src/HOL/HOLCF/Tools/Domain/domain_take_proofs.ML
author wenzelm
Fri, 28 Oct 2011 23:41:16 +0200
changeset 46165 3c5d3d286055
parent 44951 53d95b52954c
child 46527 cf10bde35973
permissions -rw-r--r--
tuned Named_Thms: proper binding;
     1 (*  Title:      HOL/HOLCF/Tools/Domain/domain_take_proofs.ML
     2     Author:     Brian Huffman
     3 
     4 Defines take functions for the given domain equation
     5 and proves related theorems.
     6 *)
     7 
     8 signature DOMAIN_TAKE_PROOFS =
     9 sig
    10   type iso_info =
    11     {
    12       absT : typ,
    13       repT : typ,
    14       abs_const : term,
    15       rep_const : term,
    16       abs_inverse : thm,
    17       rep_inverse : thm
    18     }
    19   type take_info =
    20     {
    21       take_consts : term list,
    22       take_defs : thm list,
    23       chain_take_thms : thm list,
    24       take_0_thms : thm list,
    25       take_Suc_thms : thm list,
    26       deflation_take_thms : thm list,
    27       take_strict_thms : thm list,
    28       finite_consts : term list,
    29       finite_defs : thm list
    30     }
    31   type take_induct_info =
    32     {
    33       take_consts         : term list,
    34       take_defs           : thm list,
    35       chain_take_thms     : thm list,
    36       take_0_thms         : thm list,
    37       take_Suc_thms       : thm list,
    38       deflation_take_thms : thm list,
    39       take_strict_thms    : thm list,
    40       finite_consts       : term list,
    41       finite_defs         : thm list,
    42       lub_take_thms       : thm list,
    43       reach_thms          : thm list,
    44       take_lemma_thms     : thm list,
    45       is_finite           : bool,
    46       take_induct_thms    : thm list
    47     }
    48   val define_take_functions :
    49     (binding * iso_info) list -> theory -> take_info * theory
    50 
    51   val add_lub_take_theorems :
    52     (binding * iso_info) list -> take_info -> thm list ->
    53     theory -> take_induct_info * theory
    54 
    55   val map_of_typ :
    56     theory -> (typ * term) list -> typ -> term
    57 
    58   val add_rec_type : (string * bool list) -> theory -> theory
    59   val get_rec_tab : theory -> (bool list) Symtab.table
    60   val add_deflation_thm : thm -> theory -> theory
    61   val get_deflation_thms : theory -> thm list
    62   val map_ID_add : attribute
    63   val get_map_ID_thms : theory -> thm list
    64   val setup : theory -> theory
    65 end
    66 
    67 structure Domain_Take_Proofs : DOMAIN_TAKE_PROOFS =
    68 struct
    69 
    70 type iso_info =
    71   {
    72     absT : typ,
    73     repT : typ,
    74     abs_const : term,
    75     rep_const : term,
    76     abs_inverse : thm,
    77     rep_inverse : thm
    78   }
    79 
    80 type take_info =
    81   { take_consts : term list,
    82     take_defs : thm list,
    83     chain_take_thms : thm list,
    84     take_0_thms : thm list,
    85     take_Suc_thms : thm list,
    86     deflation_take_thms : thm list,
    87     take_strict_thms : thm list,
    88     finite_consts : term list,
    89     finite_defs : thm list
    90   }
    91 
    92 type take_induct_info =
    93   {
    94     take_consts         : term list,
    95     take_defs           : thm list,
    96     chain_take_thms     : thm list,
    97     take_0_thms         : thm list,
    98     take_Suc_thms       : thm list,
    99     deflation_take_thms : thm list,
   100     take_strict_thms    : thm list,
   101     finite_consts       : term list,
   102     finite_defs         : thm list,
   103     lub_take_thms       : thm list,
   104     reach_thms          : thm list,
   105     take_lemma_thms     : thm list,
   106     is_finite           : bool,
   107     take_induct_thms    : thm list
   108   }
   109 
   110 val beta_ss =
   111   HOL_basic_ss addsimps simp_thms addsimprocs [@{simproc beta_cfun_proc}]
   112 
   113 (******************************************************************************)
