src/Tools/isac/Knowledge/Rational.thy
author wneuper <Walther.Neuper@jku.at>
Thu, 04 Aug 2022 12:48:37 +0200
changeset 60509 2e0b7ca391dc
parent 60506 145e45cd7a0f
child 60515 03e19793d81e
permissions -rw-r--r--
polish naming in Rewrite_Order
     1 (* rationals, fractions of multivariate polynomials over the real field
     2    author: isac team
     3    Copyright (c) isac team 2002, 2013
     4    Use is subject to license terms.
     5 
     6    depends on Poly (and not on Atools), because 
     7    fractions with _normalised_ polynomials are canceled, added, etc.
     8 *)
     9 
    10 theory Rational 
    11 imports Poly GCD_Poly_ML
    12 begin
    13 
    14 section \<open>Constants for evaluation by \ <^rule_eval>\<close>
    15 consts
    16 
    17   is_expanded    :: "real => bool" ("_ is'_expanded")     (*RL->Poly.thy*)
    18   is_ratpolyexp  :: "real => bool" ("_ is'_ratpolyexp") 
    19   get_denominator :: "real => real"
    20   get_numerator   :: "real => real"           
    21 
    22 ML \<open>
    23 (*.the expression contains + - * ^ / only ?.*)
    24 fun is_ratpolyexp (Free _) = true
    25   | is_ratpolyexp (Const (\<^const_name>\<open>plus\<close>,_) $ Free _ $ Free _) = true
    26   | is_ratpolyexp (Const (\<^const_name>\<open>minus\<close>,_) $ Free _ $ Free _) = true
    27   | is_ratpolyexp (Const (\<^const_name>\<open>times\<close>,_) $ Free _ $ Free _) = true
    28   | is_ratpolyexp (Const (\<^const_name>\<open>realpow\<close>,_) $ Free _ $ Free _) = true
    29   | is_ratpolyexp (Const (\<^const_name>\<open>divide\<close>,_) $ Free _ $ Free _) = true
    30   | is_ratpolyexp (Const (\<^const_name>\<open>plus\<close>,_) $ t1 $ t2) = 
    31                ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
    32   | is_ratpolyexp (Const (\<^const_name>\<open>minus\<close>,_) $ t1 $ t2) = 
    33                ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
    34   | is_ratpolyexp (Const (\<^const_name>\<open>times\<close>,_) $ t1 $ t2) = 
    35                ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
    36   | is_ratpolyexp (Const (\<^const_name>\<open>realpow\<close>,_) $ t1 $ t2) = 
    37                ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
    38   | is_ratpolyexp (Const (\<^const_name>\<open>divide\<close>,_) $ t1 $ t2) = 
    39                ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
    40   | is_ratpolyexp t = if TermC.is_num t then true else false;
    41 
    42 (*("is_ratpolyexp", ("Rational.is_ratpolyexp", eval_is_ratpolyexp ""))*)
    43 fun eval_is_ratpolyexp (thmid:string) _ 
    44 		       (t as (Const (\<^const_name>\<open>Rational.is_ratpolyexp\<close>, _) $ arg)) ctxt =
    45     if is_ratpolyexp arg
    46     then SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
    47 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
    48     else SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
    49 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
    50   | eval_is_ratpolyexp _ _ _ _ = NONE; 
    51 
    52 (*("get_denominator", ("Rational.get_denominator", eval_get_denominator ""))*)
    53 fun eval_get_denominator (thmid:string) _ 
    54 		      (t as Const (\<^const_name>\<open>Rational.get_denominator\<close>, _) $
    55               (Const (\<^const_name>\<open>divide\<close>, _) $ _(*num*) $
    56                 denom)) ctxt = 
    57       SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt denom) "", 
    58 	            HOLogic.Trueprop $ (TermC.mk_equality (t, denom)))
    59   | eval_get_denominator _ _ _ _ = NONE; 
    60 
    61 (*("get_numerator", ("Rational.get_numerator", eval_get_numerator ""))*)
    62 fun eval_get_numerator (thmid:string) _ 
    63       (t as Const (\<^const_name>\<open>Rational.get_numerator\<close>, _) $
    64           (Const (\<^const_name>\<open>divide\<close>, _) $num
    65             $denom )) ctxt = 
    66     SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt num) "", 
    67 	    HOLogic.Trueprop $ (TermC.mk_equality (t, num)))
    68   | eval_get_numerator _ _ _ _ = NONE; 
    69 \<close>
    70 
    71 section \<open>Theorems for rewriting\<close>
    72 
    73 axiomatization (* naming due to Isabelle2002, but not contained in Isabelle2002; 
    74                   many thms are due to RL and can be removed with updating the equation solver;
    75                   TODO: replace by equivalent thms in recent Isabelle201x *) 
    76 where
    77   mult_cross:      "[| b ~= 0; d ~= 0 |] ==> (a / b = c / d) = (a * d = b * c)" and
    78   mult_cross1:     "   b ~= 0            ==> (a / b = c    ) = (a     = b * c)" and
    79   mult_cross2:     "           d ~= 0    ==> (a     = c / d) = (a * d =     c)" and
    80                   
    81   add_minus:       "a + b - b = a"(*RL->Poly.thy*) and
    82   add_minus1:      "a - b + b = a"(*RL->Poly.thy*) and
    83                   
    84   rat_mult:        "a / b * (c / d) = a * c / (b * d)"(*?Isa02*)  and
    85   rat_mult2:       "a / b *  c      = a * c /  b     "(*?Isa02*) and
    86 
    87   rat_mult_poly_l: "c is_polyexp ==> c * (a / b) = c * a /  b" and
    88   rat_mult_poly_r: "c is_polyexp ==> (a / b) * c = a * c /  b" and
    89 
    90 (*real_times_divide1_eq .. Isa02*) 
    91   real_times_divide_1_eq:  "-1 * (c / d) = -1 * c / d " and
