src/Pure/Isar/code.ML
author haftmann
Mon, 22 Feb 2010 11:10:20 +0100
changeset 35299 4f4d5bf4ea08
parent 35226 b987b803616d
child 35304 57b6cc52c14c
permissions -rw-r--r--
proper distinction of code datatypes and abstypes
     1 (*  Title:      Pure/Isar/code.ML
     2     Author:     Florian Haftmann, TU Muenchen
     3 
     4 Abstract executable ingredients of theory.  Management of data
     5 dependent on executable ingredients as synchronized cache; purged
     6 on any change of underlying executable ingredients.
     7 *)
     8 
     9 signature CODE =
    10 sig
    11   (*constants*)
    12   val check_const: theory -> term -> string
    13   val read_bare_const: theory -> string -> string * typ
    14   val read_const: theory -> string -> string
    15   val string_of_const: theory -> string -> string
    16   val cert_signature: theory -> typ -> typ
    17   val read_signature: theory -> string -> typ
    18   val const_typ: theory -> string -> typ
    19   val subst_signatures: theory -> term -> term
    20   val args_number: theory -> string -> int
    21 
    22   (*constructor sets*)
    23   val constrset_of_consts: theory -> (string * typ) list
    24     -> string * ((string * sort) list * (string * typ list) list)
    25   val abstype_cert: theory -> string * typ -> string
    26     -> string * ((string * sort) list * ((string * typ) * (string * term)))
    27 
    28   (*code equations and certificates*)
    29   val mk_eqn: theory -> thm * bool -> thm * bool
    30   val mk_eqn_warning: theory -> thm -> (thm * bool) option
    31   val mk_eqn_liberal: theory -> thm -> (thm * bool) option
    32   val assert_eqn: theory -> thm * bool -> thm * bool
    33   val const_typ_eqn: theory -> thm -> string * typ
    34   val expand_eta: theory -> int -> thm -> thm
    35   type cert
    36   val empty_cert: theory -> string -> cert
    37   val cert_of_eqns: theory -> string -> (thm * bool) list -> cert
    38   val constrain_cert: theory -> sort list -> cert -> cert
    39   val typargs_deps_of_cert: theory -> cert -> (string * sort) list * (string * typ list) list
    40   val equations_of_cert: theory -> cert ->
    41     ((string * sort) list * typ) * ((string option * (term list * term)) * (thm option * bool)) list
    42   val bare_thms_of_cert: theory -> cert -> thm list
    43   val pretty_cert: theory -> cert -> Pretty.T list
    44 
    45   (*executable code*)
    46   val add_type: string -> theory -> theory
    47   val add_type_cmd: string -> theory -> theory
    48   val add_signature: string * typ -> theory -> theory
    49   val add_signature_cmd: string * string -> theory -> theory
    50   val add_datatype: (string * typ) list -> theory -> theory
    51   val add_datatype_cmd: string list -> theory -> theory
    52   val datatype_interpretation:
    53     (string * ((string * sort) list * (string * typ list) list)
    54       -> theory -> theory) -> theory -> theory
    55   val add_abstype: string * typ -> string * typ -> theory -> Proof.state
    56   val add_abstype_cmd: string -> string -> theory -> Proof.state
    57   val abstype_interpretation:
    58     (string * ((string * sort) list * ((string * typ) * (string * thm)))
    59       -> theory -> theory) -> theory -> theory
    60   val add_eqn: thm -> theory -> theory
    61   val add_nbe_eqn: thm -> theory -> theory
    62   val add_default_eqn: thm -> theory -> theory
    63   val add_default_eqn_attribute: attribute
    64   val add_default_eqn_attrib: Attrib.src
    65   val del_eqn: thm -> theory -> theory
    66   val del_eqns: string -> theory -> theory
    67   val add_case: thm -> theory -> theory
    68   val add_undefined: string -> theory -> theory
    69   val get_type: theory -> string -> ((string * sort) list * (string * typ list) list)
    70   val get_type_of_constr_or_abstr: theory -> string -> (string * bool) option
    71   val is_constr: theory -> string -> bool
    72   val is_abstr: theory -> string -> bool
    73   val get_cert: theory -> ((thm * bool) list -> (thm * bool) list) -> string -> cert
    74   val get_case_scheme: theory -> string -> (int * (int * string list)) option
    75   val undefineds: theory -> string list
    76   val print_codesetup: theory -> unit
    77 
    78   (*infrastructure*)
    79   val set_code_target_attr: (string -> thm -> theory -> theory) -> theory -> theory
    80   val purge_data: theory -> theory
    81 end;
    82 
    83 signature CODE_DATA_ARGS =
    84 sig
    85   type T
    86   val empty: T
    87 end;
    88 
    89 signature CODE_DATA =
    90 sig
    91   type T
    92   val change: theory -> (T -> T) -> T
    93   val change_yield: theory -> (T -> 'a * T) -> 'a * T
    94 end;
    95 
    96 signature PRIVATE_CODE =
    97 sig
    98   include CODE
    99   val declare_data: Object.T -> serial
   100   val change_data: serial * ('a -> Object.T) * (Object.T -> 'a)
   101     -> theory -> ('a -> 'a) -> 'a
   102   val change_yield_data: serial * ('a -> Object.T) * (Object.T -> 'a)
   103     -> theory -> ('a -> 'b * 'a) -> 'b * 'a
   104 end;
   105 
   106 structure Code : PRIVATE_CODE =
   107 struct
   108 
   109 (** auxiliary **)
   110 
   111 (* printing *)
   112 
   113 fun string_of_typ thy = setmp_CRITICAL show_sorts true (Syntax.string_of_typ_global thy);
   114 
   115 fun string_of_const thy c = case AxClass.inst_of_param thy c
   116  of SOME (c, tyco) => Sign.extern_const thy c ^ " " ^ enclose "[" "]" (Sign.extern_type thy tyco)
   117   | NONE => Sign.extern_const thy c;
   118 
   119 
   120 (* constants *)
   121 
   122 fun typ_equiv tys = Type.raw_instance tys andalso Type.raw_instance (swap tys);
   123 
   124 fun check_bare_const thy t = case try dest_Const t
   125  of SOME c_ty => c_ty
   126   | NONE => error ("Not a constant: " ^ Syntax.string_of_term_global thy t);
   127 
   128 fun check_const thy = AxClass.unoverload_const thy o check_bare_const thy;
   129 
   130 fun read_bare_const thy = check_bare_const thy o Syntax.read_term_global thy;
   131 
   132 fun read_const thy = AxClass.unoverload_const thy o read_bare_const thy;
   133 
   134 
   135 (** data store **)
   136 
   137 (* datatypes *)
   138 
   139 datatype typ_spec = Constructors of (string * typ list) list
   140   | Abstractor of (string * typ) * (string * thm);
   141 
   142 fun constructors_of (Constructors cos) = (cos, false)
   143   | constructors_of (Abstractor ((co, ty), _)) = ([(co, [ty])], true);
   144 
   145 
   146 (* functions *)
   147 
   148 datatype fun_spec = Default of (thm * bool) list
   149   | Eqns of (thm * bool) list
   150   | Proj of term * string
   151   | Abstr of thm * string;
   152 
   153 val empty_fun_spec = Default [];
   154 
   155 fun is_default (Default _) = true
   156   | is_default _ = false;
   157 
   158 fun associated_abstype (Abstr (_, tyco)) = SOME tyco
   159   | associated_abstype _ = NONE;