   114 (******************************** theory data *********************************)
   115 (******************************************************************************)
   116 
   117 structure Rec_Data = Theory_Data
   118 (
   119   (* list indicates which type arguments allow indirect recursion *)
   120   type T = (bool list) Symtab.table
   121   val empty = Symtab.empty
   122   val extend = I
   123   fun merge data = Symtab.merge (K true) data
   124 )
   125 
   126 structure DeflMapData = Named_Thms
   127 (
   128   val name = @{binding domain_deflation}
   129   val description = "theorems like deflation a ==> deflation (foo_map$a)"
   130 )
   131 
   132 structure Map_Id_Data = Named_Thms
   133 (
   134   val name = @{binding domain_map_ID}
   135   val description = "theorems like foo_map$ID = ID"
   136 )
   137 
   138 fun add_rec_type (tname, bs) =
   139     Rec_Data.map (Symtab.insert (K true) (tname, bs))
   140 
   141 fun add_deflation_thm thm =
   142     Context.theory_map (DeflMapData.add_thm thm)
   143 
   144 val get_rec_tab = Rec_Data.get
   145 fun get_deflation_thms thy = DeflMapData.get (Proof_Context.init_global thy)
   146 
   147 val map_ID_add = Map_Id_Data.add
   148 val get_map_ID_thms = Map_Id_Data.get o Proof_Context.init_global
   149 
   150 val setup = DeflMapData.setup #> Map_Id_Data.setup
   151 
   152 (******************************************************************************)
   153 (************************** building types and terms **************************)
   154 (******************************************************************************)
   155 
   156 open HOLCF_Library
   157 
   158 infixr 6 ->>
   159 infix -->>
   160 infix 9 `
   161 
   162 fun mk_deflation t =
   163   Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t
   164 
   165 fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
   166 
   167 (******************************************************************************)
   168 (****************************** isomorphism info ******************************)
   169 (******************************************************************************)
   170 
   171 fun deflation_abs_rep (info : iso_info) : thm =
   172   let
   173     val abs_iso = #abs_inverse info
   174     val rep_iso = #rep_inverse info
   175     val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso]
   176   in
   177     Drule.zero_var_indexes thm
   178   end
   179 
   180 (******************************************************************************)
   181 (********************* building map functions over types **********************)
   182 (******************************************************************************)
   183 
   184 fun map_of_typ (thy : theory) (sub : (typ * term) list) (T : typ) : term =
   185   let
   186     val thms = get_map_ID_thms thy
   187     val rules = map (Thm.concl_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq) thms
   188     val rules' = map (apfst mk_ID) sub @ map swap rules
   189   in
   190     mk_ID T
   191     |> Pattern.rewrite_term thy rules' []
   192     |> Pattern.rewrite_term thy rules []
   193   end
   194 
   195 (******************************************************************************)
   196 (********************* declaring definitions and theorems *********************)
   197 (******************************************************************************)
   198 
   199 fun add_qualified_def name (dbind, eqn) =
   200     yield_singleton (Global_Theory.add_defs false)
   201      ((Binding.qualified true name dbind, eqn), [])
   202 
   203 fun add_qualified_thm name (dbind, thm) =
   204     yield_singleton Global_Theory.add_thms
   205       ((Binding.qualified true name dbind, thm), [])
   206 
   207 fun add_qualified_simp_thm name (dbind, thm) =
   208     yield_singleton Global_Theory.add_thms
   209       ((Binding.qualified true name dbind, thm), [Simplifier.simp_add])
   210 
   211 (******************************************************************************)
   212 (************************** defining take functions ***************************)