    92   real_times_divide_num:   "a is_num ==> a * (c / d) = a * c / d " and
    93 
    94   real_mult_div_cancel2:   "k ~= 0 ==> m * k / (n * k) = m / n" and
    95 (*real_mult_div_cancel1:   "k ~= 0 ==> k * m / (k * n) = m / n"..Isa02*)
    96 			  
    97   real_divide_divide1:     "y ~= 0 ==> (u / v) / (y / z) = (u / v) * (z / y)" and
    98   real_divide_divide1_mg:  "y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)" and
    99 (*real_divide_divide2_eq:  "x / y / z = x / (y * z)"..Isa02*)
   100 			  
   101   rat_power:               "(a / b) \<up> n = (a \<up> n) / (b \<up> n)" and
   102 
   103   rat_add:         "[| a is_num; b is_num; c is_num; d is_num |] ==> 
   104 	           a / c + b / d = (a * d + b * c) / (c * d)" and
   105   rat_add_assoc:   "[| a is_num; b is_num; c is_num; d is_num |] ==> 
   106 	           a / c +(b / d + e) = (a * d + b * c)/(d * c) + e" and
   107   rat_add1:        "[| a is_num; b is_num; c is_num |] ==> 
   108 	           a / c + b / c = (a + b) / c" and
   109   rat_add1_assoc:   "[| a is_num; b is_num; c is_num |] ==> 
   110 	           a / c + (b / c + e) = (a + b) / c + e" and
   111   rat_add2:        "[| a is_num; b is_num; c is_num |] ==> 
   112 	           a / c + b = (a + b * c) / c" and
   113   rat_add2_assoc:  "[| a is_num; b is_num; c is_num |] ==> 
   114 	           a / c + (b + e) = (a + b * c) / c + e" and
   115   rat_add3:        "[| a is_num; b is_num; c is_num |] ==> 
   116 	           a + b / c = (a * c + b) / c" and
   117   rat_add3_assoc:   "[| a is_num; b is_num; c is_num |] ==> 
   118 	           a + (b / c + e) = (a * c + b) / c + e"
   119 
   120 section \<open>Cancellation and addition of fractions\<close>
   121 subsection \<open>Conversion term <--> poly\<close>
   122 subsubsection \<open>Convert a term to the internal representation of a multivariate polynomial\<close>
   123 ML \<open>
   124 fun monom_of_term vs (_, es) (t as Const (\<^const_name>\<open>zero_class.zero\<close>, _)) =
   125     (0, list_update es (find_index (curry op = t) vs) 1)
   126   | monom_of_term vs (c, es) (t as Const _) =
   127     (c, list_update es (find_index (curry op = t) vs) 1)
   128   | monom_of_term _ (c, es) (t as (Const (\<^const_name>\<open>numeral\<close>, _) $ _)) =
   129     (t |> HOLogic.dest_number |> snd |> curry op * c, es) (*several numerals in one monom*)
   130   | monom_of_term _ (c, es) (t as (Const (\<^const_name>\<open>uminus\<close>, _) $ _)) =
   131     (t |> HOLogic.dest_number |> snd |> curry op * c, es) (*several numerals in one monom*)
   132   | monom_of_term  vs (c, es) (t as Free _) =
   133     (c, list_update es (find_index (curry op = t) vs) 1)
   134   | monom_of_term  vs (c, es) (Const (\<^const_name>\<open>realpow\<close>, _) $ (b as Free _) $
   135       (e as Const (\<^const_name>\<open>numeral\<close>, _) $ _)) =
   136     (c, list_update es (find_index (curry op = b) vs) (e |> HOLogic.dest_number |> snd))
   137   | monom_of_term  vs (c, es) (Const (\<^const_name>\<open>realpow\<close>, _) $ (b as Free _) $
   138       (e as Const (\<^const_name>\<open>uminus\<close>, _) $ _)) =
   139     (c, list_update es (find_index (curry op = b) vs) (e |> HOLogic.dest_number |> snd))
   140 
   141   | monom_of_term vs (c, es) (Const (\<^const_name>\<open>times\<close>, _) $ m1 $ m2) =
   142     let val (c', es') = monom_of_term vs (c, es) m1
   143     in monom_of_term vs (c', es') m2 end
   144   | monom_of_term _ _ t = raise ERROR ("poly malformed 1 with " ^ UnparseC.term t)
   145 
   146 (*-------v------*)
   147 fun monoms_of_term vs (t as Const (\<^const_name>\<open>zero_class.zero\<close>, _)) =
   148     [monom_of_term  vs (0, replicate (length vs) 0) t]
   149   | monoms_of_term vs (t as Const _) =
   150     [monom_of_term  vs (1, replicate (length vs) 0) t]
   151   | monoms_of_term vs (t as Const (\<^const_name>\<open>numeral\<close>, _) $ _) =
   152     [monom_of_term  vs (1, replicate (length vs) 0) t]
   153   | monoms_of_term vs (t as Const (\<^const_name>\<open>uminus\<close>, _) $ _) =
   154     [monom_of_term  vs (1, replicate (length vs) 0) t]
   155   | monoms_of_term vs (t as Free _) =
   156     [monom_of_term  vs (1, replicate (length vs) 0) t]
   157   | monoms_of_term vs (t as Const (\<^const_name>\<open>realpow\<close>, _) $ _ $  _) =
   158     [monom_of_term  vs (1, replicate (length vs) 0) t]
   159   | monoms_of_term vs (t as Const (\<^const_name>\<open>times\<close>, _) $ _ $  _) =
   160     [monom_of_term  vs (1, replicate (length vs) 0) t]
   161   | monoms_of_term vs (Const (\<^const_name>\<open>plus\<close>, _) $ ms1 $ ms2) =
   162     (monoms_of_term vs ms1) @ (monoms_of_term vs ms2)
   163   | monoms_of_term _ t = raise ERROR ("poly malformed 2 with " ^ UnparseC.term t)
   164 
   165 (* convert a term to the internal representation of a multivariate polynomial;
   166   the conversion is quite liberal, see test --- fun poly_of_term ---:
   167 * the order of variables and the parentheses within a monomial are arbitrary
   168 * the coefficient may be somewhere
   169 * he order and the parentheses within monomials are arbitrary
   170 But the term must be completely expand + over * (laws of distributivity are not applicable).
   171 
   172 The function requires the free variables as strings already given, 
   173 because the gcd involves 2 polynomials (with the same length for their list of exponents).