   160 
   161 
   162 (* executable code data *)
   163 
   164 datatype spec = Spec of {
   165   history_concluded: bool,
   166   signatures: int Symtab.table * typ Symtab.table,
   167   functions: ((bool * fun_spec) * (serial * fun_spec) list) Symtab.table
   168     (*with explicit history*),
   169   types: ((serial * ((string * sort) list * typ_spec)) list) Symtab.table
   170     (*with explicit history*),
   171   cases: (int * (int * string list)) Symtab.table * unit Symtab.table
   172 };
   173 
   174 fun make_spec (history_concluded, ((signatures, functions), (types, cases))) =
   175   Spec { history_concluded = history_concluded,
   176     signatures = signatures, functions = functions, types = types, cases = cases };
   177 fun map_spec f (Spec { history_concluded = history_concluded, signatures = signatures,
   178   functions = functions, types = types, cases = cases }) =
   179   make_spec (f (history_concluded, ((signatures, functions), (types, cases))));
   180 fun merge_spec (Spec { history_concluded = _, signatures = (tycos1, sigs1), functions = functions1,
   181     types = types1, cases = (cases1, undefs1) },
   182   Spec { history_concluded = _, signatures = (tycos2, sigs2), functions = functions2,
   183     types = types2, cases = (cases2, undefs2) }) =
   184   let
   185     val signatures = (Symtab.merge (op =) (tycos1, tycos2),
   186       Symtab.merge typ_equiv (sigs1, sigs2));
   187     fun merge_functions ((_, history1), (_, history2)) =
   188       let
   189         val raw_history = AList.merge (op = : serial * serial -> bool)
   190           (K true) (history1, history2);
   191         val filtered_history = filter_out (is_default o snd) raw_history;
   192         val history = if null filtered_history
   193           then raw_history else filtered_history;
   194       in ((false, (snd o hd) history), history) end;
   195     val functions = Symtab.join (K merge_functions) (functions1, functions2);
   196     val types = Symtab.join (K (AList.merge (op =) (K true))) (types1, types2);
   197     val cases = (Symtab.merge (K true) (cases1, cases2),
   198       Symtab.merge (K true) (undefs1, undefs2));
   199   in make_spec (false, ((signatures, functions), (types, cases))) end;
   200 
   201 fun history_concluded (Spec { history_concluded, ... }) = history_concluded;
   202 fun the_signatures (Spec { signatures, ... }) = signatures;
   203 fun the_functions (Spec { functions, ... }) = functions;
   204 fun the_types (Spec { types, ... }) = types;
   205 fun the_cases (Spec { cases, ... }) = cases;
   206 val map_history_concluded = map_spec o apfst;
   207 val map_signatures = map_spec o apsnd o apfst o apfst;
   208 val map_functions = map_spec o apsnd o apfst o apsnd;
   209 val map_typs = map_spec o apsnd o apsnd o apfst;
   210 val map_cases = map_spec o apsnd o apsnd o apsnd;
   211 
   212 
   213 (* data slots dependent on executable code *)
   214 
   215 (*private copy avoids potential conflict of table exceptions*)
   216 structure Datatab = Table(type key = int val ord = int_ord);
   217 
   218 local
   219 
   220 type kind = { empty: Object.T };
   221 
   222 val kinds = Unsynchronized.ref (Datatab.empty: kind Datatab.table);
   223 
   224 fun invoke f k = case Datatab.lookup (! kinds) k
   225  of SOME kind => f kind
   226   | NONE => sys_error "Invalid code data identifier";
   227 
   228 in
   229 
   230 fun declare_data empty =
   231   let
   232     val k = serial ();
   233     val kind = { empty = empty };
   234     val _ = CRITICAL (fn () => Unsynchronized.change kinds (Datatab.update (k, kind)));
   235   in k end;
   236 
   237 fun invoke_init k = invoke (fn kind => #empty kind) k;
   238 
   239 end; (*local*)
   240 
   241 
   242 (* theory store *)
   243 
   244 local
   245 
   246 type data = Object.T Datatab.table;
   247 fun empty_dataref () = Synchronized.var "code data" (NONE : (data * theory_ref) option);
   248 
   249 structure Code_Data = Theory_Data
   250 (
   251   type T = spec * (data * theory_ref) option Synchronized.var;
   252   val empty = (make_spec (false, (((Symtab.empty, Symtab.empty), Symtab.empty),
   253     (Symtab.empty, (Symtab.empty, Symtab.empty)))), empty_dataref ());
   254   val extend = I
   255   fun merge ((spec1, _), (spec2, _)) =
   256     (merge_spec (spec1, spec2), empty_dataref ());
   257 );
   258 
   259 in
   260 
   261 
   262 (* access to executable code *)
   263 
   264 val the_exec = fst o Code_Data.get;
   265 
   266 fun map_exec_purge f = Code_Data.map (fn (exec, _) => (f exec, empty_dataref ()));
   267 
   268 val purge_data = (Code_Data.map o apsnd) (fn _ => empty_dataref ());
   269 
   270 fun change_fun_spec delete c f = (map_exec_purge o map_functions
   271   o (if delete then Symtab.map_entry c else Symtab.map_default (c, ((false, empty_fun_spec), [])))
   272     o apfst) (fn (_, spec) => (true, f spec));
   273 
   274 
   275 (* tackling equation history *)
   276 
   277 fun continue_history thy = if (history_concluded o the_exec) thy
   278   then thy
   279     |> (Code_Data.map o apfst o map_history_concluded) (K false)
   280     |> SOME
   281   else NONE;
   282 
   283 fun conclude_history thy = if (history_concluded o the_exec) thy
   284   then NONE
   285   else thy
   286     |> (Code_Data.map o apfst)
   287         ((map_functions o Symtab.map) (fn ((changed, current), history) =>
   288           ((false, current),
   289             if changed then (serial (), current) :: history else history))
   290         #> map_history_concluded (K true))
   291     |> SOME;
   292 
   293 val _ = Context.>> (Context.map_theory (Theory.at_begin continue_history #> Theory.at_end conclude_history));
   294 
   295 
   296 (* access to data dependent on abstract executable code *)
   297 
   298 fun change_yield_data (kind, mk, dest) theory f =
   299   let
   300     val dataref = (snd o Code_Data.get) theory;
   301     val (datatab, thy_ref) = case Synchronized.value dataref
   302      of SOME (datatab, thy_ref) => if Theory.eq_thy (theory, Theory.deref thy_ref)
   303           then (datatab, thy_ref)
   304           else (Datatab.empty, Theory.check_thy theory)
   305       | NONE => (Datatab.empty, Theory.check_thy theory)
   306     val data = case Datatab.lookup datatab kind
   307      of SOME data => data
   308       | NONE => invoke_init kind;
   309     val result as (x, data') = f (dest data);
   310     val _ = Synchronized.change dataref
   311       ((K o SOME) (Datatab.update (kind, mk data') datatab, thy_ref));
   312   in result end;
   313 
   314 fun change_data ops theory f = change_yield_data ops theory (f #> pair ()) |> snd;
   315 
   316 end; (*local*)
   317 
   318 
   319 (** foundation **)
   320 
   321 (* constants *)
   322 
   323 fun arity_number thy tyco = case Symtab.lookup ((fst o the_signatures o the_exec) thy) tyco