   213 (******************************************************************************)
   214 
   215 fun define_take_functions
   216     (spec : (binding * iso_info) list)
   217     (thy : theory) =
   218   let
   219 
   220     (* retrieve components of spec *)
   221     val dbinds = map fst spec
   222     val iso_infos = map snd spec
   223     val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos
   224     val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos
   225 
   226     fun mk_projs []      _ = []
   227       | mk_projs (x::[]) t = [(x, t)]
   228       | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t)
   229 
   230     fun mk_cfcomp2 ((rep_const, abs_const), f) =
   231         mk_cfcomp (abs_const, mk_cfcomp (f, rep_const))
   232 
   233     (* define take functional *)
   234     val newTs : typ list = map fst dom_eqns
   235     val copy_arg_type = mk_tupleT (map (fn T => T ->> T) newTs)
   236     val copy_arg = Free ("f", copy_arg_type)
   237     val copy_args = map snd (mk_projs dbinds copy_arg)
   238     fun one_copy_rhs (rep_abs, (_, rhsT)) =
   239       let
   240         val body = map_of_typ thy (newTs ~~ copy_args) rhsT
   241       in
   242         mk_cfcomp2 (rep_abs, body)
   243       end
   244     val take_functional =
   245         big_lambda copy_arg
   246           (mk_tuple (map one_copy_rhs (rep_abs_consts ~~ dom_eqns)))
   247     val take_rhss =
   248       let
   249         val n = Free ("n", HOLogic.natT)
   250         val rhs = mk_iterate (n, take_functional)
   251       in
   252         map (lambda n o snd) (mk_projs dbinds rhs)
   253       end
   254 
   255     (* define take constants *)
   256     fun define_take_const ((dbind, take_rhs), (lhsT, _)) thy =
   257       let
   258         val take_type = HOLogic.natT --> lhsT ->> lhsT
   259         val take_bind = Binding.suffix_name "_take" dbind
   260         val (take_const, thy) =
   261           Sign.declare_const_global ((take_bind, take_type), NoSyn) thy
   262         val take_eqn = Logic.mk_equals (take_const, take_rhs)
   263         val (take_def_thm, thy) =
   264             add_qualified_def "take_def" (dbind, take_eqn) thy
   265       in ((take_const, take_def_thm), thy) end
   266     val ((take_consts, take_defs), thy) = thy
   267       |> fold_map define_take_const (dbinds ~~ take_rhss ~~ dom_eqns)
   268       |>> ListPair.unzip
   269 
   270     (* prove chain_take lemmas *)
   271     fun prove_chain_take (take_const, dbind) thy =
   272       let
   273         val goal = mk_trp (mk_chain take_const)
   274         val rules = take_defs @ @{thms chain_iterate ch2ch_fst ch2ch_snd}
   275         val tac = simp_tac (HOL_basic_ss addsimps rules) 1
   276         val thm = Goal.prove_global thy [] [] goal (K tac)
   277       in
   278         add_qualified_simp_thm "chain_take" (dbind, thm) thy
   279       end
   280     val (chain_take_thms, thy) =
   281       fold_map prove_chain_take (take_consts ~~ dbinds) thy
   282 
   283     (* prove take_0 lemmas *)
   284     fun prove_take_0 ((take_const, dbind), (lhsT, _)) thy =
   285       let
   286         val lhs = take_const $ @{term "0::nat"}
   287         val goal = mk_eqs (lhs, mk_bottom (lhsT ->> lhsT))
   288         val rules = take_defs @ @{thms iterate_0 fst_strict snd_strict}
   289         val tac = simp_tac (HOL_basic_ss addsimps rules) 1
   290         val take_0_thm = Goal.prove_global thy [] [] goal (K tac)
   291       in
   292         add_qualified_simp_thm "take_0" (dbind, take_0_thm) thy
   293       end
   294     val (take_0_thms, thy) =
   295       fold_map prove_take_0 (take_consts ~~ dbinds ~~ dom_eqns) thy
   296 
   297     (* prove take_Suc lemmas *)
   298     val n = Free ("n", natT)
   299     val take_is = map (fn t => t $ n) take_consts
   300     fun prove_take_Suc
   301           (((take_const, rep_abs), dbind), (_, rhsT)) thy =
   302       let
   303         val lhs = take_const $ (@{term Suc} $ n)
   304         val body = map_of_typ thy (newTs ~~ take_is) rhsT