   174 *)
   175 fun poly_of_term vs (t as Const (\<^const_name>\<open>plus\<close>, _) $ _ $ _) =
   176     (SOME (t |> monoms_of_term vs |> order)
   177       handle ERROR _ => NONE)
   178   | poly_of_term vs t =   (* 0 for zero polynomial *)
   179     (SOME [monom_of_term vs (1, replicate (length vs) 0) t]
   180       handle ERROR _ => NONE)
   181 
   182 fun is_poly t =
   183   let
   184     val vs = TermC.vars_of t
   185   in 
   186     case poly_of_term vs t of SOME _ => true | NONE => false
   187   end
   188 val is_expanded = is_poly   (* TODO: check names *)
   189 val is_polynomial = is_poly (* TODO: check names *)
   190 \<close>
   191 
   192 subsubsection \<open>Convert internal representation of a multivariate polynomial to a term\<close>
   193 ML \<open>
   194 fun term_of_es _ _ _ [] = [] (*assumes same length for vs and es*)
   195   | term_of_es baseT expT (_ :: vs) (0 :: es) = [] @ term_of_es baseT expT vs es
   196   | term_of_es baseT expT (v :: vs) (1 :: es) = v :: term_of_es baseT expT vs es
   197   | term_of_es baseT expT (v :: vs) (e :: es) =
   198     Const (\<^const_name>\<open>realpow\<close>, [baseT, expT] ---> baseT) $ v $ (HOLogic.mk_number expT e)
   199     :: term_of_es baseT expT vs es
   200   | term_of_es _ _ _ _ = raise ERROR "term_of_es: length vs <> length es"
   201 
   202 fun term_of_monom baseT expT vs ((c, es): monom) =
   203     let val es' = term_of_es baseT expT vs es
   204     in 
   205       if c = 1 
   206       then 
   207         if es' = [] (*if es = [0,0,0,...]*)
   208         then HOLogic.mk_number baseT c
   209         else foldl (HOLogic.mk_binop "Groups.times_class.times") (hd es', tl es')
   210       else foldl (HOLogic.mk_binop "Groups.times_class.times")
   211         (HOLogic.mk_number baseT c, es') 
   212     end
   213 
   214 fun term_of_poly baseT expT vs p =
   215   let val monos = map (term_of_monom baseT expT vs) p
   216   in foldl (HOLogic.mk_binop \<^const_name>\<open>plus\<close>) (hd monos, tl monos) end
   217 \<close>
   218 
   219 subsection \<open>Apply gcd_poly for cancelling and adding fractions as terms\<close>
   220 ML \<open>
   221 fun mk_noteq_0 baseT t = 
   222   Const (\<^const_name>\<open>Not\<close>, HOLogic.boolT --> HOLogic.boolT) $ 
   223     (Const (\<^const_name>\<open>HOL.eq\<close>, [baseT, baseT] ---> HOLogic.boolT) $ t $ HOLogic.mk_number HOLogic.realT 0)
   224 
   225 fun mk_asms baseT ts =
   226   let val as' = filter_out TermC.is_num ts (* asm like "2 ~= 0" is needless *)
   227   in map (mk_noteq_0 baseT) as' end
   228 \<close>
   229 
   230 subsubsection \<open>Factor out gcd for cancellation\<close>
   231 ML \<open>
   232 fun check_fraction t =
   233   case t of
   234     Const (\<^const_name>\<open>divide\<close>, _) $ numerator $ denominator
   235       => SOME (numerator, denominator)
   236   | _ => NONE
   237 
   238 (* prepare a term for cancellation by factoring out the gcd
   239   assumes: is a fraction with outmost "/"*)
   240 fun factout_p_ (_: theory) t =
   241   let val opt = check_fraction t
   242   in
   243     case opt of 
   244       NONE => NONE
   245     | SOME (numerator, denominator) =>
   246       let
   247         val vs = TermC.vars_of t
   248         val baseT = type_of numerator
   249         val expT = HOLogic.realT
   250       in
   251         case (poly_of_term vs numerator, poly_of_term vs denominator) of
   252           (SOME a, SOME b) =>
   253             let
   254               val ((a', b'), c) = gcd_poly a b
   255               val es = replicate (length vs) 0 
   256             in
   257               if c = [(1, es)] orelse c = [(~1, es)]
   258               then NONE
   259               else 
   260                 let
   261                   val b't = term_of_poly baseT expT vs b'
   262                   val ct = term_of_poly baseT expT vs c
   263                   val t' = 
   264                     HOLogic.mk_binop \<^const_name>\<open>divide\<close> 
   265                       (HOLogic.mk_binop \<^const_name>\<open>times\<close>
   266                         (term_of_poly baseT expT vs a', ct),
   267                        HOLogic.mk_binop \<^const_name>\<open>times\<close> (b't, ct))
   268                 in SOME (t', mk_asms baseT [b't, ct]) end
   269             end
   270         | _ => NONE : (term * term list) option
   271       end
   272   end
   273 \<close>
   274 
   275 subsubsection \<open>Cancel a fraction\<close>
   276 ML \<open>
   277 (* cancel a term by the gcd ("" denote terms with internal algebraic structure)
   278   cancel_p_ : theory \<Rightarrow> term  \<Rightarrow> (term \<times> term list) option
   279   cancel_p_ thy "a / b" = SOME ("a' / b'", ["b' \<noteq> 0"])
   280   assumes: a is_polynomial  \<and>  b is_polynomial  \<and>  b \<noteq> 0
   281   yields
   282     SOME ("a' / b'", ["b' \<noteq> 0"]). gcd_poly a b \<noteq> 1  \<and>  gcd_poly a b \<noteq> -1  \<and>  
   283       a' * gcd_poly a b = a  \<and>  b' * gcd_poly a b = b
   284     \<or> NONE *)
   285 fun cancel_p_ (_: theory) t =
   286   let val opt = check_fraction t
   287   in
   288     case opt of 
   289       NONE => NONE
   290     | SOME (numerator, denominator) =>
   291       let
   292         val vs = TermC.vars_of t
   293         val baseT = type_of numerator
   294         val expT = HOLogic.realT
   295       in
   296         case (poly_of_term vs numerator, poly_of_term vs denominator) of
   297           (SOME a, SOME b) =>
   298             let
   299               val ((a', b'), c) = gcd_poly a b
   300               val es = replicate (length vs) 0 
   301             in
   302               if c = [(1, es)] orelse c = [(~1, es)]
   303               then NONE
   304               else 
   305                 let
   306                   val bt' = term_of_poly baseT expT vs b'
   307                   val ct = term_of_poly baseT expT vs c
   308                   val t' = 
