src/HOL/Fun.thy
author haftmann
Tue, 19 May 2009 13:57:31 +0200
changeset 31202 52d332f8f909
parent 31080 21ffc770ebc0
child 31424 a1c4c1500abe
permissions -rw-r--r--
pretty printing of functional combinators for evaluation code
     1 (*  Title:      HOL/Fun.thy
     2     Author:     Tobias Nipkow, Cambridge University Computer Laboratory
     3     Copyright   1994  University of Cambridge
     4 *)
     5 
     6 header {* Notions about functions *}
     7 
     8 theory Fun
     9 imports Set
    10 begin
    11 
    12 text{*As a simplification rule, it replaces all function equalities by
    13   first-order equalities.*}
    14 lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
    15 apply (rule iffI)
    16 apply (simp (no_asm_simp))
    17 apply (rule ext)
    18 apply (simp (no_asm_simp))
    19 done
    20 
    21 lemma apply_inverse:
    22   "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
    23   by auto
    24 
    25 
    26 subsection {* The Identity Function @{text id} *}
    27 
    28 definition
    29   id :: "'a \<Rightarrow> 'a"
    30 where
    31   "id = (\<lambda>x. x)"
    32 
    33 lemma id_apply [simp]: "id x = x"
    34   by (simp add: id_def)
    35 
    36 lemma image_ident [simp]: "(%x. x) ` Y = Y"
    37 by blast
    38 
    39 lemma image_id [simp]: "id ` Y = Y"
    40 by (simp add: id_def)
    41 
    42 lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
    43 by blast
    44 
    45 lemma vimage_id [simp]: "id -` A = A"
    46 by (simp add: id_def)
    47 
    48 
    49 subsection {* The Composition Operator @{text "f \<circ> g"} *}
    50 
    51 definition
    52   comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
    53 where
    54   "f o g = (\<lambda>x. f (g x))"
    55 
    56 notation (xsymbols)
    57   comp  (infixl "\<circ>" 55)
    58 
    59 notation (HTML output)
    60   comp  (infixl "\<circ>" 55)
    61 
    62 text{*compatibility*}
    63 lemmas o_def = comp_def
    64 
    65 lemma o_apply [simp]: "(f o g) x = f (g x)"
    66 by (simp add: comp_def)
    67 
    68 lemma o_assoc: "f o (g o h) = f o g o h"
    69 by (simp add: comp_def)
    70 
    71 lemma id_o [simp]: "id o g = g"
    72 by (simp add: comp_def)
    73 
    74 lemma o_id [simp]: "f o id = f"
    75 by (simp add: comp_def)
    76 
    77 lemma image_compose: "(f o g) ` r = f`(g`r)"
    78 by (simp add: comp_def, blast)
    79 
    80 lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
    81 by (unfold comp_def, blast)
    82 
    83 
    84 subsection {* The Forward Composition Operator @{text fcomp} *}
    85 
    86 definition
    87   fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
    88 where
    89   "f o> g = (\<lambda>x. g (f x))"
    90 
    91 lemma fcomp_apply:  "(f o> g) x = g (f x)"
    92   by (simp add: fcomp_def)
    93 
    94 lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)"
    95   by (simp add: fcomp_def)
    96 
    97 lemma id_fcomp [simp]: "id o> g = g"
    98   by (simp add: fcomp_def)
    99 
   100 lemma fcomp_id [simp]: "f o> id = f"
   101   by (simp add: fcomp_def)
   102 
   103 code_const fcomp
   104   (Eval infixl 1 "#>")
   105 
   106 no_notation fcomp (infixl "o>" 60)
   107 
   108 
   109 subsection {* Injectivity and Surjectivity *}
   110 
   111 constdefs
   112   inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
   113   "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
   114 
   115 text{*A common special case: functions injective over the entire domain type.*}
   116 
   117 abbreviation
   118   "inj f == inj_on f UNIV"
   119 
   120 definition
   121   bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
   122   [code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
   123 
   124 constdefs
   125   surj :: "('a => 'b) => bool"                   (*surjective*)
   126   "surj f == ! y. ? x. y=f(x)"
   127 
   128   bij :: "('a => 'b) => bool"                    (*bijective*)
   129   "bij f == inj f & surj f"
   130 
   131 lemma injI:
   132   assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
   133   shows "inj f"
   134   using assms unfolding inj_on_def by auto
   135 
