src/Tools/isac/Interpret/solve-step.sml
author wneuper <Walther.Neuper@jku.at>
Mon, 26 Sep 2022 10:57:53 +0200
changeset 60556 486223010ea8
parent 60548 5765bd0f7055
child 60557 0be383bdb883
permissions -rw-r--r--
follow up 2: Problem.adapt_to_typ on loading by CalcTree, CalcTreeTEST
     1 (* Title:  Specify/solve-step.sml
     2    Author: Walther Neuper
     3    (c) due to copyright terms
     4 
     5 Code for the solve-phase in analogy to structure Specify_Step for the specify-phase.
     6 *)
     7 
     8 signature SOLVE_STEP =
     9 sig
    10   val check: Tactic.input -> Calc.T -> Applicable.T
    11   val add: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    12 
    13   val add_general: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    14   val s_add_general: State_Steps.T ->
    15     Ctree.ctree * Pos.pos' list * Pos.pos' -> Ctree.ctree * Pos.pos' list * Pos.pos'
    16   val add_hard:
    17     theory -> Tactic.T -> Pos.pos' -> Ctree.ctree -> Test_Out.T
    18 
    19   val get_ruleset: 'a -> Pos.pos' -> Ctree.ctree ->
    20     string * ThyC.id * Rewrite_Ord.id * Rule_Def.rule_set * bool
    21   val get_eval: string -> Pos.pos' -> Ctree.ctree -> string * ThyC.id * Eval.ml
    22 
    23 \<^isac_test>\<open>
    24   val rew_info: Rule_Def.rule_set -> string * Rule_Def.rule_set * Eval.ml_from_prog list
    25 \<close>
    26 end
    27 
    28 (**)
    29 structure Solve_Step(**): SOLVE_STEP(**) =
    30 struct
    31 (**)
    32 
    33 (** get data from Calc.T **)
    34 
    35 (* the source is the parent node, either a problem or a Rule_Set (with inter_steps) *)
    36 fun rew_info (Rule_Def.Repeat {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    37     (rew_ord', erls, ca)
    38   | rew_info (Rule_Set.Sequence {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    39     (rew_ord', erls, ca)
    40   | rew_info (Rule_Set.Rrls {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    41     (rew_ord', erls, ca)
    42   | rew_info rls = raise ERROR ("rew_info called with '" ^ Rule_Set.id rls ^ "'");
    43 
    44 fun get_ruleset _ (pos as (p, _)) pt = 
    45   let 
    46     val (pbl, p', rls') = LItool.parent_node pt pos
    47   in                                                      
    48     if pbl
    49     then 
    50       let 
    51         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    52         val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')              
    53 	    in ("OK", thy', rew_ord', erls, false) end
    54      else 
    55       let
    56         val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p)
    57 		    val (rew_ord', erls, _) = rew_info rls'
    58 		  in ("OK", thy', rew_ord', erls, false) end
    59   end;
    60 
    61 fun get_eval scrop (pos as (p, _)) pt = 
    62   let
    63     val (pbl, p', rls') =  LItool.parent_node pt pos
    64   in
    65     if pbl
    66     then
    67       let
    68         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    69         val {calc = scr_isa_fns, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')
    70         val opt = assoc (scr_isa_fns, scrop)
    71 	    in
    72 	      case opt of
    73 	        SOME isa_fn => ("OK", thy', isa_fn)
    74 	      | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval.ml_fun_empty))
    75 	    end
    76     else 
    77 		  let
    78 		    val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p);
    79 		    val (_, _,(*_,*)scr_isa_fns) = rew_info rls'(*rls*)
    80 		  in
    81 		    case assoc (scr_isa_fns, scrop) of
    82 		      SOME isa_fn => ("OK",thy',isa_fn)
    83 		    | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval.ml_fun_empty))
    84 		  end
    85   end;
    86 
    87 (** Solve_Step.check **)
    88 
    89 (*
    90   check tactics (input by the user, mostly) for applicability
    91   and determine as much of the result of the tactic as possible initially.