   309                     HOLogic.mk_binop \<^const_name>\<open>divide\<close> 
   310                       (term_of_poly baseT expT vs a', bt')
   311                   val asm = mk_asms baseT [bt']
   312                 in SOME (t', asm) end
   313             end
   314         | _ => NONE : (term * term list) option
   315       end
   316   end
   317 \<close>
   318 
   319 subsubsection \<open>Factor out to a common denominator for addition\<close>
   320 ML \<open>
   321 (* addition of fractions allows (at most) one non-fraction (a monomial) *)
   322 fun check_frac_sum 
   323     (Const (\<^const_name>\<open>plus\<close>, _) $ 
   324       (Const (\<^const_name>\<open>divide\<close>, _) $ n1 $ d1) $
   325       (Const (\<^const_name>\<open>divide\<close>, _) $ n2 $ d2))
   326     = SOME ((n1, d1), (n2, d2))
   327   | check_frac_sum 
   328     (Const (\<^const_name>\<open>plus\<close>, _) $ 
   329       nofrac $ 
   330       (Const (\<^const_name>\<open>divide\<close>, _) $ n2 $ d2))
   331     = SOME ((nofrac, HOLogic.mk_number HOLogic.realT 1), (n2, d2))
   332   | check_frac_sum 
   333     (Const (\<^const_name>\<open>plus\<close>, _) $ 
   334       (Const (\<^const_name>\<open>divide\<close>, _) $ n1 $ d1) $ 
   335       nofrac)
   336     = SOME ((n1, d1), (nofrac, HOLogic.mk_number HOLogic.realT 1))
   337   | check_frac_sum _ = NONE  
   338 
   339 (* prepare a term for addition by providing the least common denominator as a product
   340   assumes: is a term with outmost "+" and at least one outmost "/" in respective summands*)
   341 fun common_nominator_p_ (_: theory) t =
   342   let val opt = check_frac_sum t
   343   in
   344     case opt of 
   345       NONE => NONE
   346     | SOME ((n1, d1), (n2, d2)) =>
   347       let
   348         val vs = TermC.vars_of t
   349       in
   350         case (poly_of_term vs d1, poly_of_term vs d2) of
   351           (SOME a, SOME b) =>
   352             let
   353               val ((a', b'), c) = gcd_poly a b
   354               val (baseT, expT) = (type_of n1, HOLogic.realT)
   355               val [d1', d2', c'] = map (term_of_poly baseT expT vs) [a', b', c]
   356               (*----- minimum of parentheses & nice result, but breaks tests: -------------
   357               val denom = HOLogic.mk_binop \<^const_name>\<open>times\<close> 
   358                 (HOLogic.mk_binop \<^const_name>\<open>times\<close> (d1', d2'), c') -------------*)
   359               val denom =
   360                 if c = [(1, replicate (length vs) 0)]
   361                 then HOLogic.mk_binop \<^const_name>\<open>times\<close> (d1', d2')
   362                 else
   363                   HOLogic.mk_binop \<^const_name>\<open>times\<close> (c',
   364                   HOLogic.mk_binop \<^const_name>\<open>times\<close> (d1', d2')) (*--------------*)
   365               val t' =
   366                 HOLogic.mk_binop \<^const_name>\<open>plus\<close>
   367                   (HOLogic.mk_binop \<^const_name>\<open>divide\<close>
   368                     (HOLogic.mk_binop \<^const_name>\<open>times\<close> (n1, d2'), denom),
   369                   HOLogic.mk_binop \<^const_name>\<open>divide\<close> 
   370                     (HOLogic.mk_binop \<^const_name>\<open>times\<close> (n2, d1'), denom))
   371               val asm = mk_asms baseT [d1', d2', c']
   372             in SOME (t', asm) end
   373         | _ => NONE : (term * term list) option
   374       end
   375   end
   376 \<close>
   377 
   378 subsubsection \<open>Addition of at least one fraction within a sum\<close>
   379 ML \<open>
   380 (* add fractions
   381   assumes: is a term with outmost "+" and at least one outmost "/" in respective summands
   382   \<and> NONE of the summands is zero.
   383   NOTE: the case "(_ + _) + _" need not be considered due to iterated addition *)
   384 fun add_fraction_p_ (_: theory) t =
   385   case check_frac_sum t of 
   386     NONE => NONE
   387   | SOME ((n1, d1), (n2, d2)) =>
   388     let
   389       val vs = TermC.vars_of t
   390     in
   391       case (poly_of_term vs n1, poly_of_term vs d1, poly_of_term vs n2, poly_of_term vs d2) of
   392         (SOME _, SOME a, SOME _, SOME b) =>
   393           let
   394             val ((a', b'), c) = gcd_poly a b
   395             val (baseT, expT) = (type_of n1, HOLogic.realT)
   396             val nomin = term_of_poly baseT expT vs 
   397               (((the (poly_of_term vs n1)) %%*%% b') %%+%% ((the (poly_of_term vs n2)) %%*%% a')) 
   398             val denom = term_of_poly baseT expT vs ((c %%*%% a') %%*%% b')
   399             val t' = HOLogic.mk_binop \<^const_name>\<open>divide\<close> (nomin, denom)
   400           in SOME (t', mk_asms baseT [denom]) end
   401       | _ => NONE : (term * term list) option
   402     end
   403 \<close>
   404 
   405 section \<open>Embed cancellation and addition into rewriting\<close>
   406 
   407 subsection \<open>Rulesets and predicate for embedding\<close>
   408 ML \<open>
   409 (* evaluates conditions in calculate_Rational *)
   410 val calc_rat_erls =
   411   prep_rls'
   412     (Rule_Def.Repeat {id = "calc_rat_erls", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   413       erls = Rule_Set.Empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   414       rules = [
   415         \<^rule_eval>\<open>matches\<close> (Prog_Expr.eval_matches "#matches_"),
   416         \<^rule_eval>\<open>HOL.eq\<close> (Prog_Expr.eval_equal "#equal_"),
   417         \<^rule_eval>\<open>is_num\<close> (Prog_Expr.eval_is_num "#is_num_"),
   418         \<^rule_thm>\<open>not_true\<close>,
   419         \<^rule_thm>\<open>not_false\<close>], 
   420       scr = Rule.Empty_Prog});
   421 
   422 (* simplifies expressions with numerals;
   423    does NOT rearrange the term by AC-rewriting; thus terms with variables 
   424    need to have constants to be commuted together respectively           *)
   425 val calculate_Rational =
