src/HOL/Codatatype/Tools/bnf_util.ML
author traytel
Sun, 16 Sep 2012 10:33:25 +0200
changeset 50410 323414474c1f
parent 50381 3edd1c90f6e6
child 50440 f27f83f71e94
permissions -rw-r--r--
use strip_typeN in bnf_def (instead of repairing strip_type)
     1 (*  Title:      HOL/Codatatype/Tools/bnf_util.ML
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Copyright   2012
     4 
     5 Library for bounded natural functors.
     6 *)
     7 
     8 signature BNF_UTIL =
     9 sig
    10   val map3: ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
    11   val map4: ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
    12   val map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
    13     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list
    14   val map6: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g) ->
    15     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list
    16   val map7: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h) ->
    17     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list
    18   val map8: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i) ->
    19     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list -> 'i list
    20   val map9: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j) ->
    21     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
    22     'i list -> 'j list
    23   val map10: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k) ->
    24     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
    25     'i list -> 'j list -> 'k list
    26   val map11: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k -> 'l) ->
    27     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
    28     'i list -> 'j list -> 'k list -> 'l list
    29   val map12: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k -> 'l -> 'm) ->
    30     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
    31     'i list -> 'j list -> 'k list -> 'l list -> 'm list
    32   val fold_map2: ('a -> 'b -> 'c -> 'd * 'c) -> 'a list -> 'b list -> 'c -> 'd list * 'c
    33   val fold_map3: ('a -> 'b -> 'c -> 'd -> 'e * 'd) ->
    34     'a list -> 'b list -> 'c list -> 'd -> 'e list * 'd
    35   val fold_map4: ('a -> 'b -> 'c -> 'd -> 'e -> 'f * 'e) ->
    36     'a list -> 'b list -> 'c list -> 'd list -> 'e -> 'f list * 'e
    37   val fold_map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g * 'f) ->
    38     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f -> 'g list * 'f
    39   val fold_map6: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h * 'g) ->
    40     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g -> 'h list * 'g
    41   val fold_map7: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i * 'h) ->
    42     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h -> 'i list * 'h
    43   val interleave: 'a list -> 'a list -> 'a list
    44   val transpose: 'a list list -> 'a list list
    45   val seq_conds: (bool -> 'a -> 'b) -> int -> int -> 'a list -> 'b list
    46 
    47   val mk_fresh_names: Proof.context -> int -> string -> string list * Proof.context
    48   val mk_TFrees: int -> Proof.context -> typ list * Proof.context
    49   val mk_TFreess: int list -> Proof.context -> typ list list * Proof.context
    50   val mk_TFrees': sort list -> Proof.context -> typ list * Proof.context
    51   val mk_Frees: string -> typ list -> Proof.context -> term list * Proof.context
    52   val mk_Freess: string -> typ list list -> Proof.context -> term list list * Proof.context
    53   val mk_Freesss: string -> typ list list list -> Proof.context ->
    54     term list list list * Proof.context
    55   val mk_Freessss: string -> typ list list list list -> Proof.context ->
    56     term list list list list * Proof.context