    92 *)
    93 fun check (Tactic.Apply_Method mI) (pt, (p, _)) =
    94       let
    95         val (dI, pI, probl, ctxt) = case Ctree.get_obj I pt p of
    96           Ctree.PblObj {origin = (_, (dI, pI, _), _), probl, ctxt, ...} => (dI, pI, probl, ctxt)
    97         | _ => raise ERROR "Specify_Step.check Apply_Method: uncovered case Ctree.get_obj"
    98         val {where_, ...} = Problem.from_store_PIDE ctxt pI
    99         val pres = map (I_Model.environment probl |> subst_atomic) where_
   100         val ctxt = if ContextC.is_empty ctxt (*vvvvvvvvvvvvvv DO THAT EARLIER?!?*)
   101           then ThyC.get_theory dI |> Proof_Context.init_global |> ContextC.insert_assumptions pres
   102           else ctxt
   103       in
   104         Applicable.Yes (Tactic.Apply_Method' (mI, NONE, Istate_Def.empty (*filled later*), ctxt))
   105       end
   106   | check (Tactic.Calculate op_) (cs as (pt, pos as (p, _))) =
   107       let 
   108         val (msg, thy', isa_fn) = get_eval op_ pos pt;
   109         val f = Calc.current_formula cs;
   110       in
   111         if msg = "OK"
   112         then
   113     	    case Rewrite.calculate_ (ThyC.id_to_ctxt thy') isa_fn f of
   114     	      SOME (f', (id, thm))
   115     	        => Applicable.Yes (Tactic.Calculate' (thy', op_, f, (f', (id, thm))))
   116     	    | NONE => Applicable.No ("'calculate " ^ op_ ^ "' not applicable") 
   117         else Applicable.No msg                                              
   118       end
   119   | check (Tactic.Check_Postcond pI) (_, _) = (*TODO: only applicable, if evaluating to True*)
   120       Applicable.Yes (Tactic.Check_Postcond' (pI, TermC.empty))
   121   | check (Tactic.Check_elementwise pred) cs =
   122       let 
   123         val f = Calc.current_formula cs;
   124       in
   125         Applicable.Yes (Tactic.Check_elementwise' (f, pred, (f, [])))
   126       end
   127   | check Tactic.Empty_Tac _ = Applicable.No "Empty_Tac is not applicable"
   128   | check (Tactic.Free_Solve) _ = Applicable.Yes (Tactic.Free_Solve')
   129   | check Tactic.Or_to_List cs =
   130        let 
   131         val f = Calc.current_formula cs;
   132         val ls = Prog_Expr.or2list f;
   133       in
   134         Applicable.Yes (Tactic.Or_to_List' (f, ls))
   135       end
   136   | check (Tactic.Rewrite thm) (cs as (pt, pos as (p, _))) = 
   137       let
   138         val (msg, thy', ro, rls', _) = get_ruleset thm pos pt;
   139         val thy = ThyC.get_theory thy';
   140         val ctxt = Proof_Context.init_global thy;
   141         val f = Calc.current_formula cs;
   142       in
   143         if msg = "OK" 
   144         then
   145           case Rewrite.rewrite_ ctxt (get_rew_ord ctxt ro) rls' false (snd thm) f of
   146             SOME (f',asm) => Applicable.Yes (Tactic.Rewrite' (thy', ro, rls', false, thm, f, (f', asm)))
   147           | NONE => Applicable.No ((thm |> fst |> quote) ^ " not applicable") 
   148         else Applicable.No msg
   149       end
   150   | check (Tactic.Rewrite_Inst (subs, thm)) (cs as (pt, pos as (p, _))) = 
   151       let 
   152         val pp = Ctree.par_pblobj pt p;
   153         val ctxt = Ctree.get_loc pt pos |> snd
   154         val thy = Proof_Context.theory_of ctxt
   155         val {rew_ord' = ro', erls = erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp);
   156         val f = Calc.current_formula cs;
   157         val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   158       in 
   159         case Rewrite.rewrite_inst_ ctxt (get_rew_ord ctxt ro') erls false subst (snd thm) f of