   426   prep_rls' (Rule_Set.merge "calculate_Rational"
   427     (Rule_Def.Repeat {id = "divide", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   428       erls = calc_rat_erls, srls = Rule_Set.Empty,
   429       calc = [], errpatts = [],
   430       rules = [
   431         \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e"),
   432 
   433         \<^rule_thm_sym>\<open>minus_divide_left\<close>, (*SYM - ?x / ?y = - (?x / ?y)  may come from subst*)
   434         \<^rule_thm>\<open>rat_add\<close>,
   435           (*"[| a is_num; b is_num; c is_num; d is_num |] ==> a / c + b / d = (a * d) / (c * d) + (b * c ) / (d * c)"*)
   436         \<^rule_thm>\<open>rat_add1\<close>, (*"[| a is_num; b is_num; c is_num |] ==> a / c + b / c = (a + b) / c"*)
   437         \<^rule_thm>\<open>rat_add2\<close>, (*"[| ?a is_num; ?b is_num; ?c is_num |] ==> ?a / ?c + ?b = (?a + ?b * ?c) / ?c"*)
   438         \<^rule_thm>\<open>rat_add3\<close>, (*"[| a is_num; b is_num; c is_num |] ==> a + b / c = (a * c) / c + b / c" *)
   439         
   440         \<^rule_thm>\<open>rat_mult\<close>, (*a / b * (c / d) = a * c / (b * d)*)
   441         \<^rule_thm>\<open>times_divide_eq_right\<close>, (*?x * (?y / ?z) = ?x * ?y / ?z*)
   442         \<^rule_thm>\<open>times_divide_eq_left\<close>, (*?y / ?z * ?x = ?y * ?x / ?z*)
   443         
   444         \<^rule_thm>\<open>real_divide_divide1\<close>, (*"?y ~= 0 ==> ?u / ?v / (?y / ?z) = ?u / ?v * (?z / ?y)"*)
   445         \<^rule_thm>\<open>divide_divide_eq_left\<close>, (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
   446         
   447         \<^rule_thm>\<open>rat_power\<close>, (*"(?a / ?b)  \<up>  ?n = ?a  \<up>  ?n / ?b  \<up>  ?n"*)
   448         
   449         \<^rule_thm>\<open>mult_cross\<close>,  (*"[| b ~= 0; d ~= 0 |] ==> (a / b = c / d) = (a * d = b * c)*)
   450         \<^rule_thm>\<open>mult_cross1\<close>, (*"   b ~= 0            ==> (a / b = c    ) = (a     = b * c)*)
   451         \<^rule_thm>\<open>mult_cross2\<close>  (*"           d ~= 0    ==> (a     = c / d) = (a * d =     c)*)], 
   452       scr = Rule.Empty_Prog})
   453     calculate_Poly);
   454 
   455 (*("is_expanded", ("Rational.is_expanded", eval_is_expanded ""))*)
   456 fun eval_is_expanded (thmid:string) _ 
   457 		       (t as (Const (\<^const_name>\<open>Rational.is_expanded\<close>, _) $ arg)) ctxt = 
   458     if is_expanded arg
   459     then SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   460 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
   461     else SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   462 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
   463   | eval_is_expanded _ _ _ _ = NONE;
   464 \<close>
   465 calculation is_expanded = \<open>eval_is_expanded ""\<close>
   466 ML \<open>
   467 val rational_erls = 
   468   Rule_Set.merge "rational_erls" calculate_Rational 
   469     (Rule_Set.append_rules "is_expanded" Atools_erls [
   470       \<^rule_eval>\<open>is_expanded\<close> (eval_is_expanded "")]);
   471 \<close>
   472 
   473 subsection \<open>Embed cancellation into rewriting\<close>
   474 ML \<open>
   475 (**)local (* cancel_p *)
   476 
   477 val {rules = rules, rew_ord = (_, ro), ...} = Rule_Set.rep (assoc_rls' @{theory} "rev_rew_p");
   478 
   479 fun init_state thy eval_rls ro t =
   480   let
   481     val SOME (t', _) = factout_p_ thy t;
   482     val SOME (t'', asm) = cancel_p_ thy t;
   483     val der = Derive.steps_reverse (Proof_Context.init_global thy) eval_rls rules ro NONE t';
   484     val der = der @ 
   485       [(\<^rule_thm>\<open>real_mult_div_cancel2\<close>, (t'', asm))]
   486     val rs = (Rule.distinct' o (map #1)) der
   487   	val rs = filter_out (ThmC.member'
   488   	  ["sym_real_add_zero_left", "sym_real_mult_0", "sym_real_mult_1"]) rs
   489   in (t, t'', [rs(*one in order to ease locate_rule*)], der) end;
   490 
   491 fun locate_rule thy eval_rls ro [rs] t r =
   492     if member op = ((map (Rule.thm_id)) rs) (Rule.thm_id r)
   493     then 
   494       let val ropt = Rewrite.rewrite_ (Proof_Context.init_global thy) ro eval_rls true (Rule.thm r) t;
   495       in
   496         case ropt of SOME ta => [(r, ta)]
   497 	      | NONE => ((*tracing 
   498 	          ("### locate_rule:  rewrite " ^ Rule.thm_id r ^ " " ^ UnparseC.term t ^ " = NONE");*) []) 
   499 			end
   500     else ((*tracing ("### locate_rule:  " ^ Rule.thm_id r ^ " not mem rrls");*) [])
   501   | locate_rule _ _ _ _ _ _ = raise ERROR "locate_rule: doesnt match rev-sets in istate";
   502 
   503 fun next_rule thy eval_rls ro [rs] t =
   504     let
   505       val der = Derive.do_one (Proof_Context.init_global thy) eval_rls rs ro NONE t;
   506     in case der of (_, r, _) :: _ => SOME r | _ => NONE end
   507   | next_rule _ _ _ _ _ = raise ERROR ("next_rule: doesnt match rev-sets in istate");
   508 
   509 fun attach_form (_: Rule.rule list list) (_: term) (_: term) = 
   510   [(*TODO*)]: ( Rule.rule * (term * term list)) list;
   511 
   512 (**)in(**)
   513 
   514 val cancel_p = 
   515   Rule_Set.Rrls {id = "cancel_p", prepat = [],
   516 	rew_ord = ("ord_make_polynomial", ord_make_polynomial false \<^theory>),
   517 	erls = rational_erls, 
   518 	calc = 
   519 	  [("PLUS", (\<^const_name>\<open>plus\<close>, (**)eval_binop "#add_")),
   520 	  ("TIMES" , (\<^const_name>\<open>times\<close>, (**)eval_binop "#mult_")),
   521 	  ("DIVIDE", (\<^const_name>\<open>divide\<close>, Prog_Expr.eval_cancel "#divide_e")),
   522 	  ("POWER", (\<^const_name>\<open>realpow\<close>, (**)eval_binop "#power_"))],
   523     errpatts = [],
   524 	scr =
   525 	  Rule.Rfuns {init_state  = init_state \<^theory> Atools_erls ro,
   526 		normal_form = cancel_p_ \<^theory>, 
   527 		locate_rule = locate_rule \<^theory> Atools_erls ro,
   528 		next_rule   = next_rule \<^theory> Atools_erls ro,
   529 		attach_form = attach_form}}
   530 (**)end(* local cancel_p *)
   531 \<close>
   532 