   324  of SOME n => n
   325   | NONE => Sign.arity_number thy tyco;
   326 
   327 fun build_tsig thy =
   328   let
   329     val (tycos, _) = (the_signatures o the_exec) thy;
   330     val decls = (#types o Type.rep_tsig o Sign.tsig_of) thy
   331       |> snd 
   332       |> Symtab.fold (fn (tyco, n) =>
   333           Symtab.update (tyco, Type.LogicalType n)) tycos;
   334   in
   335     Type.empty_tsig
   336     |> Symtab.fold (fn (tyco, Type.LogicalType n) => Type.add_type Name_Space.default_naming
   337         (Binding.qualified_name tyco, n) | _ => I) decls
   338   end;
   339 
   340 fun cert_signature thy = Logic.varifyT o Type.cert_typ (build_tsig thy) o Type.no_tvars;
   341 
   342 fun read_signature thy = cert_signature thy o Type.strip_sorts
   343   o Syntax.parse_typ (ProofContext.init thy);
   344 
   345 fun expand_signature thy = Type.cert_typ_mode Type.mode_syntax (Sign.tsig_of thy);
   346 
   347 fun lookup_typ thy = Symtab.lookup ((snd o the_signatures o the_exec) thy);
   348 
   349 fun const_typ thy c = case lookup_typ thy c
   350  of SOME ty => ty
   351   | NONE => (Type.strip_sorts o Sign.the_const_type thy) c;
   352 
   353 fun subst_signature thy c ty =
   354   let
   355     fun mk_subst (Type (tyco, tys1)) (ty2 as Type (tyco2, tys2)) =
   356           fold2 mk_subst tys1 tys2
   357       | mk_subst ty (TVar (v, sort)) = Vartab.update (v, ([], ty))
   358   in case lookup_typ thy c
   359    of SOME ty' => Envir.subst_type (mk_subst ty (expand_signature thy ty') Vartab.empty) ty'
   360     | NONE => ty
   361   end;
   362 
   363 fun subst_signatures thy = map_aterms (fn Const (c, ty) => Const (c, subst_signature thy c ty) | t => t);
   364 
   365 fun args_number thy = length o fst o strip_type o const_typ thy;
   366 
   367 
   368 (* datatypes *)
   369 
   370 fun no_constr thy s (c, ty) = error ("Not a datatype constructor:\n" ^ string_of_const thy c
   371   ^ " :: " ^ string_of_typ thy ty ^ "\n" ^ enclose "(" ")" s);
   372 
   373 fun ty_sorts thy (c, raw_ty) =
   374   let
   375     val _ = Thm.cterm_of thy (Const (c, raw_ty));
   376     val ty = subst_signature thy c raw_ty;
   377     val ty_decl = (Logic.unvarifyT o const_typ thy) c;
   378     fun last_typ c_ty ty =
   379       let
   380         val tfrees = Term.add_tfreesT ty [];
   381         val (tyco, vs) = ((apsnd o map) (dest_TFree) o dest_Type o snd o strip_type) ty
   382           handle TYPE _ => no_constr thy "bad type" c_ty
   383         val _ = if has_duplicates (eq_fst (op =)) vs
   384           then no_constr thy "duplicate type variables in datatype" c_ty else ();
   385         val _ = if length tfrees <> length vs
   386           then no_constr thy "type variables missing in datatype" c_ty else ();
   387       in (tyco, vs) end;
   388     val (tyco, _) = last_typ (c, ty) ty_decl;
   389     val (_, vs) = last_typ (c, ty) ty;
   390   in ((tyco, map snd vs), (c, (map fst vs, ty))) end;
   391 
   392 fun constrset_of_consts thy cs =
   393   let
   394     val _ = map (fn (c, _) => if (is_some o AxClass.class_of_param thy) c
   395       then error ("Is a class parameter: " ^ string_of_const thy c) else ()) cs;
   396     fun add ((tyco', sorts'), c) ((tyco, sorts), cs) =
   397       let
   398         val _ = if (tyco' : string) <> tyco
   399           then error "Different type constructors in constructor set"
   400           else ();
   401         val sorts'' = map2 (curry (Sorts.inter_sort (Sign.classes_of thy))) sorts' sorts
   402       in ((tyco, sorts), c :: cs) end;
   403     fun inst vs' (c, (vs, ty)) =
   404       let
   405         val the_v = the o AList.lookup (op =) (vs ~~ vs');
   406         val ty' = map_atyps (fn TFree (v, _) => TFree (the_v v)) ty;
   407       in (c, (fst o strip_type) ty') end;
   408     val c' :: cs' = map (ty_sorts thy) cs;
   409     val ((tyco, sorts), cs'') = fold add cs' (apsnd single c');
   410     val vs = Name.names Name.context Name.aT sorts;
   411     val cs''' = map (inst vs) cs'';
   412   in (tyco, (vs, rev cs''')) end;
   413 
   414 fun abstype_cert thy abs_ty rep =
   415   let
   416     val _ = pairself (fn c => if (is_some o AxClass.class_of_param thy) c
   417       then error ("Is a class parameter: " ^ string_of_const thy c) else ()) (fst abs_ty, rep);
   418     val ((tyco, sorts), (abs, (vs, ty'))) = ty_sorts thy abs_ty;
   419     val (ty, ty_abs) = case ty'
   420      of Type ("fun", [ty, ty_abs]) => (ty, ty_abs)
   421       | _ => error ("Not a datatype abstractor:\n" ^ string_of_const thy abs
   422           ^ " :: " ^ string_of_typ thy ty');
   423     val _ = Thm.cterm_of thy (Const (rep, ty_abs --> ty)) handle CTERM _ =>
   424       error ("Not a projection:\n" ^ string_of_const thy rep);
   425     val cert = Logic.mk_equals (Const (abs, ty --> ty_abs) $ (Const (rep, ty_abs --> ty)
   426       $ Free ("x", ty_abs)), Free ("x", ty_abs));
   427   in (tyco, (vs ~~ sorts, ((fst abs_ty, ty), (rep, cert)))) end;    
   428 
   429 fun get_type_entry thy tyco = case these (Symtab.lookup ((the_types o the_exec) thy) tyco)
   430  of (_, entry) :: _ => SOME entry
   431   | _ => NONE;
   432 
   433 fun get_type_spec thy tyco = case get_type_entry thy tyco
   434  of SOME (vs, spec) => apfst (pair vs) (constructors_of spec)
   435   | NONE => arity_number thy tyco
   436       |> Name.invents Name.context Name.aT
   437       |> map (rpair [])
   438       |> rpair []
   439       |> rpair false;
   440 
   441 fun get_abstype_spec thy tyco = case get_type_entry thy tyco
   442  of SOME (vs, Abstractor spec) => (vs, spec)
   443   | NONE => error ("Not an abstract type: " ^ tyco);
   444  
   445 fun get_type thy = fst o get_type_spec thy;
   446 
   447 fun get_type_of_constr_or_abstr thy c =
   448   case (snd o strip_type o const_typ thy) c
   449    of Type (tyco, _) => let val ((vs, cos), abstract) = get_type_spec thy tyco
   450         in if member (op =) (map fst cos) c then SOME (tyco, abstract) else NONE end
   451     | _ => NONE;
   452 
   453 fun is_constr thy c = case get_type_of_constr_or_abstr thy c
   454  of SOME (_, false) => true
   455    | _ => false;
   456 
   457 fun is_abstr thy c = case get_type_of_constr_or_abstr thy c
   458  of SOME (_, true) => true
   459    | _ => false;
   460 
   461 
   462 (* bare code equations *)
   463 
   464 (* convention for variables:
   465     ?x ?'a   for free-floating theorems (e.g. in the data store)
   466     ?x  'a   for certificates
   467      x  'a   for final representation of equations
   468 *)
   469 
   470 exception BAD_THM of string;
   471 fun bad_thm msg = raise BAD_THM msg;
   472 fun error_thm f thm = f thm handle BAD_THM msg => error msg;
   473 fun warning_thm f thm = SOME (f thm) handle BAD_THM msg => (warning msg; NONE)
   474 fun try_thm f thm = SOME (f thm) handle BAD_THM _ => NONE;
   475 