   160           SOME (f', asm) =>
   161             Applicable.Yes (Tactic.Rewrite_Inst' 
   162               (Context.theory_name thy, ro', erls, false, subst, thm, f, (f', asm)))
   163         | NONE => Applicable.No (fst thm ^ " not applicable")
   164       end
   165   | check (Tactic.Rewrite_Set rls) (cs as (pt, pos)) =
   166       let 
   167         val ctxt = Ctree.get_loc pt pos |> snd
   168         val thy' = ctxt |> Proof_Context.theory_of |> Context.theory_name
   169         val f = Calc.current_formula cs;
   170       in
   171         case Rewrite.rewrite_set_ ctxt false (get_rls ctxt rls) f of
   172           SOME (f', asm)
   173             => Applicable.Yes (Tactic.Rewrite_Set' (thy', false, get_rls ctxt rls, f, (f', asm)))
   174           | NONE => Applicable.No (rls ^ " not applicable")
   175       end
   176   | check (Tactic.Rewrite_Set_Inst (subs, rls)) (cs as (pt, pos)) =
   177       let 
   178         val ctxt = Ctree.get_loc pt pos |> snd
   179         val thy' = ctxt |> Proof_Context.theory_of |> Context.theory_name
   180         val f = Calc.current_formula cs;
   181     	  val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   182       in 
   183         case Rewrite.rewrite_set_inst_ ctxt false subst (get_rls ctxt rls) f of
   184           SOME (f', asm)
   185             => Applicable.Yes
   186                  (Tactic.Rewrite_Set_Inst' (thy', false, subst, get_rls ctxt rls, f, (f', asm)))
   187         | NONE => Applicable.No (rls ^ " not applicable")
   188       end
   189   | check (Tactic.Subproblem (domID, pblID)) (_, _) = 
   190       Applicable.Yes (Tactic.Subproblem' ((domID, pblID, MethodC.id_empty), [], 
   191 			  TermC.empty, [], ContextC.empty, Auto_Prog.subpbl domID pblID))
   192   | check (Tactic.Substitute sube) (cs as (pt, pos as (p, _))) =
   193       let
   194         val pp = Ctree.par_pblobj pt p
   195         val ctxt = Ctree.get_loc pt pos |> snd
   196         val thy = Proof_Context.theory_of ctxt
   197         val f = Calc.current_formula cs;
   198 		    val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp)
   199 		    val subte = Subst.input_to_terms sube (*?TODO: input requires parse _: _ -> _ option?*)
   200 		    val ro = get_rew_ord ctxt rew_ord'
   201 		  in
   202 		    if foldl and_ (true, map TermC.contains_Var subte)
   203 		    then (*1*)
   204 		      let val f' = subst_atomic (Subst.T_from_string_eqs thy sube) f
   205 		      in if f = f'
   206 		        then Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   207 		        else Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   208 		      end
   209 		    else (*2*)
   210 		      case Rewrite.rewrite_terms_ ctxt ro erls subte f of
   211 		        SOME (f', _) =>  Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   212 		      | NONE => Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   213 		  end
   214   | check (Tactic.Tac id) (cs as (pt, pos)) =
   215       let 
   216         val thy = (Ctree.get_loc pt pos |> snd) |> Proof_Context.theory_of
   217         val f = Calc.current_formula cs;
   218       in
   219         Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, UnparseC.term f))
   220       end
   221   | check (Tactic.Take str) _ = Applicable.Yes (Tactic.Take' (TermC.str2term str)) (* always applicable ?*)
   222   | check (Tactic.Begin_Trans) cs =
   223       Applicable.Yes (Tactic.Begin_Trans' (Calc.current_formula cs))
   224   | check (Tactic.End_Trans) (pt, (p, p_)) = (*TODO: check parent branches*)
   225     if p_ = Pos.Res 
   226 	  then Applicable.Yes (Tactic.End_Trans' (Ctree.get_obj Ctree.g_result pt p))