    57   val mk_Frees': string -> typ list -> Proof.context ->
    58     (term list * (string * typ) list) * Proof.context
    59   val mk_Freess': string -> typ list list -> Proof.context ->
    60     (term list list * (string * typ) list list) * Proof.context
    61 
    62   val strip_typeN: int -> typ -> typ list * typ
    63 
    64   val mk_optionT: typ -> typ
    65   val mk_relT: typ * typ -> typ
    66   val dest_relT: typ -> typ * typ
    67   val mk_sumT: typ * typ -> typ
    68 
    69   val ctwo: term
    70   val fst_const: typ -> term
    71   val snd_const: typ -> term
    72   val Id_const: typ -> term
    73 
    74   val mk_Ball: term -> term -> term
    75   val mk_Bex: term -> term -> term
    76   val mk_Card_order: term -> term
    77   val mk_Field: term -> term
    78   val mk_Gr: term -> term -> term
    79   val mk_IfN: typ -> term list -> term list -> term
    80   val mk_Trueprop_eq: term * term -> term
    81   val mk_UNION: term -> term -> term
    82   val mk_Union: typ -> term
    83   val mk_card_binop: string -> (typ * typ -> typ) -> term -> term -> term
    84   val mk_card_of: term -> term
    85   val mk_card_order: term -> term
    86   val mk_ccexp: term -> term -> term
    87   val mk_cexp: term -> term -> term
    88   val mk_cinfinite: term -> term
    89   val mk_collect: term list -> typ -> term
    90   val mk_converse: term -> term
    91   val mk_cprod: term -> term -> term
    92   val mk_csum: term -> term -> term
    93   val mk_dir_image: term -> term -> term
    94   val mk_image: term -> term
    95   val mk_in: term list -> term list -> typ -> term
    96   val mk_ordLeq: term -> term -> term
    97   val mk_rel_comp: term * term -> term
    98   val mk_subset: term -> term -> term
    99   val mk_wpull: term -> term -> term -> term -> term -> (term * term) option -> term -> term -> term
   100 
   101   val list_all_free: term list -> term -> term
   102   val list_exists_free: term list -> term -> term
   103 
   104   (*parameterized terms*)
   105   val mk_nthN: int -> term -> int -> term
   106 
   107   (*parameterized thms*)
   108   val mk_Un_upper: int -> int -> thm
   109   val mk_conjIN: int -> thm
   110   val mk_conjunctN: int -> int -> thm
   111   val conj_dests: int -> thm -> thm list
   112   val mk_disjIN: int -> int -> thm
   113   val mk_nthI: int -> int -> thm
   114   val mk_nth_conv: int -> int -> thm
   115   val mk_ordLeq_csum: int -> int -> thm -> thm
   116   val mk_UnIN: int -> int -> thm
   117 
   118   val ctrans: thm
   119   val o_apply: thm
   120   val mk_sym: thm -> thm
   121   val mk_trans: thm -> thm -> thm
   122   val mk_unabs_def: int -> thm -> thm
   123 
   124   val mk_permute: ''a list -> ''a list -> 'b list -> 'b list
   125   val find_indices: ''a list -> ''a list -> int list
   126 
   127   val certifyT: Proof.context -> typ -> ctyp
   128   val certify: Proof.context -> term -> cterm
   129 
   130   val typedef: bool -> binding option -> binding * (string * sort) list * mixfix -> term ->
   131     (binding * binding) option -> tactic -> local_theory -> (string * Typedef.info) * local_theory
   132 
   133   val WRAP: ('a -> tactic) -> ('a -> tactic) -> 'a list -> tactic -> tactic
   134   val WRAP': ('a -> int -> tactic) -> ('a -> int -> tactic) -> 'a list -> (int -> tactic) -> int ->
   135     tactic
   136   val CONJ_WRAP_GEN: tactic -> ('a -> tactic) -> 'a list -> tactic
   137   val CONJ_WRAP_GEN': (int -> tactic) -> ('a -> int -> tactic) -> 'a list -> int -> tactic
   138   val CONJ_WRAP: ('a -> tactic) -> 'a list -> tactic
   139   val CONJ_WRAP': ('a -> int -> tactic) -> 'a list -> int -> tactic
   140 end;
   141 
   142 structure BNF_Util : BNF_UTIL =
   143 struct
   144 
   145 (* Library proper *)
   146 
   147 fun map3 _ [] [] [] = []
