nesting_bnfs nested_bnfs fpTs Cs Xs ctrXs_Tsss abs_inverses type_definitions
  1255             abs_inverses ctrss ctr_defss recs rec_defs lthy;
  1256 
  1257         val induct_type_attr = Attrib.internal o K o Induct.induct_type;
  1258 
  1259         val simp_thmss =
  1260           map6 mk_simp_thms ctr_sugars rec_thmss mapss rel_injectss rel_distinctss setss;
  1261 
  1262         val common_notes =
  1263           (if nn > 1 then [(inductN, [induct_thm], induct_attrs)] else [])
  1264           |> massage_simple_notes fp_common_name;
  1265 
  1266         val notes =
  1267           [(inductN, map single induct_thms, fn T_name => induct_attrs @ [induct_type_attr T_name]),
  1268            (recN, rec_thmss, K rec_attrs),
  1269            (simpsN, simp_thmss, K [])]
  1270           |> massage_multi_notes;
  1271       in
  1272         lthy
  1273         |> Spec_Rules.add Spec_Rules.Equational (recs, flat rec_thmss)
  1274         |> Local_Theory.notes (common_notes @ notes) |> snd
  1275         |> register_as_fp_sugars fpTs fpBTs Xs Least_FP pre_bnfs absT_infos nested_bnfs nesting_bnfs
  1276           fp_res ctrXs_Tsss ctr_defss ctr_sugars recs rec_defs mapss [induct_thm]
  1277           (map single induct_thms) rec_thmss (replicate nn []) (replicate nn []) rel_injectss
  1278           rel_distinctss
  1279       end;
  1280 
  1281     fun derive_note_coinduct_corecs_thms_for_types
  1282         ((((mapss, rel_injectss, rel_distinctss, setss), (_, _, ctr_defss, ctr_sugars)),
  1283           (corecs, corec_defs)), lthy) =
  1284       let
  1285         val (([(coinduct_thms, coinduct_thm), (strong_coinduct_thms, strong_coinduct_thm)],
  1286               coinduct_attrs),
  1287              (corec_thmss, corec_attrs), (disc_corec_thmss, disc_corec_attrs),
  1288              (disc_corec_iff_thmss, disc_corec_iff_attrs), (sel_corec_thmsss, sel_corec_attrs)) =
  1289           derive_coinduct_corecs_thms_for_types pre_bnfs (the corecs_args_types) xtor_co_induct
  1290             dtor_injects dtor_ctors xtor_co_rec_thms nesting_bnfs fpTs Cs Xs ctrXs_Tsss kss mss ns
  1291             abs_inverses abs_inverses I ctr_defss ctr_sugars corecs corec_defs
  1292             (Proof_Context.export lthy' no_defs_lthy) lthy;
  1293 
  1294         val sel_corec_thmss = map flat sel_corec_thmsss;
  1295 
  1296         val coinduct_type_attr = Attrib.internal o K o Induct.coinduct_type;
  1297 
  1298         val flat_corec_thms = append oo append;
  1299 
  1300         val simp_thmss =
  1301           map6 mk_simp_thms ctr_sugars
  1302             (map3 flat_corec_thms disc_corec_thmss disc_corec_iff_thmss sel_corec_thmss)
  1303             mapss rel_injectss rel_distinctss setss;
  1304 
  1305         val common_notes =
  1306           (if nn > 1 then
  1307              [(coinductN, [coinduct_thm], coinduct_attrs),
  1308               (strong_coinductN, [strong_coinduct_thm], coinduct_attrs)]
  1309            else
  1310              [])
  1311           |> massage_simple_notes fp_common_name;
  1312 
  1313         val notes =