   227     else Applicable.No "'End_Trans' is not applicable at the beginning of a transitive sequence"
   228   | check Tactic.End_Proof' _ = Applicable.Yes Tactic.End_Proof''
   229   | check m _ = raise ERROR ("Solve_Step.check called for " ^ Tactic.input_to_string m);
   230 
   231 
   232 (** Solve_Step.add **)
   233 
   234 fun add (Tactic.Apply_Method' (_, topt, is, _)) (_, ctxt) (pt, pos as (p, _)) = 
   235     (case topt of 
   236       SOME t => 
   237         let val (pt, c) = Ctree.cappend_form pt p (is, ctxt) t
   238         in (pos, c, Test_Out.EmptyMout, pt) end
   239     | NONE => (pos, [], Test_Out.EmptyMout, pt))
   240   | add (Tactic.Take' t) l (pt, (p, _)) = (* val (Take' t) = m; *)
   241     let
   242       val p =
   243         let val (ps, p') = split_last p (* no connex to prev.ppobj *)
   244 	      in if p' = 0 then ps @ [1] else p end
   245       val (pt, c) = Ctree.cappend_form pt p l t
   246     in
   247       ((p, Pos.Frm), c, Test_Out.FormKF (UnparseC.term t), pt)
   248     end
   249   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Frm)) =
   250     let
   251       val (pt, c) = Ctree.cappend_form pt p l t
   252       val pt = Ctree.update_branch pt p Ctree.TransitiveB (*040312*)
   253       (* replace the old PrfOjb ~~~~~ *)
   254       val p = (Pos.lev_on o Pos.lev_dn (* starts with [...,0] *)) p
   255       val (pt, c') = Ctree.cappend_form pt p l t (*FIXME.0402 same istate ???*)
   256     in
   257       ((p, Pos.Frm), c @ c', Test_Out.FormKF (UnparseC.term t), pt)
   258     end
   259   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Res)) = 
   260     (*append after existing PrfObj    vvvvvvvvvvvvv*)
   261     add (Tactic.Begin_Trans' t) l (pt, (Pos.lev_on p, Pos.Frm))
   262   | add (Tactic.End_Trans' tasm) l (pt, (p, _)) =
   263     let
   264       val p' = Pos.lev_up p
   265       val (pt, c) = Ctree.append_result pt p' l tasm Ctree.Complete
   266     in
   267       ((p', Pos.Res), c, Test_Out.FormKF "DUMMY" (*term2str t ..ERROR (t) has not been declared*), pt)
   268     end
   269   | add (Tactic.Rewrite_Inst' (_, _, _, _, subs', thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   270     let
   271       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f
   272         (Tactic.Rewrite_Inst (Subst.T_to_input subs', thm')) (f',asm) Ctree.Complete;
   273       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   274     in
   275       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   276     end
   277  | add (Tactic.Rewrite' (_, _, _, _, thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   278    let
   279      val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f (Tactic.Rewrite thm') (f', asm) Ctree.Complete
   280      val pt = Ctree.update_branch pt p Ctree.TransitiveB
   281    in
   282     ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   283    end
   284   | add (Tactic.Rewrite_Set_Inst' (_, _, subs', rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   285     let
   286       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   287         (Tactic.Rewrite_Set_Inst (Subst.T_to_input subs', Rule_Set.id rls')) (f', asm) Ctree.Complete
   288       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   289     in
   290       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   291     end
   292   | add (Tactic.Rewrite_Set' (_, _, rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   293     let
   294       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   295         (Tactic.Rewrite_Set (Rule_Set.id rls')) (f', asm) Ctree.Complete
