src/Tools/isac/Knowledge/Poly.thy
author wneuper <Walther.Neuper@jku.at>
Thu, 04 Aug 2022 12:48:37 +0200
changeset 60509 2e0b7ca391dc
parent 60506 145e45cd7a0f
child 60515 03e19793d81e
permissions -rw-r--r--
polish naming in Rewrite_Order
     1 (* WN.020812: theorems in the Reals,
     2    necessary for special rule sets, in addition to Isabelle2002.
     3    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     4    !!! THIS IS THE _least_ NUMBER OF ADDITIONAL THEOREMS !!!
     5    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     6    xxxI contain \<up> instead of ^ in the respective theorem xxx in 2002
     7    changed by: Richard Lang 020912
     8 *)
     9 
    10 theory Poly imports Simplify begin
    11 
    12 subsection \<open>remark on term-structure of polynomials\<close>
    13 text \<open>
    14 WN190319:
    15 the code below reflects missing coordination between two authors:
    16 * ML: built the equation solver; simple rule-sets, programs; better predicates for specifications.
    17 * MG: built simplification of polynomials with AC rewriting by ML code
    18 
    19 WN020919:
    20 *** there are 5 kinds of expanded normalforms ***
    21 
    22 [1] 'complete polynomial' (Komplettes Polynom), univariate
    23    a_0 + a_1.x^1 +...+ a_n.x^n   not (a_n = 0)
    24 	        not (a_n = 0), some a_i may be zero (DON'T disappear),
    25                 variables in monomials lexicographically ordered and complete,
    26                 x written as 1*x^1, ...
    27 [2] 'polynomial' (Polynom), univariate and multivariate
    28    a_0 + a_1.x +...+ a_n.x^n   not (a_n = 0)
    29    a_0 + a_1.x_1.x_2^n_12...x_m^n_1m +...+  a_n.x_1^n.x_2^n_n2...x_m^n_nm
    30 	        not (a_n = 0), some a_i may be zero (ie. monomials disappear),
    31                 exponents and coefficients equal 1 are not (WN060904.TODO in cancel_p_)shown,
    32                 and variables in monomials are lexicographically ordered  
    33    examples: [1]: "1 + (-10) * x \<up> 1 + 25 * x \<up> 2"
    34 	     [1]: "11 + 0 * x \<up> 1 + 1 * x \<up> 2"
    35 	     [2]: "x + (-50) * x \<up> 3"
    36 	     [2]: "(-1) * x * y \<up> 2 + 7 * x \<up> 3"
    37 
    38 [3] 'expanded_term' (Ausmultiplizierter Term):
    39    pull out unary minus to binary minus, 
    40    as frequently exercised in schools; other conditions for [2] hold however
    41    examples: "a \<up> 2 - 2 * a * b + b \<up> 2"
    42 	     "4 * x \<up> 2 - 9 * y \<up> 2"
    43 [4] 'polynomial_in' (Polynom in): 
    44    polynomial in 1 variable with arbitrary coefficients
    45    examples: "2 * x + (-50) * x \<up> 3"                     (poly in x)
    46 	     "(u + v) + (2 * u \<up> 2) * a + (-u) * a \<up> 2 (poly in a)
    47 [5] 'expanded_in' (Ausmultiplizierter Termin in): 
    48    analoguous to [3] with binary minus like [3]
    49    examples: "2 * x - 50 * x \<up> 3"                     (expanded in x)
    50 	     "(u + v) + (2 * u \<up> 2) * a - u * a \<up> 2 (expanded in a)
    51 \<close>
    52 subsection \<open>consts definition for predicates in specifications\<close>