   476 fun is_linear thm =
   477   let val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm
   478   in not (has_duplicates (op =) ((fold o fold_aterms)
   479     (fn Var (v, _) => cons v | _ => I) args [])) end;
   480 
   481 fun check_eqn thy { allow_nonlinear, allow_consts, allow_pats } thm (lhs, rhs) =
   482   let
   483     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   484     fun vars_of t = fold_aterms (fn Var (v, _) => insert (op =) v
   485       | Free _ => bad "Illegal free variable in equation"
   486       | _ => I) t [];
   487     fun tvars_of t = fold_term_types (fn _ =>
   488       fold_atyps (fn TVar (v, _) => insert (op =) v
   489         | TFree _ => bad "Illegal free type variable in equation")) t [];
   490     val lhs_vs = vars_of lhs;
   491     val rhs_vs = vars_of rhs;
   492     val lhs_tvs = tvars_of lhs;
   493     val rhs_tvs = tvars_of rhs;
   494     val _ = if null (subtract (op =) lhs_vs rhs_vs)
   495       then ()
   496       else bad "Free variables on right hand side of equation";
   497     val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
   498       then ()
   499       else bad "Free type variables on right hand side of equation";
   500     val (head, args) = strip_comb lhs;
   501     val (c, ty) = case head
   502      of Const (c_ty as (_, ty)) => (AxClass.unoverload_const thy c_ty, ty)
   503       | _ => bad "Equation not headed by constant";
   504     fun check _ (Abs _) = bad "Abstraction on left hand side of equation"
   505       | check 0 (Var _) = ()
   506       | check _ (Var _) = bad "Variable with application on left hand side of equation"
   507       | check n (t1 $ t2) = (check (n+1) t1; check 0 t2)
   508       | check n (Const (c_ty as (c, ty))) =
   509           if allow_pats then let
   510             val c' = AxClass.unoverload_const thy c_ty
   511           in if n = (length o fst o strip_type o subst_signature thy c') ty
   512             then if allow_consts orelse is_constr thy c'
   513               then ()
   514               else bad (quote c ^ " is not a constructor, on left hand side of equation")
   515             else bad ("Partially applied constant " ^ quote c ^ " on left hand side of equation")
   516           end else bad ("Pattern not allowed, but constant " ^ quote c ^ " encountered on left hand side")
   517     val _ = map (check 0) args;
   518     val _ = if allow_nonlinear orelse is_linear thm then ()
   519       else bad "Duplicate variables on left hand side of equation";
   520     val _ = if (is_none o AxClass.class_of_param thy) c then ()
   521       else bad "Overloaded constant as head in equation";
   522     val _ = if not (is_constr thy c) then ()
   523       else bad "Constructor as head in equation";
   524     val _ = if not (is_abstr thy c) then ()
   525       else bad "Abstractor as head in equation";
   526     val ty_decl = Sign.the_const_type thy c;
   527     val _ = if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
   528       then () else bad_thm ("Type\n" ^ string_of_typ thy ty
   529         ^ "\nof equation\n"
   530         ^ Display.string_of_thm_global thy thm
   531         ^ "\nis incompatible with declared function type\n"
   532         ^ string_of_typ thy ty_decl)
   533   in () end;
   534 
   535 fun gen_assert_eqn thy check_patterns (thm, proper) =
   536   let
   537     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   538     val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
   539       handle TERM _ => bad "Not an equation"
   540            | THM _ => bad "Not a proper equation";
   541     val _ = check_eqn thy { allow_nonlinear = not proper,
   542       allow_consts = not (proper andalso check_patterns), allow_pats = true } thm (lhs, rhs);
   543   in (thm, proper) end;
   544 
   545 fun assert_abs_eqn thy some_tyco thm =
   546   let
   547     fun bad s = bad_thm (s ^ ":\n" ^ Display.string_of_thm_global thy thm);
   548     val (full_lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
   549       handle TERM _ => bad "Not an equation"
   550            | THM _ => bad "Not a proper equation";
   551     val (rep, lhs) = dest_comb full_lhs
   552       handle TERM _ => bad "Not an abstract equation";
   553     val tyco = (fst o dest_Type o domain_type o snd o dest_Const) rep
   554       handle TERM _ => bad "Not an abstract equation";
   555     val _ = case some_tyco of SOME tyco' => if tyco = tyco' then ()
   556           else bad ("Abstract type mismatch:" ^ quote tyco ^ " vs. " ^ quote tyco')
   557       | NONE => ();
   558     val (_, (_, (rep', _))) = get_abstype_spec thy tyco;
   559     val rep_const = (fst o dest_Const) rep;
   560     val _ = if rep_const = rep' then ()
   561       else bad ("Projection mismatch: " ^ quote rep_const ^ " vs. " ^ quote rep');
   562     val _ = check_eqn thy { allow_nonlinear = false,
   563       allow_consts = false, allow_pats = false } thm (lhs, rhs);
   564   in (thm, tyco) end;
   565 
   566 fun assert_eqn thy = error_thm (gen_assert_eqn thy true);
   567 
   568 fun meta_rewrite thy = LocalDefs.meta_rewrite_rule (ProofContext.init thy);
   569 
   570 fun mk_eqn thy = error_thm (gen_assert_eqn thy false) o
   571   apfst (meta_rewrite thy);
   572 
   573 fun mk_eqn_warning thy = Option.map (fn (thm, _) => (thm, is_linear thm))
   574   o warning_thm (gen_assert_eqn thy false) o rpair false o meta_rewrite thy;
   575 
   576 fun mk_eqn_liberal thy = Option.map (fn (thm, _) => (thm, is_linear thm))
   577   o try_thm (gen_assert_eqn thy false) o rpair false o meta_rewrite thy;
   578 
   579 fun mk_abs_eqn thy = error_thm (assert_abs_eqn thy NONE) o meta_rewrite thy;
   580 
   581 val head_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
   582 
   583 fun const_typ_eqn thy thm =
   584   let
   585     val (c, ty) = head_eqn thm;
   586     val c' = AxClass.unoverload_const thy (c, ty);
   587       (*permissive wrt. to overloaded constants!*)
   588   in (c', ty) end;
   589 
   590 fun const_eqn thy = fst o const_typ_eqn thy;
   591 
   592 fun const_abs_eqn thy = AxClass.unoverload_const thy o dest_Const o fst o strip_comb o snd
   593   o dest_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
   594 
   595 fun logical_typscheme thy (c, ty) =
   596   (map dest_TFree (Sign.const_typargs thy (c, ty)), Type.strip_sorts ty);
   597 
   598 fun typscheme thy (c, ty) = logical_typscheme thy (c, subst_signature thy c ty);
   599 
   600 fun mk_proj tyco vs ty abs rep =
   601   let
   602     val ty_abs = Type (tyco, map TFree vs);
   603     val xarg = Var (("x", 0), ty);
   604   in Logic.mk_equals (Const (rep, ty_abs --> ty) $ (Const (abs, ty --> ty_abs) $ xarg), xarg) end;
   605 
   606 
   607 (* technical transformations of code equations *)
   608 
   609 fun expand_eta thy k thm =
   610   let
   611     val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm;