   136 text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
   137 lemma datatype_injI:
   138     "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
   139 by (simp add: inj_on_def)
   140 
   141 theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
   142   by (unfold inj_on_def, blast)
   143 
   144 lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
   145 by (simp add: inj_on_def)
   146 
   147 (*Useful with the simplifier*)
   148 lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
   149 by (force simp add: inj_on_def)
   150 
   151 lemma inj_on_id[simp]: "inj_on id A"
   152   by (simp add: inj_on_def) 
   153 
   154 lemma inj_on_id2[simp]: "inj_on (%x. x) A"
   155 by (simp add: inj_on_def) 
   156 
   157 lemma surj_id[simp]: "surj id"
   158 by (simp add: surj_def) 
   159 
   160 lemma bij_id[simp]: "bij id"
   161 by (simp add: bij_def inj_on_id surj_id) 
   162 
   163 lemma inj_onI:
   164     "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
   165 by (simp add: inj_on_def)
   166 
   167 lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
   168 by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
   169 
   170 lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
   171 by (unfold inj_on_def, blast)
   172 
   173 lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
   174 by (blast dest!: inj_onD)
   175 
   176 lemma comp_inj_on:
   177      "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
   178 by (simp add: comp_def inj_on_def)
   179 
   180 lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
   181 apply(simp add:inj_on_def image_def)
   182 apply blast
   183 done
   184 
   185 lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
   186   inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
   187 apply(unfold inj_on_def)
   188 apply blast
   189 done
   190 
   191 lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
   192 by (unfold inj_on_def, blast)
   193 
   194 lemma inj_singleton: "inj (%s. {s})"
   195 by (simp add: inj_on_def)
   196 
   197 lemma inj_on_empty[iff]: "inj_on f {}"
   198 by(simp add: inj_on_def)
   199 
   200 lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
   201 by (unfold inj_on_def, blast)
   202 
   203 lemma inj_on_Un:
   204  "inj_on f (A Un B) =
   205   (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
   206 apply(unfold inj_on_def)
   207 apply (blast intro:sym)
   208 done
   209 
   210 lemma inj_on_insert[iff]:
   211   "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
   212 apply(unfold inj_on_def)
   213 apply (blast intro:sym)
   214 done
   215 
   216 lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
   217 apply(unfold inj_on_def)
   218 apply (blast)
   219 done
   220 
   221 lemma surjI: "(!! x. g(f x) = x) ==> surj g"
   222 apply (simp add: surj_def)
   223 apply (blast intro: sym)
   224 done
   225 
   226 lemma surj_range: "surj f ==> range f = UNIV"
   227 by (auto simp add: surj_def)
   228 
   229 lemma surjD: "surj f ==> EX x. y = f x"
   230 by (simp add: surj_def)
   231 
   232 lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
   233 by (simp add: surj_def, blast)
   234 
   235 lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
   236 apply (simp add: comp_def surj_def, clarify)
   237 apply (drule_tac x = y in spec, clarify)
   238 apply (drule_tac x = x in spec, blast)
   239 done
   240 
   241 lemma bijI: "[| inj f; surj f |] ==> bij f"
   242 by (simp add: bij_def)
   243 
   244 lemma bij_is_inj: "bij f ==> inj f"
   245 by (simp add: bij_def)
   246 
   247 lemma bij_is_surj: "bij f ==> surj f"
   248 by (simp add: bij_def)
   249 
   250 lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
   251 by (simp add: bij_betw_def)
   252 
   253 lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
   254 proof -
   255   have i: "inj_on f A" and s: "f ` A = B"
   256     using assms by(auto simp:bij_betw_def)
   257   let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
   258   { fix a b assume P: "?P b a"
   259     hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
   260     hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