   533 subsection \<open>Embed addition into rewriting\<close>
   534 ML \<open>
   535 (**)local (* add_fractions_p *)
   536 
   537 (*val {rules = rules, rew_ord = (_, ro), ...} = Rule_Set.rep (assoc_rls "make_polynomial");*)
   538 val {rules, rew_ord=(_,ro),...} = Rule_Set.rep (assoc_rls' @{theory} "rev_rew_p");
   539 
   540 fun init_state thy eval_rls ro t =
   541   let 
   542     val SOME (t', _) = common_nominator_p_ thy t;
   543     val SOME (t'', asm) = add_fraction_p_ thy t;
   544     val der = Derive.steps_reverse (Proof_Context.init_global thy) eval_rls rules ro NONE t';
   545     val der = der @ 
   546       [(\<^rule_thm>\<open>real_mult_div_cancel2\<close>, (t'',asm))]
   547     val rs = (Rule.distinct' o (map #1)) der;
   548     val rs = filter_out (ThmC.member'
   549       ["sym_real_add_zero_left", "sym_real_mult_0", "sym_real_mult_1"]) rs;
   550   in (t, t'', [rs(*here only _ONE_*)], der) end;
   551 
   552 fun locate_rule thy eval_rls ro [rs] t r =
   553     if member op = ((map (Rule.thm_id)) rs) (Rule.thm_id r)
   554     then 
   555       let val ropt = Rewrite.rewrite_ (Proof_Context.init_global thy) ro eval_rls true (Rule.thm r) t;
   556       in 
   557         case ropt of
   558           SOME ta => [(r, ta)]
   559 	      | NONE => 
   560 	        ((*tracing ("### locate_rule:  rewrite " ^ Rule.thm_id r ^ " " ^ UnparseC.term t ^ " = NONE");*)
   561 	        []) end
   562     else ((*tracing ("### locate_rule:  " ^ Rule.thm_id r ^ " not mem rrls");*) [])
   563   | locate_rule _ _ _ _ _ _ = raise ERROR "locate_rule: doesnt match rev-sets in istate";
   564 
   565 fun next_rule thy eval_rls ro [rs] t =
   566     let val der = Derive.do_one (Proof_Context.init_global thy) eval_rls rs ro NONE t;
   567     in 
   568       case der of
   569 	      (_,r,_)::_ => SOME r
   570 	    | _ => NONE
   571     end
   572   | next_rule _ _ _ _ _ = raise ERROR ("next_rule: doesnt match rev-sets in istate");
   573 
   574 val pat0 = TermC.parse_patt \<^theory> "?r/?s+?u/?v :: real";
   575 val pat1 = TermC.parse_patt \<^theory> "?r/?s+?u    :: real";
   576 val pat2 = TermC.parse_patt \<^theory> "?r   +?u/?v :: real";
   577 val prepat = [([@{term True}], pat0),
   578 	      ([@{term True}], pat1),
   579 	      ([@{term True}], pat2)];
   580 (**)in(**)
   581 
   582 val add_fractions_p =
   583   Rule_Set.Rrls {id = "add_fractions_p", prepat=prepat,
   584     rew_ord = ("ord_make_polynomial", ord_make_polynomial false \<^theory>),
   585     erls = rational_erls,
   586     calc = [("PLUS", (\<^const_name>\<open>plus\<close>, (**)eval_binop "#add_")),
   587       ("TIMES", (\<^const_name>\<open>times\<close>, (**)eval_binop "#mult_")),
   588       ("DIVIDE", (\<^const_name>\<open>divide\<close>, Prog_Expr.eval_cancel "#divide_e")),
   589       ("POWER", (\<^const_name>\<open>realpow\<close>, (**)eval_binop "#power_"))],
   590     errpatts = [],
   591     scr = Rule.Rfuns {init_state  = init_state \<^theory> Atools_erls ro,
   592       normal_form = add_fraction_p_ \<^theory>,
   593       locate_rule = locate_rule \<^theory> Atools_erls ro,
   594       next_rule   = next_rule \<^theory> Atools_erls ro,
   595       attach_form = attach_form}}
   596 (**)end(*local add_fractions_p *)
   597 \<close>
   598 
   599 subsection \<open>Cancelling and adding all occurrences in a term /////////////////////////////\<close>
   600 ML \<open>
   601 (*copying cancel_p_rls + add her caused error in interface.sml*)
   602 \<close>
   603 
   604 section \<open>Rulesets for general simplification\<close>
   605 ML \<open>
   606 (*.all powers over + distributed; atoms over * collected, other distributed
   607    contains absolute minimum of thms for context in norm_Rational .*)
   608 val powers = prep_rls'(
   609   Rule_Def.Repeat {id = "powers", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   610       erls = powers_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   611       rules = [
   612         \<^rule_thm>\<open>realpow_multI\<close>, (*"(r * s)  \<up>  n = r  \<up>  n * s  \<up>  n"*)
   613         \<^rule_thm>\<open>realpow_pow\<close>, (*"(a  \<up>  b)  \<up>  c = a  \<up>  (b * c)"*)
   614         \<^rule_thm>\<open>realpow_oneI\<close>, (*"r  \<up>  1 = r"*)
   615         \<^rule_thm>\<open>realpow_minus_even\<close>, (*"n is_even ==> (- r)  \<up>  n = r  \<up>  n" ?-->discard_minus?*)
   616         \<^rule_thm>\<open>realpow_minus_odd\<close>, (*"Not (n is_even) ==> (- r)  \<up>  n = -1 * r  \<up>  n"*)
   617 
   618         (*----- collect atoms over * -----*)
   619         \<^rule_thm>\<open>realpow_two_atom\<close>, (*"r is_atom ==> r * r = r  \<up>  2"*)
   620         \<^rule_thm>\<open>realpow_plus_1\<close>, (*"r is_atom ==> r * r  \<up>  n = r  \<up>  (n + 1)"*)
   621         \<^rule_thm>\<open>realpow_addI_atom\<close>, (*"r is_atom ==> r  \<up>  n * r  \<up>  m = r  \<up>  (n + m)"*)
   622 
   623         (*----- distribute none-atoms -----*)
   624         \<^rule_thm>\<open>realpow_def_atom\<close>, (*"[| 1 < n; ~ (r is_atom) |]==>r  \<up>  n = r * r  \<up>  (n + -1)"*)
   625         \<^rule_thm>\<open>realpow_eq_oneI\<close>, (*"1  \<up>  n = 1"*)
   626         \<^rule_eval>\<open>plus\<close> (**)(eval_binop "#add_")],
   627       scr = Rule.Empty_Prog});
   628 
   629 \<close> ML \<open>
   630 (*.contains absolute minimum of thms for context in norm_Rational.*)
   631 val rat_mult_divide = prep_rls'(
   632   Rule_Def.Repeat {id = "rat_mult_divide", preconds = [], 
   633       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   634       erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   635       rules = [
   636        \<^rule_thm>\<open>rat_mult\<close>, (*(1)"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
   637 	       \<^rule_thm>\<open>times_divide_eq_right\<close>, (*(2)"?a * (?c / ?d) = ?a * ?c / ?d" must be [2],
   638 	         otherwise inv.to a / b / c = ...*)
   639 	       \<^rule_thm>\<open>times_divide_eq_left\<close>, (*"?a / ?b * ?c = ?a * ?c / ?b" order weights x \<up> n too much