   612     val (_, args) = strip_comb lhs;
   613     val l = if k = ~1
   614       then (length o fst o strip_abs) rhs
   615       else Int.max (0, k - length args);
   616     val (raw_vars, _) = Term.strip_abs_eta l rhs;
   617     val vars = burrow_fst (Name.variant_list (map (fst o fst) (Term.add_vars lhs [])))
   618       raw_vars;
   619     fun expand (v, ty) thm = Drule.fun_cong_rule thm
   620       (Thm.cterm_of thy (Var ((v, 0), ty)));
   621   in
   622     thm
   623     |> fold expand vars
   624     |> Conv.fconv_rule Drule.beta_eta_conversion
   625   end;
   626 
   627 fun same_arity thy thms =
   628   let
   629     val num_args_of = length o snd o strip_comb o fst o Logic.dest_equals;
   630     val k = fold (Integer.max o num_args_of o Thm.prop_of) thms 0;
   631   in map (expand_eta thy k) thms end;
   632 
   633 fun mk_desymbolization pre post mk vs =
   634   let
   635     val names = map (pre o fst o fst) vs
   636       |> map (Name.desymbolize false)
   637       |> Name.variant_list []
   638       |> map post;
   639   in map_filter (fn (((v, i), x), v') =>
   640     if v = v' andalso i = 0 then NONE
   641     else SOME (((v, i), x), mk ((v', 0), x))) (vs ~~ names)
   642   end;
   643 
   644 fun desymbolize_tvars thy thms =
   645   let
   646     val tvs = fold (Term.add_tvars o Thm.prop_of) thms [];
   647     val tvar_subst = mk_desymbolization (unprefix "'") (prefix "'") TVar tvs;
   648   in map (Thm.certify_instantiate (tvar_subst, [])) thms end;
   649 
   650 fun desymbolize_vars thy thm =
   651   let
   652     val vs = Term.add_vars (Thm.prop_of thm) [];
   653     val var_subst = mk_desymbolization I I Var vs;
   654   in Thm.certify_instantiate ([], var_subst) thm end;
   655 
   656 fun canonize_thms thy = desymbolize_tvars thy #> same_arity thy #> map (desymbolize_vars thy);
   657 
   658 
   659 (* code equation certificates *)
   660 
   661 fun build_head thy (c, ty) =
   662   Thm.cterm_of thy (Logic.mk_equals (Free ("HEAD", ty), Const (c, ty)));
   663 
   664 fun get_head thy cert_thm =
   665   let
   666     val [head] = (#hyps o Thm.crep_thm) cert_thm;
   667     val (_, Const (c, ty)) = (Logic.dest_equals o Thm.term_of) head;
   668   in (typscheme thy (c, ty), head) end;
   669 
   670 fun typscheme_projection thy =
   671   typscheme thy o dest_Const o fst o dest_comb o fst o Logic.dest_equals;
   672 
   673 fun typscheme_abs thy =
   674   typscheme thy o dest_Const o fst o strip_comb o snd o dest_comb o fst o Logic.dest_equals o Thm.prop_of;
   675 
   676 fun constrain_thm thy vs sorts thm =
   677   let
   678     val mapping = map2 (fn (v, sort) => fn sort' =>
   679       (v, Sorts.inter_sort (Sign.classes_of thy) (sort, sort'))) vs sorts;
   680     val inst = map2 (fn (v, sort) => fn (_, sort') =>
   681       (((v, 0), sort), TFree (v, sort'))) vs mapping;
   682     val subst = (map_types o map_atyps)
   683       (fn TFree (v, _) => TFree (v, the (AList.lookup (op =) mapping v)));
   684   in
   685     thm
   686     |> Thm.varifyT
   687     |> Thm.certify_instantiate (inst, [])
   688     |> pair subst
   689   end;
   690 
   691 fun concretify_abs thy tyco abs_thm =
   692   let
   693     val (vs, ((c, _), (_, cert))) = get_abstype_spec thy tyco;
   694     val lhs = (fst o Logic.dest_equals o Thm.prop_of) abs_thm
   695     val ty = fastype_of lhs;
   696     val ty_abs = (fastype_of o snd o dest_comb) lhs;
   697     val abs = Thm.cterm_of thy (Const (c, ty --> ty_abs));
   698     val raw_concrete_thm = Drule.transitive_thm OF [Thm.symmetric cert, Thm.combination (Thm.reflexive abs) abs_thm];
   699   in (c, (Thm.varifyT o zero_var_indexes) raw_concrete_thm) end;
   700 
   701 fun add_rhss_of_eqn thy t =
   702   let
   703     val (args, rhs) = (apfst (snd o strip_comb) o Logic.dest_equals o subst_signatures thy) t;
   704     fun add_const (Const (c, ty)) = insert (op =) (c, Sign.const_typargs thy (c, ty))
   705       | add_const _ = I
   706   in fold_aterms add_const t end;
   707 
   708 fun dest_eqn thy = apfst (snd o strip_comb) o Logic.dest_equals o subst_signatures thy o Logic.unvarify;
   709 
   710 abstype cert = Equations of thm * bool list
   711   | Projection of term * string
   712   | Abstract of thm * string
   713 with
   714 
   715 fun empty_cert thy c = 
   716   let
   717     val raw_ty = const_typ thy c;
   718     val tvars = Term.add_tvar_namesT raw_ty [];
   719     val tvars' = case AxClass.class_of_param thy c
   720      of SOME class => [TFree (Name.aT, [class])]
   721       | NONE => Name.invent_list [] Name.aT (length tvars)
   722           |> map (fn v => TFree (v, []));
   723     val ty = typ_subst_TVars (tvars ~~ tvars') raw_ty;
   724     val chead = build_head thy (c, ty);
   725   in Equations (Thm.weaken chead Drule.dummy_thm, []) end;
   726 
   727 fun cert_of_eqns thy c [] = empty_cert thy c
   728   | cert_of_eqns thy c raw_eqns = 
   729       let
   730         val eqns = burrow_fst (canonize_thms thy) raw_eqns;
   731         val _ = map (assert_eqn thy) eqns;
   732         val (thms, propers) = split_list eqns;
   733         val _ = map (fn thm => if c = const_eqn thy thm then ()
   734           else error ("Wrong head of code equation,\nexpected constant "
   735             ^ string_of_const thy c ^ "\n" ^ Display.string_of_thm_global thy thm)) thms;
   736         fun tvars_of T = rev (Term.add_tvarsT T []);
   737         val vss = map (tvars_of o snd o head_eqn) thms;
   738         fun inter_sorts vs =
   739           fold (curry (Sorts.inter_sort (Sign.classes_of thy)) o snd) vs [];
   740         val sorts = map_transpose inter_sorts vss;
   741         val vts = Name.names Name.context Name.aT sorts;
   742         val thms as thm :: _ =
   743           map2 (fn vs => Thm.certify_instantiate (vs ~~ map TFree vts, [])) vss thms;
   744         val head_thm = Thm.symmetric (Thm.assume (build_head thy (head_eqn (hd thms))));
   745         fun head_conv ct = if can Thm.dest_comb ct
   746           then Conv.fun_conv head_conv ct
   747           else Conv.rewr_conv head_thm ct;
   748         val rewrite_head = Conv.fconv_rule (Conv.arg1_conv head_conv);
   749         val cert_thm = Conjunction.intr_balanced (map rewrite_head thms);
   750       in Equations (cert_thm, propers) end;
   751 
   752 fun cert_of_proj thy c tyco =
   753   let
   754     val (vs, ((abs, ty), (rep, cert))) = get_abstype_spec thy tyco;
   755     val _ = if c = rep then () else
   756       error ("Wrong head of projection,\nexpected constant " ^ string_of_const thy rep);
   757   in Projection (mk_proj tyco vs ty abs rep, tyco) end;
   758 
   759 fun cert_of_abs thy tyco c raw_abs_thm =
   760   let
   761     val abs_thm = singleton (canonize_thms thy) raw_abs_thm;
   762     val _ = assert_abs_eqn thy (SOME tyco) abs_thm;
   763     val _ = if c = const_abs_eqn thy abs_thm then ()