   148   | map3 f (x1::x1s) (x2::x2s) (x3::x3s) = f x1 x2 x3 :: map3 f x1s x2s x3s
   149   | map3 _ _ _ _ = raise ListPair.UnequalLengths;
   150 
   151 fun map4 _ [] [] [] [] = []
   152   | map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) = f x1 x2 x3 x4 :: map4 f x1s x2s x3s x4s
   153   | map4 _ _ _ _ _ = raise ListPair.UnequalLengths;
   154 
   155 fun map5 _ [] [] [] [] [] = []
   156   | map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) =
   157     f x1 x2 x3 x4 x5 :: map5 f x1s x2s x3s x4s x5s
   158   | map5 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   159 
   160 fun map6 _ [] [] [] [] [] [] = []
   161   | map6 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) =
   162     f x1 x2 x3 x4 x5 x6 :: map6 f x1s x2s x3s x4s x5s x6s
   163   | map6 _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   164 
   165 fun map7 _ [] [] [] [] [] [] [] = []
   166   | map7 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) =
   167     f x1 x2 x3 x4 x5 x6 x7 :: map7 f x1s x2s x3s x4s x5s x6s x7s
   168   | map7 _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   169 
   170 fun map8 _ [] [] [] [] [] [] [] [] = []
   171   | map8 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) (x8::x8s) =
   172     f x1 x2 x3 x4 x5 x6 x7 x8 :: map8 f x1s x2s x3s x4s x5s x6s x7s x8s
   173   | map8 _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   174 
   175 fun map9 _ [] [] [] [] [] [] [] [] [] = []
   176   | map9 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
   177       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) =
   178     f x1 x2 x3 x4 x5 x6 x7 x8 x9 :: map9 f x1s x2s x3s x4s x5s x6s x7s x8s x9s
   179   | map9 _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   180 
   181 fun map10 _ [] [] [] [] [] [] [] [] [] [] = []
   182   | map10 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
   183       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) =
   184     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 :: map10 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s
   185   | map10 _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   186 
   187 fun map11 _ [] [] [] [] [] [] [] [] [] [] [] = []
   188   | map11 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
   189       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) (x11::x11s) =
   190     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 :: map11 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s x11s
   191   | map11 _ _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   192 
   193 fun map12 _ [] [] [] [] [] [] [] [] [] [] [] [] = []
   194   | map12 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
   195       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) (x11::x11s) (x12::x12s) =
   196     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ::
   197       map12 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s x11s x12s
   198   | map12 _ _ _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   199 
   200 fun fold_map2 _ [] [] acc = ([], acc)
   201   | fold_map2 f (x1::x1s) (x2::x2s) acc =
   202     let
   203       val (x, acc') = f x1 x2 acc;
   204       val (xs, acc'') = fold_map2 f x1s x2s acc';
   205     in (x :: xs, acc'') end
   206   | fold_map2 _ _ _ _ = raise ListPair.UnequalLengths;
   207 
   208 fun fold_map3 _ [] [] [] acc = ([], acc)
   209   | fold_map3 f (x1::x1s) (x2::x2s) (x3::x3s) acc =
   210     let
   211       val (x, acc') = f x1 x2 x3 acc;
   212       val (xs, acc'') = fold_map3 f x1s x2s x3s acc';
   213     in (x :: xs, acc'') end
   214   | fold_map3 _ _ _ _ _ = raise ListPair.UnequalLengths;
   215 
   216 fun fold_map4 _ [] [] [] [] acc = ([], acc)
   217   | fold_map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) acc =