   640 		       and does not commute a / b * c  \<up>  2 !*)
   641 	       
   642 	       \<^rule_thm>\<open>divide_divide_eq_right\<close>, (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
   643 	       \<^rule_thm>\<open>divide_divide_eq_left\<close>, (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
   644 	       \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e")],
   645       scr = Rule.Empty_Prog});
   646 
   647 \<close> ML \<open>
   648 (*.contains absolute minimum of thms for context in norm_Rational.*)
   649 val reduce_0_1_2 = prep_rls'(
   650   Rule_Def.Repeat{id = "reduce_0_1_2", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   651     erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   652     rules = [
   653       \<^rule_thm>\<open>div_by_1\<close>, (*"?x / 1 = ?x"*)
   654 	    \<^rule_thm>\<open>mult_1_left\<close>, (*"1 * z = z"*)
   655 	    \<^rule_thm>\<open>minus_zero\<close>, (*"- 0 = 0"*)
   656 	    (*\<^rule_thm>\<open>real_mult_minus1\<close>, "-1 * z = - z"*)
   657 	    (*\<^rule_thm>\<open>real_minus_mult_cancel\<close>, "- ?x * - ?y = ?x * ?y"*)
   658     
   659     
   660       \<^rule_thm>\<open>mult_zero_left\<close>, (*"0 * z = 0"*)
   661       \<^rule_thm>\<open>add_0_left\<close>, (*"0 + z = z"*)
   662       (*\<^rule_thm>\<open>right_minus\<close>, "?z + - ?z = 0"*)
   663     
   664       \<^rule_thm_sym>\<open>real_mult_2\<close>,	 (*"z1 + z1 = 2 * z1"*)
   665       \<^rule_thm>\<open>real_mult_2_assoc\<close>, (*"z1 + (z1 + k) = 2 * z1 + k"*)
   666     
   667       \<^rule_thm>\<open>division_ring_divide_zero\<close> (*"0 / ?x = 0"*)],
   668     scr = Rule.Empty_Prog});
   669 
   670 (*erls for calculate_Rational; 
   671   make local with FIXX@ME result:term *term list WN0609???SKMG*)
   672 val norm_rat_erls = prep_rls'(
   673   Rule_Def.Repeat {id = "norm_rat_erls", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   674     erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   675     rules = [
   676       \<^rule_eval>\<open>Prog_Expr.is_num\<close> (Prog_Expr.eval_is_num "#is_num_")
   677 ],
   678     scr = Rule.Empty_Prog});
   679 
   680 \<close> ML \<open>
   681 (* consists of rls containing the absolute minimum of thms *)
   682 (*
   683   which is now replaced by MGs version "norm_Rational" below
   684 *)
   685 val norm_Rational_min = prep_rls'(
   686   Rule_Def.Repeat {id = "norm_Rational_min", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   687     erls = norm_rat_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   688     rules = [(*sequence given by operator precedence*)
   689 	     Rule.Rls_ discard_minus,
   690 	     Rule.Rls_ powers,
   691 	     Rule.Rls_ rat_mult_divide,
   692 	     Rule.Rls_ expand,
   693 	     Rule.Rls_ reduce_0_1_2,
   694 	     Rule.Rls_ order_add_mult,
   695 	     Rule.Rls_ collect_numerals,
   696 	     Rule.Rls_ add_fractions_p,
   697 	     Rule.Rls_ cancel_p
   698 	     ],
   699     scr = Rule.Empty_Prog});
   700 
   701 \<close> ML \<open>
   702 val norm_Rational_parenthesized = prep_rls'(
   703   Rule_Set.Sequence {id = "norm_Rational_parenthesized", preconds = []:term list, 
   704     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   705     erls = Atools_erls, srls = Rule_Set.Empty,
   706     calc = [], errpatts = [],
   707     rules = [
   708       Rule.Rls_ norm_Rational_min,
   709 	    Rule.Rls_ discard_parentheses],
   710     scr = Rule.Empty_Prog});      
   711 
   712 (*WN030318???SK: simplifies all but cancel and common_nominator*)
   713 val simplify_rational = 
   714   Rule_Set.merge "simplify_rational" expand_binoms
   715     (Rule_Set.append_rules "divide" calculate_Rational [
   716       \<^rule_thm>\<open>div_by_1\<close>, (*"?x / 1 = ?x"*)
   717       \<^rule_thm>\<open>rat_mult\<close>, (*(1)"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
   718       \<^rule_thm>\<open>times_divide_eq_right\<close>, (*(2)"?a * (?c / ?d) = ?a * ?c / ?d" must be [2],
   719   		   otherwise inv.to a / b / c = ...*)
   720       \<^rule_thm>\<open>times_divide_eq_left\<close>, (*"?a / ?b * ?c = ?a * ?c / ?b"*)
   721       \<^rule_thm>\<open>add_minus\<close>, (*"?a + ?b - ?b = ?a"*)
   722       \<^rule_thm>\<open>add_minus1\<close>, (*"?a - ?b + ?b = ?a"*)
   723       \<^rule_thm>\<open>divide_minus1\<close> (*"?x / -1 = - ?x"*)]);
   724 
   725 val add_fractions_p_rls = prep_rls'(
   726   Rule_Def.Repeat {id = "add_fractions_p_rls", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   727 	  erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   728 	  rules = [Rule.Rls_ add_fractions_p], 
   729 	  scr = Rule.Empty_Prog});
   730 
   731 (* "Rule_Def.Repeat" causes repeated application of cancel_p to one and the same term *)
   732 val cancel_p_rls = prep_rls'(
   733   Rule_Def.Repeat 
   734     {id = "cancel_p_rls", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   735     erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   736     rules = [Rule.Rls_ cancel_p], 
   737 	  scr = Rule.Empty_Prog});
   738 
   739 (*. makes 'normal' fractions; 'is_polyexp' inhibits double fractions;
   740     used in initial part norm_Rational_mg, see example DA-M02-main.p.60.*)
   741 val rat_mult_poly = prep_rls'(
   742   Rule_Def.Repeat {id = "rat_mult_poly", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   743 	  erls = Rule_Set.append_rules "Rule_Set.empty-is_polyexp" Rule_Set.empty [
   744      \<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp "")],
   745 	  srls = Rule_Set.Empty, calc = [], errpatts = [],
   746 	  rules = [
   747       \<^rule_thm>\<open>rat_mult_poly_l\<close>, (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
   748 	    \<^rule_thm>\<open>rat_mult_poly_r\<close> (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*)], 
   749 	  scr = Rule.Empty_Prog});
   750 
   751 (*. makes 'normal' fractions; 'is_polyexp' inhibits double fractions;