   305         val rhs = mk_cfcomp2 (rep_abs, body)
   306         val goal = mk_eqs (lhs, rhs)
   307         val simps = @{thms iterate_Suc fst_conv snd_conv}
   308         val rules = take_defs @ simps
   309         val tac = simp_tac (beta_ss addsimps rules) 1
   310         val take_Suc_thm = Goal.prove_global thy [] [] goal (K tac)
   311       in
   312         add_qualified_thm "take_Suc" (dbind, take_Suc_thm) thy
   313       end
   314     val (take_Suc_thms, thy) =
   315       fold_map prove_take_Suc
   316         (take_consts ~~ rep_abs_consts ~~ dbinds ~~ dom_eqns) thy
   317 
   318     (* prove deflation theorems for take functions *)
   319     val deflation_abs_rep_thms = map deflation_abs_rep iso_infos
   320     val deflation_take_thm =
   321       let
   322         val n = Free ("n", natT)
   323         fun mk_goal take_const = mk_deflation (take_const $ n)
   324         val goal = mk_trp (foldr1 mk_conj (map mk_goal take_consts))
   325         val bottom_rules =
   326           take_0_thms @ @{thms deflation_bottom simp_thms}
   327         val deflation_rules =
   328           @{thms conjI deflation_ID}
   329           @ deflation_abs_rep_thms
   330           @ get_deflation_thms thy
   331       in
   332         Goal.prove_global thy [] [] goal (fn _ =>
   333          EVERY
   334           [rtac @{thm nat.induct} 1,
   335            simp_tac (HOL_basic_ss addsimps bottom_rules) 1,
   336            asm_simp_tac (HOL_basic_ss addsimps take_Suc_thms) 1,
   337            REPEAT (etac @{thm conjE} 1
   338                    ORELSE resolve_tac deflation_rules 1
   339                    ORELSE atac 1)])
   340       end
   341     fun conjuncts [] _ = []
   342       | conjuncts (n::[]) thm = [(n, thm)]
   343       | conjuncts (n::ns) thm = let
   344           val thmL = thm RS @{thm conjunct1}
   345           val thmR = thm RS @{thm conjunct2}
   346         in (n, thmL):: conjuncts ns thmR end
   347     val (deflation_take_thms, thy) =
   348       fold_map (add_qualified_thm "deflation_take")
   349         (map (apsnd Drule.zero_var_indexes)
   350           (conjuncts dbinds deflation_take_thm)) thy
   351 
   352     (* prove strictness of take functions *)
   353     fun prove_take_strict (deflation_take, dbind) thy =
   354       let
   355         val take_strict_thm =
   356             Drule.zero_var_indexes
   357               (@{thm deflation_strict} OF [deflation_take])
   358       in
   359         add_qualified_simp_thm "take_strict" (dbind, take_strict_thm) thy
   360       end
   361     val (take_strict_thms, thy) =
   362       fold_map prove_take_strict
   363         (deflation_take_thms ~~ dbinds) thy
   364 
   365     (* prove take/take rules *)
   366     fun prove_take_take ((chain_take, deflation_take), dbind) thy =
   367       let
   368         val take_take_thm =
   369             Drule.zero_var_indexes
   370               (@{thm deflation_chain_min} OF [chain_take, deflation_take])
   371       in
   372         add_qualified_thm "take_take" (dbind, take_take_thm) thy
   373       end
   374     val (_, thy) =
   375       fold_map prove_take_take
   376         (chain_take_thms ~~ deflation_take_thms ~~ dbinds) thy
   377 
   378     (* prove take_below rules *)
   379     fun prove_take_below (deflation_take, dbind) thy =
   380       let
   381         val take_below_thm =
   382             Drule.zero_var_indexes
   383               (@{thm deflation.below} OF [deflation_take])
   384       in
   385         add_qualified_thm "take_below" (dbind, take_below_thm) thy
   386       end
   387     val (_, thy) =
   388       fold_map prove_take_below
   389         (deflation_take_thms ~~ dbinds) thy
   390 
   391     (* define finiteness predicates *)
   392     fun define_finite_const ((dbind, take_const), (lhsT, _)) thy =
   393       let
   394         val finite_type = lhsT --> boolT
   395         val finite_bind = Binding.suffix_name "_finite" dbind
   396         val (finite_const, thy) =
   397           Sign.declare_const_global ((finite_bind, finite_type), NoSyn) thy
   398         val x = Free ("x", lhsT)