   296       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   297     in
   298       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   299     end
   300   | add (Tactic.Check_Postcond' (_, scval)) l (pt, (p, _)) =
   301       let
   302         val (pt, c) = Ctree.append_result pt p l (scval, []) Ctree.Complete
   303       in
   304         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term scval), pt)
   305       end
   306   | add (Tactic.Calculate' (_, op_, f, (f', _))) l (pt, (p, _)) =
   307       let
   308         val (pt,c) = Ctree.cappend_atomic pt p l f (Tactic.Calculate op_) (f', []) Ctree.Complete
   309       in
   310         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   311       end
   312   | add (Tactic.Check_elementwise' (consts, pred, (f', asm))) l (pt, (p, _)) =
   313       let
   314         val (pt,c) = Ctree.cappend_atomic pt p l consts (Tactic.Check_elementwise pred) (f', asm) Ctree.Complete
   315       in
   316         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   317       end
   318   | add (Tactic.Or_to_List' (ors, list)) l (pt, (p, _)) =
   319       let
   320         val (pt,c) = Ctree.cappend_atomic pt p l ors Tactic.Or_to_List (list, []) Ctree.Complete
   321       in
   322         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term list), pt)
   323       end
   324   | add (Tactic.Substitute' (_, _, subte, t, t')) l (pt, (p, _)) =
   325       let
   326         val (pt,c) =
   327           Ctree.cappend_atomic pt p l t (Tactic.Substitute (Subst.eqs_to_input subte)) (t',[]) Ctree.Complete
   328         in ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term t'), pt) 
   329         end
   330   | add (Tactic.Tac_ (_, f, id, f')) l (pt, (p, _)) =
   331       let
   332         val (pt, c) = Ctree.cappend_atomic pt p l (TermC.str2term f) (Tactic.Tac id) (TermC.str2term f', []) Ctree.Complete
   333       in
   334         ((p,Pos.Res), c, Test_Out.FormKF f', pt)
   335       end
   336   | add (Tactic.Subproblem' ((domID, pblID, metID), oris, hdl, fmz_, ctxt_specify, f))
   337       (l as (_, ctxt)) (pt, (p, _)) =
   338       let
   339   	    val (pt, c) = Ctree.cappend_problem pt p l (fmz_, (domID, pblID, metID))
   340   	      (oris, (domID, pblID, metID), hdl, ctxt_specify)
   341   	    val f = Syntax.string_of_term ctxt f
   342       in
   343         ((p, Pos.Pbl), c, Test_Out.FormKF f, pt)
   344       end
   345   | add m' _ (_, pos) =
   346       raise ERROR ("Solve_Step.add: not impl.for " ^ Tactic.string_of m' ^ " at " ^ Pos.pos'2str pos)
   347 
   348 (* LI switches between solve-phase and specify-phase *)
   349 fun add_general tac ic cs =
   350   if Tactic.for_specify' tac
   351   then Specify_Step.add tac ic cs
   352   else add tac ic cs
   353 
   354 (* the order of State_Steps is reversed: insert last element first  *)
   355 fun s_add_general [] ptp = ptp
   356   | s_add_general tacis (pt, c, _) = 
   357     let
   358       val (tacis', (_, tac_, (p, is))) = split_last tacis
   359 	    val (p', c', _, pt') = add_general tac_ is (pt, p)
   360     in
   361       s_add_general tacis' (pt', c@c', p')
   362     end
   363 
   364 (* a still undeveloped concept: do a calculation without LI *)
   365 fun add_hard _(*thy*) m' (p, p_) pt =
   366   let  
   367     val p = case p_ of
   368       Pos.Frm => p | Pos.Res => Pos.lev_on p
   369     | _ => raise ERROR ("generate_hard: call by " ^ Pos.pos'2str (p,p_))
   370   in
   371     add_general m' (Istate_Def.empty, ContextC.empty) (pt, (p, p_))
   372   end
   373 
   374 (**)end(**);