   752     used in looping part norm_Rational_rls, see example DA-M02-main.p.60 
   753     .. WHERE THE LATTER DOES ALWAYS WORK, BECAUSE erls = Rule_Set.empty, 
   754     I.E. THE RESPECTIVE ASSUMPTION IS STORED AND Rule.Thm APPLIED; WN051028 
   755     ... WN0609???MG.*)
   756 val rat_mult_div_pow = prep_rls'(
   757   Rule_Def.Repeat {id = "rat_mult_div_pow", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   758     erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   759     rules = [
   760       \<^rule_thm>\<open>rat_mult\<close>, (*"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
   761       \<^rule_thm>\<open>rat_mult_poly_l\<close>, (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
   762       \<^rule_thm>\<open>rat_mult_poly_r\<close>, (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*)
   763       
   764       \<^rule_thm>\<open>real_divide_divide1_mg\<close>, (*"y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)"*)
   765       \<^rule_thm>\<open>divide_divide_eq_right\<close>, (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
   766       \<^rule_thm>\<open>divide_divide_eq_left\<close>, (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
   767       \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e"),
   768       
   769       \<^rule_thm>\<open>rat_power\<close> (*"(?a / ?b)  \<up>  ?n = ?a  \<up>  ?n / ?b  \<up>  ?n"*)],
   770     scr = Rule.Empty_Prog});
   771 
   772 val rat_reduce_1 = prep_rls'(
   773   Rule_Def.Repeat {id = "rat_reduce_1", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   774     erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [], 
   775     rules = [
   776       \<^rule_thm>\<open>div_by_1\<close>, (*"?x / 1 = ?x"*)
   777       \<^rule_thm>\<open>mult_1_left\<close> (*"1 * z = z"*)],
   778     scr = Rule.Empty_Prog});
   779 
   780 (* looping part of norm_Rational *)
   781 val norm_Rational_rls = prep_rls' (
   782   Rule_Def.Repeat {id = "norm_Rational_rls", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   783     erls = norm_rat_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   784     rules = [
   785       Rule.Rls_ add_fractions_p_rls,
   786       Rule.Rls_ rat_mult_div_pow,
   787       Rule.Rls_ make_rat_poly_with_parentheses,
   788       Rule.Rls_ cancel_p_rls,
   789       Rule.Rls_ rat_reduce_1],
   790     scr = Rule.Empty_Prog});
   791 
   792 val norm_Rational = prep_rls' (
   793   Rule_Set.Sequence 
   794     {id = "norm_Rational", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty), 
   795     erls = norm_rat_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   796     rules = [
   797       Rule.Rls_ discard_minus,
   798       Rule.Rls_ rat_mult_poly,             (* removes double fractions like a/b/c *)
   799       Rule.Rls_ make_rat_poly_with_parentheses,
   800       Rule.Rls_ cancel_p_rls,
   801       Rule.Rls_ norm_Rational_rls,         (* the main rls, looping (#) *)
   802       Rule.Rls_ discard_parentheses1],     (* mult only *)
   803     scr = Rule.Empty_Prog});
   804 \<close>
   805 
   806 rule_set_knowledge
   807   calculate_Rational = calculate_Rational and
   808   calc_rat_erls = calc_rat_erls and
   809   rational_erls = rational_erls and
   810   cancel_p = cancel_p and
   811   add_fractions_p = add_fractions_p and
   812 
   813   add_fractions_p_rls = add_fractions_p_rls and
   814   powers_erls = powers_erls and
   815   powers = powers and
   816   rat_mult_divide = rat_mult_divide and
   817   reduce_0_1_2 = reduce_0_1_2 and
   818 
   819   rat_reduce_1 = rat_reduce_1 and
   820   norm_rat_erls = norm_rat_erls and
   821   norm_Rational = norm_Rational and
   822   norm_Rational_rls = norm_Rational_rls and
   823   norm_Rational_min = norm_Rational_min and
   824   norm_Rational_parenthesized = norm_Rational_parenthesized and
   825 
   826   rat_mult_poly = rat_mult_poly and
   827   rat_mult_div_pow = rat_mult_div_pow and
   828   cancel_p_rls = cancel_p_rls
   829 
   830 section \<open>A problem for simplification of rationals\<close>
   831 
   832 problem pbl_simp_rat : "rational/simplification" =
   833   \<open>Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)]\<close>
   834   Method_Ref: "simplification/of_rationals"
   835   CAS: "Simplify t_t"
   836   Given: "Term t_t"
   837   Where: "t_t is_ratpolyexp"
   838   Find: "normalform n_n"
   839 
   840 section \<open>A methods for simplification of rationals\<close>
   841 (*WN061025 this methods script is copied from (auto-generated) script
   842   of norm_Rational in order to ease repair on inform*)
   843 
   844 partial_function (tailrec) simplify :: "real \<Rightarrow> real"
   845   where
   846 "simplify term = (
   847   (Try (Rewrite_Set ''discard_minus'') #>
   848    Try (Rewrite_Set ''rat_mult_poly'') #>
   849    Try (Rewrite_Set ''make_rat_poly_with_parentheses'') #>
   850    Try (Rewrite_Set ''cancel_p_rls'') #>
   851    (Repeat (
   852      Try (Rewrite_Set ''add_fractions_p_rls'') #>
   853      Try (Rewrite_Set ''rat_mult_div_pow'') #>
   854      Try (Rewrite_Set ''make_rat_poly_with_parentheses'') #>
   855      Try (Rewrite_Set ''cancel_p_rls'') #>
   856      Try (Rewrite_Set ''rat_reduce_1''))) #>
   857    Try (Rewrite_Set ''discard_parentheses1''))
   858    term)"
   859 
   860 
   861 method met_simp_rat : "simplification/of_rationals" =
   862   \<open>{rew_ord'="tless_true", rls' = Rule_Set.empty, calc = [], srls = Rule_Set.empty, 
   863     prls = Rule_Set.append_rules "simplification_of_rationals_prls" Rule_Set.empty 
   864       [(*for preds in where_*) \<^rule_eval>\<open>is_ratpolyexp\<close> (eval_is_ratpolyexp "")],
   865     crls = Rule_Set.empty, errpats = [], nrls = norm_Rational_rls}\<close>
   866   Program: simplify.simps
   867   Given: "Term t_t"
   868   Where: "t_t is_ratpolyexp"
   869   Find: "normalform n_n"
   870 ML \<open>
   871 \<close> ML \<open>
   872 \<close> ML \<open>
   873 \<close>
   874 end