   399         val n = Free ("n", natT)
   400         val finite_rhs =
   401           lambda x (HOLogic.exists_const natT $
   402             (lambda n (mk_eq (mk_capply (take_const $ n, x), x))))
   403         val finite_eqn = Logic.mk_equals (finite_const, finite_rhs)
   404         val (finite_def_thm, thy) =
   405             add_qualified_def "finite_def" (dbind, finite_eqn) thy
   406       in ((finite_const, finite_def_thm), thy) end
   407     val ((finite_consts, finite_defs), thy) = thy
   408       |> fold_map define_finite_const (dbinds ~~ take_consts ~~ dom_eqns)
   409       |>> ListPair.unzip
   410 
   411     val result =
   412       {
   413         take_consts = take_consts,
   414         take_defs = take_defs,
   415         chain_take_thms = chain_take_thms,
   416         take_0_thms = take_0_thms,
   417         take_Suc_thms = take_Suc_thms,
   418         deflation_take_thms = deflation_take_thms,
   419         take_strict_thms = take_strict_thms,
   420         finite_consts = finite_consts,
   421         finite_defs = finite_defs
   422       }
   423 
   424   in
   425     (result, thy)
   426   end
   427 
   428 fun prove_finite_take_induct
   429     (spec : (binding * iso_info) list)
   430     (take_info : take_info)
   431     (lub_take_thms : thm list)
   432     (thy : theory) =
   433   let
   434     val dbinds = map fst spec
   435     val iso_infos = map snd spec
   436     val absTs = map #absT iso_infos
   437     val {take_consts, ...} = take_info
   438     val {chain_take_thms, take_0_thms, take_Suc_thms, ...} = take_info
   439     val {finite_consts, finite_defs, ...} = take_info
   440 
   441     val decisive_lemma =
   442       let
   443         fun iso_locale (info : iso_info) =
   444             @{thm iso.intro} OF [#abs_inverse info, #rep_inverse info]
   445         val iso_locale_thms = map iso_locale iso_infos
   446         val decisive_abs_rep_thms =
   447             map (fn x => @{thm decisive_abs_rep} OF [x]) iso_locale_thms
   448         val n = Free ("n", @{typ nat})
   449         fun mk_decisive t =
   450             Const (@{const_name decisive}, fastype_of t --> boolT) $ t
   451         fun f take_const = mk_decisive (take_const $ n)
   452         val goal = mk_trp (foldr1 mk_conj (map f take_consts))
   453         val rules0 = @{thm decisive_bottom} :: take_0_thms
   454         val rules1 =
   455             take_Suc_thms @ decisive_abs_rep_thms
   456             @ @{thms decisive_ID decisive_ssum_map decisive_sprod_map}
   457         val tac = EVERY [
   458             rtac @{thm nat.induct} 1,
   459             simp_tac (HOL_ss addsimps rules0) 1,
   460             asm_simp_tac (HOL_ss addsimps rules1) 1]
   461       in Goal.prove_global thy [] [] goal (K tac) end
   462     fun conjuncts 1 thm = [thm]
   463       | conjuncts n thm = let
   464           val thmL = thm RS @{thm conjunct1}
   465           val thmR = thm RS @{thm conjunct2}
   466         in thmL :: conjuncts (n-1) thmR end
   467     val decisive_thms = conjuncts (length spec) decisive_lemma
   468 
   469     fun prove_finite_thm (absT, finite_const) =
   470       let
   471         val goal = mk_trp (finite_const $ Free ("x", absT))
   472         val tac =
   473             EVERY [
   474             rewrite_goals_tac finite_defs,
   475             rtac @{thm lub_ID_finite} 1,
   476             resolve_tac chain_take_thms 1,
   477             resolve_tac lub_take_thms 1,
   478             resolve_tac decisive_thms 1]
   479       in
   480         Goal.prove_global thy [] [] goal (K tac)
   481       end
   482     val finite_thms =
   483         map prove_finite_thm (absTs ~~ finite_consts)
   484 
   485     fun prove_take_induct ((ch_take, lub_take), decisive) =
   486         Drule.export_without_context
   487           (@{thm lub_ID_finite_take_induct} OF [ch_take, lub_take, decisive])
   488     val take_induct_thms =
   489         map prove_take_induct
   490           (chain_take_thms ~~ lub_take_thms ~~ decisive_thms)
   491 
   492     val thy = thy