   218     let
   219       val (x, acc') = f x1 x2 x3 x4 acc;
   220       val (xs, acc'') = fold_map4 f x1s x2s x3s x4s acc';
   221     in (x :: xs, acc'') end
   222   | fold_map4 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   223 
   224 fun fold_map5 _ [] [] [] [] [] acc = ([], acc)
   225   | fold_map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) acc =
   226     let
   227       val (x, acc') = f x1 x2 x3 x4 x5 acc;
   228       val (xs, acc'') = fold_map5 f x1s x2s x3s x4s x5s acc';
   229     in (x :: xs, acc'') end
   230   | fold_map5 _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   231 
   232 fun fold_map6 _ [] [] [] [] [] [] acc = ([], acc)
   233   | fold_map6 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) acc =
   234     let
   235       val (x, acc') = f x1 x2 x3 x4 x5 x6 acc;
   236       val (xs, acc'') = fold_map6 f x1s x2s x3s x4s x5s x6s acc';
   237     in (x :: xs, acc'') end
   238   | fold_map6 _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   239 
   240 fun fold_map7 _ [] [] [] [] [] [] [] acc = ([], acc)
   241   | fold_map7 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) acc =
   242     let
   243       val (x, acc') = f x1 x2 x3 x4 x5 x6 x7 acc;
   244       val (xs, acc'') = fold_map7 f x1s x2s x3s x4s x5s x6s x7s acc';
   245     in (x :: xs, acc'') end
   246   | fold_map7 _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
   247 
   248 (*stolen from ~~/src/HOL/Tools/SMT/smt_utils.ML*)
   249 fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt);
   250 fun certifyT ctxt = Thm.ctyp_of (Proof_Context.theory_of ctxt);
   251 
   252 (*TODO: is this really different from Typedef.add_typedef_global?*)
   253 fun typedef def opt_name typ set opt_morphs tac lthy =
   254   let
   255     val ((name, info), (lthy, lthy_old)) =
   256       lthy
   257       |> Typedef.add_typedef def opt_name typ set opt_morphs tac
   258       ||> `Local_Theory.restore;
   259     val phi = Proof_Context.export_morphism lthy_old lthy;
   260   in
   261     ((name, Typedef.transform_info phi info), lthy)
   262   end;
   263 
   264 (*Tactical WRAP surrounds a static given tactic (core) with two deterministic chains of tactics*)
   265 fun WRAP gen_before gen_after xs core_tac =
   266   fold_rev (fn x => fn tac => gen_before x THEN tac THEN gen_after x) xs core_tac;
   267 
   268 fun WRAP' gen_before gen_after xs core_tac =
   269   fold_rev (fn x => fn tac => gen_before x THEN' tac THEN' gen_after x) xs core_tac;
   270 
   271 fun CONJ_WRAP_GEN conj_tac gen_tac xs =
   272   let val (butlast, last) = split_last xs;
   273   in WRAP (fn thm => conj_tac THEN gen_tac thm) (K all_tac) butlast (gen_tac last) end;
   274 
   275 fun CONJ_WRAP_GEN' conj_tac gen_tac xs =
   276   let val (butlast, last) = split_last xs;
   277   in WRAP' (fn thm => conj_tac THEN' gen_tac thm) (K (K all_tac)) butlast (gen_tac last) end;
   278 
   279 (*not eta-converted because of monotype restriction*)
   280 fun CONJ_WRAP gen_tac = CONJ_WRAP_GEN (rtac conjI 1) gen_tac;
   281 fun CONJ_WRAP' gen_tac = CONJ_WRAP_GEN' (rtac conjI) gen_tac;
   282 
   283 
   284 
   285 (* Term construction *)
   286 
   287 (** Fresh variables **)
   288 
   289 val mk_TFrees' = apfst (map TFree) oo Variable.invent_types;
   290 
   291 fun mk_TFrees n = mk_TFrees' (replicate n HOLogic.typeS);
   292 val mk_TFreess = fold_map mk_TFrees;
   293 
   294 fun mk_names n x = if n = 1 then [x] else map (fn i => x ^ string_of_int i) (1 upto n);
   295 
   296 fun mk_fresh_names ctxt = (fn xs => Variable.variant_fixes xs ctxt) oo mk_names;
   297 fun mk_Frees x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => map2 (curry Free) xs Ts);
   298 fun mk_Freess x Tss = fold_map2 mk_Frees (mk_names (length Tss) x) Tss;