   261     hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
   262   } note g = this
   263   have "inj_on ?g B"
   264   proof(rule inj_onI)
   265     fix x y assume "x:B" "y:B" "?g x = ?g y"
   266     from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
   267     from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
   268     from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
   269   qed
   270   moreover have "?g ` B = A"
   271   proof(auto simp:image_def)
   272     fix b assume "b:B"
   273     with s obtain a where P: "?P b a" unfolding image_def by blast
   274     thus "?g b \<in> A" using g[OF P] by auto
   275   next
   276     fix a assume "a:A"
   277     then obtain b where P: "?P b a" using s unfolding image_def by blast
   278     then have "b:B" using s unfolding image_def by blast
   279     with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
   280   qed
   281   ultimately show ?thesis by(auto simp:bij_betw_def)
   282 qed
   283 
   284 lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
   285 by (simp add: surj_range)
   286 
   287 lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
   288 by (simp add: inj_on_def, blast)
   289 
   290 lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
   291 apply (unfold surj_def)
   292 apply (blast intro: sym)
   293 done
   294 
   295 lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
   296 by (unfold inj_on_def, blast)
   297 
   298 lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
   299 apply (unfold bij_def)
   300 apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
   301 done
   302 
   303 lemma inj_on_image_Int:
   304    "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
   305 apply (simp add: inj_on_def, blast)
   306 done
   307 
   308 lemma inj_on_image_set_diff:
   309    "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
   310 apply (simp add: inj_on_def, blast)
   311 done
   312 
   313 lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
   314 by (simp add: inj_on_def, blast)
   315 
   316 lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
   317 by (simp add: inj_on_def, blast)
   318 
   319 lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
   320 by (blast dest: injD)
   321 
   322 lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
   323 by (simp add: inj_on_def, blast)
   324 
   325 lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
   326 by (blast dest: injD)
   327 
   328 (*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
   329 lemma image_INT:
   330    "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
   331     ==> f ` (INTER A B) = (INT x:A. f ` B x)"
   332 apply (simp add: inj_on_def, blast)
   333 done
   334 
   335 (*Compare with image_INT: no use of inj_on, and if f is surjective then
   336   it doesn't matter whether A is empty*)
   337 lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
   338 apply (simp add: bij_def)
   339 apply (simp add: inj_on_def surj_def, blast)
   340 done
   341 
   342 lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
   343 by (auto simp add: surj_def)
   344 
   345 lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
   346 by (auto simp add: inj_on_def)
   347 
   348 lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
   349 apply (simp add: bij_def)
   350 apply (rule equalityI)
   351 apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
   352 done
   353 
   354 
   355 subsection{*Function Updating*}
   356 
   357 constdefs
   358   fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
   359   "fun_upd f a b == % x. if x=a then b else f x"
   360 
   361 nonterminals
   362   updbinds updbind
   363 syntax
   364   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
   365   ""         :: "updbind => updbinds"             ("_")
   366   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
   367   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
   368 
   369 translations
   370   "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
   371   "f(x:=y)"                     == "fun_upd f x y"
   372 
   373 (* Hint: to define the sum of two functions (or maps), use sum_case.