   764       else error ("Wrong head of abstract code equation,\nexpected constant "
   765         ^ string_of_const thy c ^ "\n" ^ Display.string_of_thm_global thy abs_thm);
   766   in Abstract (Thm.freezeT abs_thm, tyco) end;
   767 
   768 fun constrain_cert thy sorts (Equations (cert_thm, propers)) =
   769       let
   770         val ((vs, _), head) = get_head thy cert_thm;
   771         val (subst, cert_thm') = cert_thm
   772           |> Thm.implies_intr head
   773           |> constrain_thm thy vs sorts;
   774         val head' = Thm.term_of head
   775           |> subst
   776           |> Thm.cterm_of thy;
   777         val cert_thm'' = cert_thm'
   778           |> Thm.elim_implies (Thm.assume head');
   779       in Equations (cert_thm'', propers) end
   780   | constrain_cert thy _ (cert as Projection _) =
   781       cert
   782   | constrain_cert thy sorts (Abstract (abs_thm, tyco)) =
   783       Abstract (snd (constrain_thm thy (fst (typscheme_abs thy abs_thm)) sorts abs_thm), tyco);
   784 
   785 fun typscheme_of_cert thy (Equations (cert_thm, _)) =
   786       fst (get_head thy cert_thm)
   787   | typscheme_of_cert thy (Projection (proj, _)) =
   788       typscheme_projection thy proj
   789   | typscheme_of_cert thy (Abstract (abs_thm, _)) =
   790       typscheme_abs thy abs_thm;
   791 
   792 fun typargs_deps_of_cert thy (Equations (cert_thm, propers)) =
   793       let
   794         val vs = (fst o fst) (get_head thy cert_thm);
   795         val equations = if null propers then [] else
   796           Thm.prop_of cert_thm
   797           |> Logic.dest_conjunction_balanced (length propers);
   798       in (vs, fold (add_rhss_of_eqn thy) equations []) end
   799   | typargs_deps_of_cert thy (Projection (t, tyco)) =
   800       (fst (typscheme_projection thy t), add_rhss_of_eqn thy t [])
   801   | typargs_deps_of_cert thy (Abstract (abs_thm, tyco)) =
   802       let
   803         val vs = fst (typscheme_abs thy abs_thm);
   804         val (_, concrete_thm) = concretify_abs thy tyco abs_thm;
   805       in (vs, add_rhss_of_eqn thy (Thm.prop_of abs_thm) []) end;
   806 
   807 fun equations_of_cert thy (cert as Equations (cert_thm, propers)) =
   808       let
   809         val tyscm = typscheme_of_cert thy cert;
   810         val thms = if null propers then [] else
   811           cert_thm
   812           |> LocalDefs.expand [snd (get_head thy cert_thm)]
   813           |> Thm.varifyT
   814           |> Conjunction.elim_balanced (length propers);
   815       in (tyscm, map (pair NONE o dest_eqn thy o Thm.prop_of) thms ~~ (map SOME thms ~~ propers)) end
   816   | equations_of_cert thy (Projection (t, tyco)) =
   817       let
   818         val (_, ((abs, _), _)) = get_abstype_spec thy tyco;
   819         val tyscm = typscheme_projection thy t;
   820         val t' = map_types Logic.varifyT t;
   821       in (tyscm, [((SOME abs, dest_eqn thy t'), (NONE, true))]) end
   822   | equations_of_cert thy (Abstract (abs_thm, tyco)) =
   823       let
   824         val tyscm = typscheme_abs thy abs_thm;
   825         val (abs, concrete_thm) = concretify_abs thy tyco abs_thm;
   826         val _ = fold_aterms (fn Const (c, _) => if c = abs
   827           then error ("Abstraction violation in abstract code equation\n" ^ Display.string_of_thm_global thy abs_thm)
   828           else I | _ => I) (Thm.prop_of abs_thm);
   829       in (tyscm, [((SOME abs, dest_eqn thy (Thm.prop_of concrete_thm)), (SOME (Thm.varifyT abs_thm), true))]) end;
   830 
   831 fun pretty_cert thy (cert as Equations _) =
   832       (map_filter (Option.map (Display.pretty_thm_global thy o AxClass.overload thy) o fst o snd)
   833          o snd o equations_of_cert thy) cert
   834   | pretty_cert thy (Projection (t, _)) =
   835       [Syntax.pretty_term_global thy (map_types Logic.varifyT t)]
   836   | pretty_cert thy (Abstract (abs_thm, tyco)) =
   837       [(Display.pretty_thm_global thy o AxClass.overload thy o Thm.varifyT) abs_thm];
   838 
   839 fun bare_thms_of_cert thy (cert as Equations _) =
   840       (map_filter (fn (_, (some_thm, proper)) => if proper then some_thm else NONE)
   841         o snd o equations_of_cert thy) cert
   842   | bare_thms_of_cert thy _ = [];
   843 
   844 end;
   845 
   846 
   847 (* code certificate access *)
   848 
   849 fun retrieve_raw thy c =
   850   Symtab.lookup ((the_functions o the_exec) thy) c
   851   |> Option.map (snd o fst)
   852   |> the_default (Default [])
   853 
   854 fun get_cert thy f c = case retrieve_raw thy c
   855  of Default eqns => eqns
   856       |> (map o apfst) (Thm.transfer thy)
   857       |> f
   858       |> (map o apfst) (AxClass.unoverload thy)
   859       |> cert_of_eqns thy c
   860   | Eqns eqns => eqns
   861       |> (map o apfst) (Thm.transfer thy)
   862       |> f
   863       |> (map o apfst) (AxClass.unoverload thy)
   864       |> cert_of_eqns thy c
   865   | Proj (_, tyco) =>
   866       cert_of_proj thy c tyco
   867   | Abstr (abs_thm, tyco) => abs_thm
   868       |> Thm.transfer thy
   869       |> AxClass.unoverload thy
   870       |> cert_of_abs thy tyco c;
   871 
   872 
   873 (* cases *)
   874 
   875 fun case_certificate thm =
   876   let
   877     val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
   878       o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.plain_prop_of) thm;
   879     val _ = case head of Free _ => true
   880       | Var _ => true
   881       | _ => raise TERM ("case_cert", []);
   882     val ([(case_var, _)], case_expr) = Term.strip_abs_eta 1 raw_case_expr;
   883     val (Const (case_const, _), raw_params) = strip_comb case_expr;
   884     val n = find_index (fn Free (v, _) => v = case_var | _ => false) raw_params;
   885     val _ = if n = ~1 then raise TERM ("case_cert", []) else ();
   886     val params = map (fst o dest_Var) (nth_drop n raw_params);
   887     fun dest_case t =
   888       let
   889         val (head' $ t_co, rhs) = Logic.dest_equals t;
   890         val _ = if head' = head then () else raise TERM ("case_cert", []);
   891         val (Const (co, _), args) = strip_comb t_co;
   892         val (Var (param, _), args') = strip_comb rhs;
   893         val _ = if args' = args then () else raise TERM ("case_cert", []);
   894       in (param, co) end;
   895     fun analyze_cases cases =
   896       let
   897         val co_list = fold (AList.update (op =) o dest_case) cases [];
   898       in map (the o AList.lookup (op =) co_list) params end;
   899     fun analyze_let t =
   900       let
   901         val (head' $ arg, Var (param', _) $ arg') = Logic.dest_equals t;
   902         val _ = if head' = head then () else raise TERM ("case_cert", []);
   903         val _ = if arg' = arg then () else raise TERM ("case_cert", []);
   904         val _ = if [param'] = params then () else raise TERM ("case_cert", []);