   299 fun mk_Freesss x Tsss = fold_map2 mk_Freess (mk_names (length Tsss) x) Tsss;
   300 fun mk_Freessss x Tssss = fold_map2 mk_Freesss (mk_names (length Tssss) x) Tssss;
   301 fun mk_Frees' x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => `(map Free) (xs ~~ Ts));
   302 fun mk_Freess' x Tss = fold_map2 mk_Frees' (mk_names (length Tss) x) Tss #>> split_list;
   303 
   304 
   305 (** Types **)
   306 
   307 fun strip_typeN 0 T = ([], T)
   308   | strip_typeN n (Type (@{type_name fun}, [T, T'])) = strip_typeN (n - 1) T' |>> cons T
   309   | strip_typeN n T = raise TYPE ("strip_typeN", [T], []);
   310 
   311 fun mk_optionT T = Type (@{type_name option}, [T]);
   312 val mk_relT = HOLogic.mk_setT o HOLogic.mk_prodT;
   313 val dest_relT = HOLogic.dest_prodT o HOLogic.dest_setT;
   314 fun mk_sumT (LT, RT) = Type (@{type_name Sum_Type.sum}, [LT, RT]);
   315 fun mk_partial_funT (ranT, domT) = domT --> mk_optionT ranT;
   316 
   317 
   318 (** Constants **)
   319 
   320 fun fst_const T = Const (@{const_name fst}, T --> fst (HOLogic.dest_prodT T));
   321 fun snd_const T = Const (@{const_name snd}, T --> snd (HOLogic.dest_prodT T));
   322 fun Id_const T = Const (@{const_name Id}, mk_relT (T, T));
   323 
   324 
   325 (** Operators **)
   326 
   327 val mk_Trueprop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
   328 
   329 fun mk_IfN _ _ [t] = t
   330   | mk_IfN T (c :: cs) (t :: ts) =
   331     Const (@{const_name If}, HOLogic.boolT --> T --> T --> T) $ c $ t $ mk_IfN T cs ts;
   332 
   333 fun mk_converse R =
   334   let
   335     val RT = dest_relT (fastype_of R);
   336     val RST = mk_relT (snd RT, fst RT);
   337   in Const (@{const_name converse}, fastype_of R --> RST) $ R end;
   338 
   339 fun mk_rel_comp (R, S) =
   340   let
   341     val RT = fastype_of R;
   342     val ST = fastype_of S;
   343     val RST = mk_relT (fst (dest_relT RT), snd (dest_relT ST));
   344   in Const (@{const_name relcomp}, RT --> ST --> RST) $ R $ S end;
   345 
   346 fun mk_Gr A f =
   347   let val ((AT, BT), FT) = `dest_funT (fastype_of f);
   348   in Const (@{const_name Gr}, HOLogic.mk_setT AT --> FT --> mk_relT (AT, BT)) $ A $ f end;
   349 
   350 fun mk_image f =
   351   let val (T, U) = dest_funT (fastype_of f);
   352   in Const (@{const_name image},
   353     (T --> U) --> (HOLogic.mk_setT T) --> (HOLogic.mk_setT U)) $ f end;
   354 
   355 fun mk_Ball X f =
   356   Const (@{const_name Ball}, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
   357 
   358 fun mk_Bex X f =
   359   Const (@{const_name Bex}, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
   360 
   361 fun mk_UNION X f =
   362   let val (T, U) = dest_funT (fastype_of f);
   363   in Const (@{const_name SUPR}, fastype_of X --> (T --> U) --> U) $ X $ f end;
   364 
   365 fun mk_Union T =
   366   Const (@{const_name Sup}, HOLogic.mk_setT (HOLogic.mk_setT T) --> HOLogic.mk_setT T);
   367 
   368 fun mk_Field r =
   369   let val T = fst (dest_relT (fastype_of r));
   370   in Const (@{const_name Field}, mk_relT (T, T) --> HOLogic.mk_setT T) $ r end;
   371 
   372 fun mk_card_order bd =
   373   let
   374     val T = fastype_of bd;
   375     val AT = fst (dest_relT T);
   376   in
   377     Const (@{const_name card_order_on}, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
   378       (HOLogic.mk_UNIV AT) $ bd
   379   end;
   380 
   381 fun mk_Card_order bd =
   382   let
   383     val T = fastype_of bd;
   384     val AT = fst (dest_relT T);
   385   in
   386     Const (@{const_name card_order_on}, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
   387       mk_Field bd $ bd
   388   end;
   389 
   390 fun mk_cinfinite bd =
   391   Const (@{const_name cinfinite}, fastype_of bd --> HOLogic.boolT) $ bd;
   392 
   393 fun mk_ordLeq t1 t2 =