   374          A nice infix syntax could be defined (in Datatype.thy or below) by
   375 consts
   376   fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
   377 translations
   378  "fun_sum" == sum_case
   379 *)
   380 
   381 lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
   382 apply (simp add: fun_upd_def, safe)
   383 apply (erule subst)
   384 apply (rule_tac [2] ext, auto)
   385 done
   386 
   387 (* f x = y ==> f(x:=y) = f *)
   388 lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
   389 
   390 (* f(x := f x) = f *)
   391 lemmas fun_upd_triv = refl [THEN fun_upd_idem]
   392 declare fun_upd_triv [iff]
   393 
   394 lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
   395 by (simp add: fun_upd_def)
   396 
   397 (* fun_upd_apply supersedes these two,   but they are useful
   398    if fun_upd_apply is intentionally removed from the simpset *)
   399 lemma fun_upd_same: "(f(x:=y)) x = y"
   400 by simp
   401 
   402 lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
   403 by simp
   404 
   405 lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
   406 by (simp add: expand_fun_eq)
   407 
   408 lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
   409 by (rule ext, auto)
   410 
   411 lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
   412 by(fastsimp simp:inj_on_def image_def)
   413 
   414 lemma fun_upd_image:
   415      "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
   416 by auto
   417 
   418 lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
   419 by(auto intro: ext)
   420 
   421 
   422 subsection {* @{text override_on} *}
   423 
   424 definition
   425   override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
   426 where
   427   "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
   428 
   429 lemma override_on_emptyset[simp]: "override_on f g {} = f"
   430 by(simp add:override_on_def)
   431 
   432 lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
   433 by(simp add:override_on_def)
   434 
   435 lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
   436 by(simp add:override_on_def)
   437 
   438 
   439 subsection {* @{text swap} *}
   440 
   441 definition
   442   swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
   443 where
   444   "swap a b f = f (a := f b, b:= f a)"
   445 
   446 lemma swap_self: "swap a a f = f"
   447 by (simp add: swap_def)
   448 
   449 lemma swap_commute: "swap a b f = swap b a f"
   450 by (rule ext, simp add: fun_upd_def swap_def)
   451 
   452 lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
   453 by (rule ext, simp add: fun_upd_def swap_def)
   454 
   455 lemma inj_on_imp_inj_on_swap:
   456   "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"
   457 by (simp add: inj_on_def swap_def, blast)
   458 
   459 lemma inj_on_swap_iff [simp]:
   460   assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"
   461 proof 
   462   assume "inj_on (swap a b f) A"
   463   with A have "inj_on (swap a b (swap a b f)) A" 
   464     by (iprover intro: inj_on_imp_inj_on_swap) 
   465   thus "inj_on f A" by simp 
   466 next
   467   assume "inj_on f A"
   468   with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap)
   469 qed
   470 
   471 lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"
   472 apply (simp add: surj_def swap_def, clarify)
   473 apply (case_tac "y = f b", blast)
   474 apply (case_tac "y = f a", auto)
   475 done
   476 
   477 lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"
   478 proof 
   479   assume "surj (swap a b f)"
   480   hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) 
   481   thus "surj f" by simp 
   482 next
   483   assume "surj f"
   484   thus "surj (swap a b f)" by (rule surj_imp_surj_swap) 
   485 qed
   486 
   487 lemma bij_swap_iff: "bij (swap a b f) = bij f"
   488 by (simp add: bij_def)
   489 
   490 hide (open) const swap
   491 
   492 subsection {* Proof tool setup *} 
   493 
   494 text {* simplifies terms of the form
   495   f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
   496 
   497 simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
   498 let
   499   fun gen_fun_upd NONE T _ _ = NONE
   500     | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
   501   fun dest_fun_T1 (Type (_, T :: Ts)) = T
   502   fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
   503     let
   504       fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
   505             if v aconv x then SOME g else gen_fun_upd (find g) T v w
   506         | find t = NONE
   507     in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
   508 
   509   fun proc ss ct =
   510     let
   511       val ctxt = Simplifier.the_context ss
   512       val t = Thm.term_of ct
   513     in
   514       case find_double t of
   515         (T, NONE) => NONE
   516       | (T, SOME rhs) =>
   517           SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
   518             (fn _ =>
   519               rtac eq_reflection 1 THEN
   520               rtac ext 1 THEN
   521               simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
   522     end
   523 in proc end
   524 *}
   525 
   526 
   527 subsection {* Code generator setup *}
   528 
   529 types_code
   530   "fun"  ("(_ ->/ _)")
   531 attach (term_of) {*
   532 fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
   533 *}
   534 attach (test) {*
   535 fun gen_fun_type aF aT bG bT i =
   536   let
   537     val tab = ref [];
   538     fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
   539       (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
   540   in
   541     (fn x =>
   542        case AList.lookup op = (!tab) x of
   543          NONE =>
   544            let val p as (y, _) = bG i
   545            in (tab := (x, p) :: !tab; y) end
   546        | SOME (y, _) => y,
   547      fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
   548   end;
   549 *}
   550 
   551 code_const "op \<circ>"
   552   (SML infixl 5 "o")
   553   (Haskell infixr 9 ".")
   554 
   555 code_const "id"
   556   (Haskell "id")
   557 
   558 end