   905       in [] end;
   906     fun analyze (cases as [let_case]) =
   907           (analyze_cases cases handle Bind => analyze_let let_case)
   908       | analyze cases = analyze_cases cases;
   909   in (case_const, (n, analyze cases)) end;
   910 
   911 fun case_cert thm = case_certificate thm
   912   handle Bind => error "bad case certificate"
   913        | TERM _ => error "bad case certificate";
   914 
   915 fun get_case_scheme thy = Symtab.lookup ((fst o the_cases o the_exec) thy);
   916 
   917 val undefineds = Symtab.keys o snd o the_cases o the_exec;
   918 
   919 
   920 (* diagnostic *)
   921 
   922 fun print_codesetup thy =
   923   let
   924     val ctxt = ProofContext.init thy;
   925     val exec = the_exec thy;
   926     fun pretty_equations const thms =
   927       (Pretty.block o Pretty.fbreaks) (
   928         Pretty.str (string_of_const thy const) :: map (Display.pretty_thm ctxt) thms
   929       );
   930     fun pretty_function (const, Default eqns) = pretty_equations const (map fst eqns)
   931       | pretty_function (const, Eqns eqns) = pretty_equations const (map fst eqns)
   932       | pretty_function (const, Proj (proj, _)) = Pretty.block
   933           [Pretty.str (string_of_const thy const), Pretty.fbrk, Syntax.pretty_term ctxt proj]
   934       | pretty_function (const, Abstr (thm, _)) = pretty_equations const [thm];
   935     fun pretty_typ (tyco, vs) = Pretty.str
   936       (string_of_typ thy (Type (tyco, map TFree vs)));
   937     fun pretty_typspec (typ, (cos, abstract)) = if null cos
   938       then pretty_typ typ
   939       else (Pretty.block o Pretty.breaks) (
   940         pretty_typ typ
   941         :: Pretty.str "="
   942         :: (if abstract then [Pretty.str "(abstract)"] else [])
   943         @ separate (Pretty.str "|") (map (fn (c, []) => Pretty.str (string_of_const thy c)
   944              | (c, tys) =>
   945                  (Pretty.block o Pretty.breaks)
   946                     (Pretty.str (string_of_const thy c)
   947                       :: Pretty.str "of"
   948                       :: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
   949       );
   950     fun pretty_case (const, (_, (_, []))) = Pretty.str (string_of_const thy const)
   951       | pretty_case (const, (_, (_, cos))) = (Pretty.block o Pretty.breaks) [
   952           Pretty.str (string_of_const thy const), Pretty.str "with",
   953           (Pretty.block o Pretty.commas o map (Pretty.str o string_of_const thy)) cos];
   954     val functions = the_functions exec
   955       |> Symtab.dest
   956       |> (map o apsnd) (snd o fst)
   957       |> sort (string_ord o pairself fst);
   958     val datatypes = the_types exec
   959       |> Symtab.dest
   960       |> map (fn (tyco, (_, (vs, spec)) :: _) =>
   961           ((tyco, vs), constructors_of spec))
   962       |> sort (string_ord o pairself (fst o fst));
   963     val cases = Symtab.dest ((fst o the_cases o the_exec) thy);
   964     val undefineds = Symtab.keys ((snd o the_cases o the_exec) thy);
   965   in
   966     (Pretty.writeln o Pretty.chunks) [
   967       Pretty.block (
   968         Pretty.str "code equations:" :: Pretty.fbrk
   969         :: (Pretty.fbreaks o map pretty_function) functions
   970       ),
   971       Pretty.block (
   972         Pretty.str "datatypes:" :: Pretty.fbrk
   973         :: (Pretty.fbreaks o map pretty_typspec) datatypes
   974       ),
   975       Pretty.block (
   976         Pretty.str "cases:" :: Pretty.fbrk
   977         :: (Pretty.fbreaks o map pretty_case) cases
   978       ),
   979       Pretty.block (
   980         Pretty.str "undefined:" :: Pretty.fbrk
   981         :: (Pretty.commas o map (Pretty.str o string_of_const thy)) undefineds
   982       )
   983     ]
   984   end;
   985 
   986 
   987 (** declaring executable ingredients **)
   988 
   989 (* constant signatures *)
   990 
   991 fun add_type tyco thy =
   992   case Symtab.lookup ((snd o #types o Type.rep_tsig o Sign.tsig_of) thy) tyco
   993    of SOME (Type.Abbreviation (vs, _, _)) =>
   994           (map_exec_purge o map_signatures o apfst)
   995             (Symtab.update (tyco, length vs)) thy
   996     | _ => error ("No such type abbreviation: " ^ quote tyco);
   997 
   998 fun add_type_cmd s thy = add_type (Sign.intern_type thy s) thy;
   999 
  1000 fun gen_add_signature prep_const prep_signature (raw_c, raw_ty) thy =
  1001   let
  1002     val c = prep_const thy raw_c;
  1003     val ty = prep_signature thy raw_ty;
  1004     val ty' = expand_signature thy ty;
  1005     val ty'' = Sign.the_const_type thy c;
  1006     val _ = if typ_equiv (ty', ty'') then () else
  1007       error ("Illegal constant signature: " ^ Syntax.string_of_typ_global thy ty);
  1008   in
  1009     thy
  1010     |> (map_exec_purge o map_signatures o apsnd) (Symtab.update (c, ty))
  1011   end;
  1012 
  1013 val add_signature = gen_add_signature (K I) cert_signature;
  1014 val add_signature_cmd = gen_add_signature read_const read_signature;
  1015 
  1016 
  1017 (* code equations *)
  1018 
  1019 fun gen_add_eqn default (raw_thm, proper) thy =
  1020   let
  1021     val thm = Thm.close_derivation raw_thm;
  1022     val c = const_eqn thy thm;
  1023     fun add_eqn' true (Default eqns) = Default (eqns @ [(thm, proper)])
  1024       | add_eqn' _ (Eqns eqns) =
  1025           let
  1026             val args_of = snd o strip_comb o map_types Type.strip_sorts
  1027               o fst o Logic.dest_equals o Thm.plain_prop_of;
  1028             val args = args_of thm;
  1029             val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
  1030             fun matches_args args' = length args <= length args' andalso
  1031               Pattern.matchess thy (args, (map incr_idx o take (length args)) args');
  1032             fun drop (thm', proper') = if (proper orelse not proper')
  1033               andalso matches_args (args_of thm') then 
  1034                 (warning ("Code generator: dropping redundant code equation\n" ^
  1035                     Display.string_of_thm_global thy thm'); true)
  1036               else false;
  1037           in Eqns ((thm, proper) :: filter_out drop eqns) end
  1038       | add_eqn' false _ = Eqns [(thm, proper)];
  1039   in change_fun_spec false c (add_eqn' default) thy end;
  1040 
  1041 fun add_eqn thm thy =
  1042   gen_add_eqn false (mk_eqn thy (thm, true)) thy;
  1043 
  1044 fun add_warning_eqn thm thy =
  1045   case mk_eqn_warning thy thm
  1046    of SOME eqn => gen_add_eqn false eqn thy
  1047     | NONE => thy;
  1048 
  1049 fun add_default_eqn thm thy =
  1050   case mk_eqn_liberal thy thm
  1051    of SOME eqn => gen_add_eqn true eqn thy
  1052     | NONE => thy;
  1053 
  1054 fun add_nbe_eqn thm thy =
  1055   gen_add_eqn false (mk_eqn thy (thm, false)) thy;