   394   HOLogic.mk_mem (HOLogic.mk_prod (t1, t2),
   395     Const (@{const_name ordLeq}, mk_relT (fastype_of t1, fastype_of t2)));
   396 
   397 fun mk_card_of A =
   398   let
   399     val AT = fastype_of A;
   400     val T = HOLogic.dest_setT AT;
   401   in
   402     Const (@{const_name card_of}, AT --> mk_relT (T, T)) $ A
   403   end;
   404 
   405 fun mk_dir_image r f =
   406   let val (T, U) = dest_funT (fastype_of f);
   407   in Const (@{const_name dir_image}, mk_relT (T, T) --> (T --> U) --> mk_relT (U, U)) $ r $ f end;
   408 
   409 (*FIXME: "x"?*)
   410 (*(nth sets i) must be of type "T --> 'ai set"*)
   411 fun mk_in As sets T =
   412   let
   413     fun in_single set A =
   414       let val AT = fastype_of A;
   415       in Const (@{const_name less_eq},
   416         AT --> AT --> HOLogic.boolT) $ (set $ Free ("x", T)) $ A end;
   417   in
   418     if length sets > 0
   419     then HOLogic.mk_Collect ("x", T, foldr1 (HOLogic.mk_conj) (map2 in_single sets As))
   420     else HOLogic.mk_UNIV T
   421   end;
   422 
   423 fun mk_wpull A B1 B2 f1 f2 pseudo p1 p2 =
   424   let
   425     val AT = fastype_of A;
   426     val BT1 = fastype_of B1;
   427     val BT2 = fastype_of B2;
   428     val FT1 = fastype_of f1;
   429     val FT2 = fastype_of f2;
   430     val PT1 = fastype_of p1;
   431     val PT2 = fastype_of p2;
   432     val T1 = HOLogic.dest_setT BT1;
   433     val T2 = HOLogic.dest_setT BT2;
   434     val domP = domain_type PT1;
   435     val ranF = range_type FT1;
   436     val _ = if is_some pseudo orelse
   437                (HOLogic.dest_setT AT = domP andalso
   438                domain_type FT1 = T1 andalso
   439                domain_type FT2 = T2 andalso
   440                domain_type PT2 = domP andalso
   441                range_type PT1 = T1 andalso
   442                range_type PT2 = T2 andalso
   443                range_type FT2 = ranF)
   444       then () else raise TYPE ("mk_wpull", [BT1, BT2, FT1, FT2, PT1, PT2], []);
   445   in
   446     (case pseudo of
   447       NONE => Const (@{const_name wpull},
   448         AT --> BT1 --> BT2 --> FT1 --> FT2 --> PT1 --> PT2 --> HOLogic.boolT) $
   449         A $ B1 $ B2 $ f1 $ f2 $ p1 $ p2
   450     | SOME (e1, e2) => Const (@{const_name wppull},
   451         AT --> BT1 --> BT2 --> FT1 --> FT2 --> fastype_of e1 --> fastype_of e2 -->
   452           PT1 --> PT2 --> HOLogic.boolT) $
   453         A $ B1 $ B2 $ f1 $ f2 $ e1 $ e2 $ p1 $ p2)
   454   end;
   455 
   456 fun mk_subset t1 t2 =
   457   Const (@{const_name less_eq}, (fastype_of t1) --> (fastype_of t2) --> HOLogic.boolT) $ t1 $ t2;
   458 
   459 fun mk_card_binop binop typop t1 t2 =
   460   let
   461     val (T1, relT1) = `(fst o dest_relT) (fastype_of t1);
   462     val (T2, relT2) = `(fst o dest_relT) (fastype_of t2);
   463   in
   464     Const (binop, relT1 --> relT2 --> mk_relT (typop (T1, T2), typop (T1, T2))) $ t1 $ t2
   465   end;
   466 
   467 val mk_csum = mk_card_binop @{const_name csum} mk_sumT;
   468 val mk_cprod = mk_card_binop @{const_name cprod} HOLogic.mk_prodT;
   469 val mk_cexp = mk_card_binop @{const_name cexp} mk_partial_funT;
   470 val mk_ccexp = mk_card_binop @{const_name ccexp} mk_partial_funT;
   471 val ctwo = @{term ctwo};
   472 
   473 fun mk_collect xs defT =
   474   let val T = (case xs of [] => defT | (x::_) => fastype_of x);
   475   in Const (@{const_name collect}, HOLogic.mk_setT T --> T) $ (HOLogic.mk_set T xs) end;
   476 
   477 fun mk_permute src dest xs = map (nth xs o (fn x => find_index ((curry op =) x) src)) dest;
   478 
   479 val list_all_free =
   480   fold_rev (fn free => fn P =>
   481     let val (x, T) = Term.dest_Free free;
   482     in HOLogic.all_const T $ Term.absfree (x, T) P end);
   483 
   484 val list_exists_free =