  1314           [(coinductN, map single coinduct_thms,
  1315             fn T_name => coinduct_attrs @ [coinduct_type_attr T_name]),
  1316            (corecN, corec_thmss, K corec_attrs),
  1317            (disc_corecN, disc_corec_thmss, K disc_corec_attrs),
  1318            (disc_corec_iffN, disc_corec_iff_thmss, K disc_corec_iff_attrs),
  1319            (sel_corecN, sel_corec_thmss, K sel_corec_attrs),
  1320            (simpsN, simp_thmss, K []),
  1321            (strong_coinductN, map single strong_coinduct_thms, K coinduct_attrs)]
  1322           |> massage_multi_notes;
  1323       in
  1324         lthy
  1325         (* TODO: code theorems *)
  1326         |> fold (curry (Spec_Rules.add Spec_Rules.Equational) corecs)
  1327           [flat sel_corec_thmss, flat corec_thmss]
  1328         |> Local_Theory.notes (common_notes @ notes) |> snd
  1329         |> register_as_fp_sugars fpTs fpBTs Xs Greatest_FP pre_bnfs absT_infos nested_bnfs
  1330           nesting_bnfs fp_res ctrXs_Tsss ctr_defss ctr_sugars corecs corec_defs mapss
  1331           [coinduct_thm, strong_coinduct_thm] (transpose [coinduct_thms, strong_coinduct_thms])
  1332           corec_thmss disc_corec_thmss sel_corec_thmsss rel_injectss rel_distinctss
  1333       end;
  1334 
  1335     val lthy'' = lthy'
  1336       |> fold_map define_ctrs_dtrs_for_type (fp_bnfs ~~ fp_bs ~~ fpTs ~~ ctors ~~ dtors ~~
  1337         xtor_co_recs ~~ ctor_dtors ~~ dtor_ctors ~~ ctor_injects ~~ pre_map_defs ~~ pre_set_defss ~~
  1338         pre_rel_defs ~~ xtor_map_thms ~~ xtor_set_thmss ~~ xtor_rel_thms ~~ ns ~~ kss ~~ mss ~~
  1339         abss ~~ abs_injects ~~ abs_inverses ~~ type_definitions ~~ ctr_bindingss ~~ ctr_mixfixess ~~
  1340         ctr_Tsss ~~ disc_bindingss ~~ sel_bindingsss ~~ raw_sel_defaultsss)
  1341       |> wrap_types_etc
  1342       |> case_fp fp derive_note_induct_recs_thms_for_types
  1343            derive_note_coinduct_corecs_thms_for_types;
  1344 
  1345     val timer = time (timer ("Constructors, discriminators, selectors, etc., for the new " ^
  1346       co_prefix fp ^ "datatype"));
  1347   in
  1348     timer; lthy''
  1349   end;
  1350 
  1351 fun co_datatypes x = define_co_datatypes (K I) (K I) (K I) x;
  1352 
  1353 fun co_datatype_cmd x =
  1354   define_co_datatypes Typedecl.read_constraint Syntax.parse_typ Syntax.parse_term x;
  1355 
  1356 val parse_ctr_arg =
  1357   @{keyword "("} |-- parse_binding_colon -- Parse.typ --| @{keyword ")"} ||
  1358   (Parse.typ >> pair Binding.empty);
  1359 
  1360 val parse_ctr_specs =
  1361   Parse.enum1 "|" (parse_ctr_spec parse_binding parse_ctr_arg -- Parse.opt_mixfix);
  1362 
  1363 val parse_spec =
  1364   parse_type_args_named_constrained -- parse_binding -- parse_map_rel_bindings --
  1365   Parse.opt_mixfix -- (@{keyword "="} |-- parse_ctr_specs);
  1366 
  1367 val parse_co_datatype = parse_ctr_options -- Parse.and_list1 parse_spec;
  1368 
  1369 fun parse_co_datatype_cmd fp construct_fp = parse_co_datatype >> co_datatype_cmd fp construct_fp;
  1370 
  1371 val _ = Context.>> (Context.map_theory FP_Sugar_Interpretation.init);
  1372 
  1373 end;