  1056 
  1057 val add_default_eqn_attribute = Thm.declaration_attribute
  1058   (fn thm => Context.mapping (add_default_eqn thm) I);
  1059 val add_default_eqn_attrib = Attrib.internal (K add_default_eqn_attribute);
  1060 
  1061 fun add_abs_eqn raw_thm thy =
  1062   let
  1063     val (abs_thm, tyco) = (apfst Thm.close_derivation o mk_abs_eqn thy) raw_thm;
  1064     val c = const_abs_eqn thy abs_thm;
  1065   in change_fun_spec false c (K (Abstr (abs_thm, tyco))) thy end;
  1066 
  1067 fun del_eqn thm thy = case mk_eqn_liberal thy thm
  1068  of SOME (thm, _) => let
  1069         fun del_eqn' (Default eqns) = empty_fun_spec
  1070           | del_eqn' (Eqns eqns) =
  1071               Eqns (filter_out (fn (thm', _) => Thm.eq_thm_prop (thm, thm')) eqns)
  1072           | del_eqn' spec = spec
  1073       in change_fun_spec true (const_eqn thy thm) del_eqn' thy end
  1074   | NONE => thy;
  1075 
  1076 fun del_eqns c = change_fun_spec true c (K empty_fun_spec);
  1077 
  1078 
  1079 (* cases *)
  1080 
  1081 fun add_case thm thy =
  1082   let
  1083     val (c, (k, case_pats)) = case_cert thm;
  1084     val _ = case filter_out (is_constr thy) case_pats
  1085      of [] => ()
  1086       | cs => error ("Non-constructor(s) in case certificate: " ^ commas (map quote cs));
  1087     val entry = (1 + Int.max (1, length case_pats), (k, case_pats))
  1088   in (map_exec_purge o map_cases o apfst) (Symtab.update (c, entry)) thy end;
  1089 
  1090 fun add_undefined c thy =
  1091   (map_exec_purge o map_cases o apsnd) (Symtab.update (c, ())) thy;
  1092 
  1093 
  1094 (* types *)
  1095 
  1096 fun register_type (tyco, vs_spec) thy =
  1097   let
  1098     val (old_constrs, some_old_proj) =
  1099       case these (Symtab.lookup ((the_types o the_exec) thy) tyco)
  1100        of (_, (_, Constructors cos)) :: _ => (map fst cos, NONE)
  1101         | (_, (_, Abstractor (_, (co, _)))) :: _ => ([], SOME co)
  1102         | [] => ([], NONE)
  1103     val outdated_funs = case some_old_proj
  1104      of NONE => []
  1105       | SOME old_proj => Symtab.fold
  1106           (fn (c, ((_, spec), _)) => if member (op =) (the_list (associated_abstype spec)) tyco
  1107             then insert (op =) c else I)
  1108             ((the_functions o the_exec) thy) [old_proj];
  1109     fun drop_outdated_cases cases = fold Symtab.delete_safe
  1110       (Symtab.fold (fn (c, (_, (_, cos))) =>
  1111         if exists (member (op =) old_constrs) cos
  1112           then insert (op =) c else I) cases []) cases;
  1113   in
  1114     thy
  1115     |> fold del_eqns outdated_funs
  1116     |> map_exec_purge
  1117         ((map_typs o Symtab.map_default (tyco, [])) (cons (serial (), vs_spec))
  1118         #> (map_cases o apfst) drop_outdated_cases)
  1119   end;
  1120 
  1121 fun unoverload_const_typ thy (c, ty) = (AxClass.unoverload_const thy (c, ty), ty);
  1122 
  1123 structure Datatype_Interpretation =
  1124   Interpretation(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
  1125 
  1126 fun datatype_interpretation f = Datatype_Interpretation.interpretation
  1127   (fn (tyco, _) => fn thy => f (tyco, get_type thy tyco) thy);
  1128 
  1129 fun add_datatype proto_constrs thy =
  1130   let
  1131     val constrs = map (unoverload_const_typ thy) proto_constrs;
  1132     val (tyco, (vs, cos)) = constrset_of_consts thy constrs;
  1133   in
  1134     thy
  1135     |> fold (del_eqns o fst) constrs
  1136     |> register_type (tyco, (vs, Constructors cos))
  1137     |> Datatype_Interpretation.data (tyco, serial ())
  1138   end;
  1139 
  1140 fun add_datatype_cmd raw_constrs thy =
  1141   add_datatype (map (read_bare_const thy) raw_constrs) thy;
  1142 
  1143 structure Abstype_Interpretation =
  1144   Interpretation(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
  1145 
  1146 fun abstype_interpretation f = Abstype_Interpretation.interpretation
  1147   (fn (tyco, _) => fn thy => f (tyco, get_abstype_spec thy tyco) thy);
  1148 
  1149 fun add_abstype proto_abs proto_rep thy =
  1150   let
  1151     val (abs, rep) = pairself (unoverload_const_typ thy) (proto_abs, proto_rep);
  1152     val (tyco, (vs, (abs_ty as (abs, ty), (rep, cert_prop)))) = abstype_cert thy abs (fst rep);
  1153     fun after_qed [[cert]] = ProofContext.theory
  1154       (register_type (tyco, (vs, Abstractor (abs_ty, (rep, cert))))
  1155       #> change_fun_spec false rep ((K o Proj)
  1156         (map_types Logic.varifyT (mk_proj tyco vs ty abs rep), tyco))
  1157       #> Abstype_Interpretation.data (tyco, serial ()));
  1158   in
  1159     thy
  1160     |> ProofContext.init
  1161     |> Proof.theorem_i NONE after_qed [[(cert_prop, [])]]
  1162   end;
  1163 
  1164 fun add_abstype_cmd raw_abs raw_rep thy =
  1165   add_abstype (read_bare_const thy raw_abs) (read_bare_const thy raw_rep) thy;
  1166 
  1167 
  1168 (** infrastructure **)
  1169 
  1170 (* c.f. src/HOL/Tools/recfun_codegen.ML *)
  1171 
  1172 structure Code_Target_Attr = Theory_Data
  1173 (
  1174   type T = (string -> thm -> theory -> theory) option;
  1175   val empty = NONE;
  1176   val extend = I;
  1177   fun merge (f1, f2) = if is_some f1 then f1 else f2;
  1178 );
  1179 
  1180 fun set_code_target_attr f = Code_Target_Attr.map (K (SOME f));
  1181 
  1182 fun code_target_attr prefix thm thy =
  1183   let
  1184     val attr = the_default ((K o K) I) (Code_Target_Attr.get thy);
  1185   in thy |> add_warning_eqn thm |> attr prefix thm end;
  1186 
  1187 
  1188 (* setup *)
  1189 
  1190 val _ = Context.>> (Context.map_theory
  1191   (let
  1192     fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
  1193     val code_attribute_parser =
  1194       Args.del |-- Scan.succeed (mk_attribute del_eqn)
  1195       || Args.$$$ "nbe" |-- Scan.succeed (mk_attribute add_nbe_eqn)
  1196       || Args.$$$ "abstract" |-- Scan.succeed (mk_attribute add_abs_eqn)
  1197       || (Args.$$$ "target" |-- Args.colon |-- Args.name >>
  1198            (mk_attribute o code_target_attr))
  1199       || Scan.succeed (mk_attribute add_warning_eqn);
  1200   in
  1201     Datatype_Interpretation.init
  1202     #> Attrib.setup (Binding.name "code") (Scan.lift code_attribute_parser)
  1203         "declare theorems for code generation"
  1204   end));
  1205 
  1206 end; (*struct*)
  1207 
  1208 
  1209 (* type-safe interfaces for data dependent on executable code *)
  1210 
  1211 functor Code_Data(Data: CODE_DATA_ARGS): CODE_DATA =
  1212 struct
  1213 
  1214 type T = Data.T;
  1215 exception Data of T;
  1216 fun dest (Data x) = x
  1217 
  1218 val kind = Code.declare_data (Data Data.empty);
  1219 
  1220 val data_op = (kind, Data, dest);
  1221 
  1222 val change = Code.change_data data_op;
  1223 fun change_yield thy = Code.change_yield_data data_op thy;
  1224 
  1225 end;
  1226 
  1227 structure Code : CODE = struct open Code; end;