    53 consts
    54 
    55   is_expanded_in :: "[real, real] => bool" ("_ is'_expanded'_in _") 
    56   is_poly_in     :: "[real, real] => bool" ("_ is'_poly'_in _")   (*RL DA *)
    57   has_degree_in  :: "[real, real] => real" ("_ has'_degree'_in _")(*RL DA *)
    58   is_polyrat_in  :: "[real, real] => bool" ("_ is'_polyrat'_in _")(*RL030626*)
    59 
    60   is_multUnordered:: "real => bool" ("_ is'_multUnordered") 
    61   is_addUnordered :: "real => bool" ("_ is'_addUnordered") (*WN030618*)
    62   is_polyexp      :: "real => bool" ("_ is'_polyexp") 
    63 
    64 subsection \<open>theorems not yet adopted from Isabelle\<close>
    65 axiomatization where (*.not contained in Isabelle2002,
    66          stated as axioms, TODO: prove as theorems;
    67          theorem-IDs 'xxxI' with \<up> instead of ^ in 'xxx' in Isabelle2002.*)
    68 
    69   realpow_pow:             "(a \<up> b) \<up> c = a \<up> (b * c)" and
    70   realpow_addI:            "r \<up> (n + m) = r \<up> n * r \<up> m" and
    71   realpow_addI_assoc_l:    "r \<up> n * (r \<up> m * s) = r \<up> (n + m) * s" and
    72   realpow_addI_assoc_r:    "s * r \<up> n * r \<up> m = s * r \<up> (n + m)" and
    73 		  
    74   realpow_oneI:            "r \<up> 1 = r" and
    75   realpow_zeroI:            "r \<up> 0 = 1" and
    76   realpow_eq_oneI:         "1 \<up> n = 1" and
    77   realpow_multI:           "(r * s) \<up> n = r \<up> n * s \<up> n"  and
    78   realpow_multI_poly:      "[| r is_polyexp; s is_polyexp |] ==>
    79 			      (r * s) \<up> n = r \<up> n * s \<up> n"  and
    80   realpow_minus_oneI:      "(- 1) \<up> (2 * n) = 1"  and 
    81   real_diff_0:		         "0 - x = - (x::real)" and
    82 
    83   realpow_twoI:            "r \<up> 2 = r * r" and
    84   realpow_twoI_assoc_l:	  "r * (r * s) = r \<up> 2 * s" and
    85   realpow_twoI_assoc_r:	  "s * r * r = s * r \<up> 2" and
    86   realpow_two_atom:        "r is_atom ==> r * r = r \<up> 2" and
    87   realpow_plus_1:          "r * r \<up> n = r \<up> (n + 1)"   and       
    88   realpow_plus_1_assoc_l:  "r * (r \<up> m * s) = r \<up> (1 + m) * s"  and
    89   realpow_plus_1_assoc_l2: "r \<up> m * (r * s) = r \<up> (1 + m) * s"  and
    90   realpow_plus_1_assoc_r:  "s * r * r \<up> m = s * r \<up> (1 + m)" and
    91   realpow_plus_1_atom:     "r is_atom ==> r * r \<up> n = r \<up> (1 + n)" and
    92   realpow_def_atom:        "[| Not (r is_atom); 1 < n |]
    93 			   ==> r \<up> n = r * r \<up> (n + -1)" and
    94   realpow_addI_atom:       "r is_atom ==> r \<up> n * r \<up> m = r \<up> (n + m)" and
    95 
    96 
    97   realpow_minus_even:	     "n is_even ==> (- r) \<up> n = r \<up> n" and
    98   realpow_minus_odd:       "Not (n is_even) ==> (- r) \<up> n = -1 * r \<up> n" and
    99 
   100 
   101 (* RL 020914 *)
   102   real_pp_binom_times:     "(a + b)*(c + d) = a*c + a*d + b*c + b*d" and
   103   real_pm_binom_times:     "(a + b)*(c - d) = a*c - a*d + b*c - b*d" and
   104   real_mp_binom_times:     "(a - b)*(c + d) = a*c + a*d - b*c - b*d" and
   105   real_mm_binom_times:     "(a - b)*(c - d) = a*c - a*d - b*c + b*d" and