   493         |> fold (snd oo add_qualified_thm "finite")
   494             (dbinds ~~ finite_thms)
   495         |> fold (snd oo add_qualified_thm "take_induct")
   496             (dbinds ~~ take_induct_thms)
   497   in
   498     ((finite_thms, take_induct_thms), thy)
   499   end
   500 
   501 fun add_lub_take_theorems
   502     (spec : (binding * iso_info) list)
   503     (take_info : take_info)
   504     (lub_take_thms : thm list)
   505     (thy : theory) =
   506   let
   507 
   508     (* retrieve components of spec *)
   509     val dbinds = map fst spec
   510     val iso_infos = map snd spec
   511     val absTs = map #absT iso_infos
   512     val repTs = map #repT iso_infos
   513     val {chain_take_thms, ...} = take_info
   514 
   515     (* prove take lemmas *)
   516     fun prove_take_lemma ((chain_take, lub_take), dbind) thy =
   517       let
   518         val take_lemma =
   519             Drule.export_without_context
   520               (@{thm lub_ID_take_lemma} OF [chain_take, lub_take])
   521       in
   522         add_qualified_thm "take_lemma" (dbind, take_lemma) thy
   523       end
   524     val (take_lemma_thms, thy) =
   525       fold_map prove_take_lemma
   526         (chain_take_thms ~~ lub_take_thms ~~ dbinds) thy
   527 
   528     (* prove reach lemmas *)
   529     fun prove_reach_lemma ((chain_take, lub_take), dbind) thy =
   530       let
   531         val thm =
   532             Drule.zero_var_indexes
   533               (@{thm lub_ID_reach} OF [chain_take, lub_take])
   534       in
   535         add_qualified_thm "reach" (dbind, thm) thy
   536       end
   537     val (reach_thms, thy) =
   538       fold_map prove_reach_lemma
   539         (chain_take_thms ~~ lub_take_thms ~~ dbinds) thy
   540 
   541     (* test for finiteness of domain definitions *)
   542     local
   543       val types = [@{type_name ssum}, @{type_name sprod}]
   544       fun finite d T = if member (op =) absTs T then d else finite' d T
   545       and finite' d (Type (c, Ts)) =
   546           let val d' = d andalso member (op =) types c
   547           in forall (finite d') Ts end
   548         | finite' _ _ = true
   549     in
   550       val is_finite = forall (finite true) repTs
   551     end
   552 
   553     val ((_, take_induct_thms), thy) =
   554       if is_finite
   555       then
   556         let
   557           val ((finites, take_inducts), thy) =
   558               prove_finite_take_induct spec take_info lub_take_thms thy
   559         in
   560           ((SOME finites, take_inducts), thy)
   561         end
   562       else
   563         let
   564           fun prove_take_induct (chain_take, lub_take) =
   565               Drule.zero_var_indexes
   566                 (@{thm lub_ID_take_induct} OF [chain_take, lub_take])
   567           val take_inducts =
   568               map prove_take_induct (chain_take_thms ~~ lub_take_thms)
   569           val thy = fold (snd oo add_qualified_thm "take_induct")
   570                          (dbinds ~~ take_inducts) thy
   571         in
   572           ((NONE, take_inducts), thy)
   573         end
   574 
   575     val result =
   576       {
   577         take_consts         = #take_consts take_info,
   578         take_defs           = #take_defs take_info,
   579         chain_take_thms     = #chain_take_thms take_info,
   580         take_0_thms         = #take_0_thms take_info,
   581         take_Suc_thms       = #take_Suc_thms take_info,
   582         deflation_take_thms = #deflation_take_thms take_info,
   583         take_strict_thms    = #take_strict_thms take_info,
   584         finite_consts       = #finite_consts take_info,
   585         finite_defs         = #finite_defs take_info,
   586         lub_take_thms       = lub_take_thms,
   587         reach_thms          = reach_thms,
   588         take_lemma_thms     = take_lemma_thms,
   589         is_finite           = is_finite,
   590         take_induct_thms    = take_induct_thms
   591       }
   592   in
   593     (result, thy)
   594   end
   595 
   596 end