   485   fold_rev (fn free => fn P =>
   486     let val (x, T) = Term.dest_Free free;
   487     in HOLogic.exists_const T $ Term.absfree (x, T) P end);
   488 
   489 fun find_indices xs ys = map_filter I
   490   (map_index (fn (i, y) => if member (op =) xs y then SOME i else NONE) ys);
   491 
   492 fun mk_trans thm1 thm2 = trans OF [thm1, thm2];
   493 fun mk_sym thm = sym OF [thm];
   494 
   495 (*TODO: antiquote heavily used theorems once*)
   496 val ctrans = @{thm ordLeq_transitive};
   497 val o_apply = @{thm o_apply};
   498 
   499 fun mk_nthN 1 t 1 = t
   500   | mk_nthN _ t 1 = HOLogic.mk_fst t
   501   | mk_nthN 2 t 2 = HOLogic.mk_snd t
   502   | mk_nthN n t m = mk_nthN (n - 1) (HOLogic.mk_snd t) (m - 1);
   503 
   504 fun mk_nth_conv n m =
   505   let
   506     fun thm b = if b then @{thm fst_snd} else @{thm snd_snd}
   507     fun mk_nth_conv _ 1 1 = refl
   508       | mk_nth_conv _ _ 1 = @{thm fst_conv}
   509       | mk_nth_conv _ 2 2 = @{thm snd_conv}
   510       | mk_nth_conv b _ 2 = @{thm snd_conv} RS thm b
   511       | mk_nth_conv b n m = mk_nth_conv false (n - 1) (m - 1) RS thm b;
   512   in mk_nth_conv (not (m = n)) n m end;
   513 
   514 fun mk_nthI 1 1 = @{thm TrueE[OF TrueI]}
   515   | mk_nthI n m = fold (curry op RS) (replicate (m - 1) @{thm sndI})
   516     (if m = n then @{thm TrueE[OF TrueI]} else @{thm fstI});
   517 
   518 fun mk_conjunctN 1 1 = @{thm TrueE[OF TrueI]}
   519   | mk_conjunctN _ 1 = conjunct1
   520   | mk_conjunctN 2 2 = conjunct2
   521   | mk_conjunctN n m = conjunct2 RS (mk_conjunctN (n - 1) (m - 1));
   522 
   523 fun conj_dests n thm = map (fn k => thm RS mk_conjunctN n k) (1 upto n);
   524 
   525 fun mk_conjIN 1 = @{thm TrueE[OF TrueI]}
   526   | mk_conjIN n = mk_conjIN (n - 1) RSN (2, conjI);
   527 
   528 fun mk_disjIN 1 1 = @{thm TrueE[OF TrueI]}
   529   | mk_disjIN _ 1 = disjI1
   530   | mk_disjIN 2 2 = disjI2
   531   | mk_disjIN n m = (mk_disjIN (n - 1) (m - 1)) RS disjI2;
   532 
   533 fun mk_ordLeq_csum 1 1 thm = thm
   534   | mk_ordLeq_csum _ 1 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum1}]
   535   | mk_ordLeq_csum 2 2 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum2}]
   536   | mk_ordLeq_csum n m thm = @{thm ordLeq_transitive} OF
   537     [mk_ordLeq_csum (n - 1) (m - 1) thm, @{thm ordLeq_csum2[OF Card_order_csum]}];
   538 
   539 local
   540   fun mk_Un_upper' 0 = subset_refl
   541     | mk_Un_upper' 1 = @{thm Un_upper1}
   542     | mk_Un_upper' k = Library.foldr (op RS o swap)
   543       (replicate (k - 1) @{thm subset_trans[OF Un_upper1]}, @{thm Un_upper1});
   544 in
   545   fun mk_Un_upper 1 1 = subset_refl
   546     | mk_Un_upper n 1 = mk_Un_upper' (n - 2) RS @{thm subset_trans[OF Un_upper1]}
   547     | mk_Un_upper n m = mk_Un_upper' (n - m) RS @{thm subset_trans[OF Un_upper2]};
   548 end;
   549 
   550 local
   551   fun mk_UnIN' 0 = @{thm UnI2}
   552     | mk_UnIN' m = mk_UnIN' (m - 1) RS @{thm UnI1};
   553 in
   554   fun mk_UnIN 1 1 = @{thm TrueE[OF TrueI]}
   555     | mk_UnIN n 1 = Library.foldr1 (op RS o swap) (replicate (n - 1) @{thm UnI1})
   556     | mk_UnIN n m = mk_UnIN' (n - m)
   557 end;
   558 
   559 fun interleave xs ys = flat (map2 (fn x => fn y => [x, y]) xs ys);
   560 
   561 fun transpose [] = []
   562   | transpose ([] :: xss) = transpose xss
   563   | transpose xss = map hd xss :: transpose (map tl xss);
   564 
   565 fun seq_conds f n k xs =
   566   if k = n then
   567     map (f false) (take (k - 1) xs)
   568   else
   569     let val (negs, pos) = split_last (take k xs) in
   570       map (f false) negs @ [f true pos]
   571     end;
   572 
   573 fun mk_unabs_def 0 thm = thm
   574   | mk_unabs_def n thm = mk_unabs_def (n - 1) thm RS @{thm spec[OF iffD1[OF fun_eq_iff]]};
   575 
   576 end;