   106   real_plus_binom_pow3:    "(a + b) \<up> 3 = a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3" and
   107   real_plus_binom_pow3_poly: "[| a is_polyexp; b is_polyexp |] ==> 
   108 			    (a + b) \<up> 3 = a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3" and
   109   real_minus_binom_pow3:   "(a - b) \<up> 3 = a \<up> 3 - 3*a \<up> 2*b + 3*a*b \<up> 2 - b \<up> 3" and
   110   real_minus_binom_pow3_p: "(a + -1 * b) \<up> 3 = a \<up> 3 + -3*a \<up> 2*b + 3*a*b \<up> 2 +
   111                            -1*b \<up> 3" and
   112 (* real_plus_binom_pow:        "[| n is_num;  3 < n |] ==>
   113 			       (a + b) \<up> n = (a + b) * (a + b)\<up>(n - 1)" *)
   114   real_plus_binom_pow4:   "(a + b) \<up> 4 = (a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3)
   115                            *(a + b)" and
   116   real_plus_binom_pow4_poly: "[| a is_polyexp; b is_polyexp |] ==> 
   117 			   (a + b) \<up> 4 = (a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3)
   118                            *(a + b)" and
   119   real_plus_binom_pow5:    "(a + b) \<up> 5 = (a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3)
   120                            *(a \<up> 2 + 2*a*b + b \<up> 2)" and
   121   real_plus_binom_pow5_poly: "[| a is_polyexp; b is_polyexp |] ==> 
   122 			        (a + b) \<up> 5 = (a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 
   123                                 + b \<up> 3)*(a \<up> 2 + 2*a*b + b \<up> 2)" and
   124   real_diff_plus:          "a - b = a + -b" (*17.3.03: do_NOT_use*) and
   125   real_diff_minus:         "a - b = a + -1 * b" and
   126   real_plus_binom_times:   "(a + b)*(a + b) = a \<up> 2 + 2*a*b + b \<up> 2" and
   127   real_minus_binom_times:  "(a - b)*(a - b) = a \<up> 2 - 2*a*b + b \<up> 2" and
   128   (*WN071229 changed for Schaerding -----vvv*)
   129   (*real_plus_binom_pow2:  "(a + b) \<up> 2 = a \<up> 2 + 2*a*b + b \<up> 2"*)
   130   real_plus_binom_pow2:    "(a + b) \<up> 2 = (a + b) * (a + b)" and
   131   (*WN071229 changed for Schaerding -----\<up>*)
   132   real_plus_binom_pow2_poly: "[| a is_polyexp; b is_polyexp |] ==>
   133 			       (a + b) \<up> 2 = a \<up> 2 + 2*a*b + b \<up> 2" and
   134   real_minus_binom_pow2:      "(a - b) \<up> 2 = a \<up> 2 - 2*a*b + b \<up> 2" and
   135   real_minus_binom_pow2_p:    "(a - b) \<up> 2 = a \<up> 2 + -2*a*b + b \<up> 2" and
   136   real_plus_minus_binom1:     "(a + b)*(a - b) = a \<up> 2 - b \<up> 2" and
   137   real_plus_minus_binom1_p:   "(a + b)*(a - b) = a \<up> 2 + -1*b \<up> 2" and
   138   real_plus_minus_binom1_p_p: "(a + b)*(a + -1 * b) = a \<up> 2 + -1*b \<up> 2" and
   139   real_plus_minus_binom2:     "(a - b)*(a + b) = a \<up> 2 - b \<up> 2" and
   140   real_plus_minus_binom2_p:   "(a - b)*(a + b) = a \<up> 2 + -1*b \<up> 2" and
   141   real_plus_minus_binom2_p_p: "(a + -1 * b)*(a + b) = a \<up> 2 + -1*b \<up> 2" and
   142   real_plus_binom_times1:     "(a +  1*b)*(a + -1*b) = a \<up> 2 + -1*b \<up> 2" and
   143   real_plus_binom_times2:     "(a + -1*b)*(a +  1*b) = a \<up> 2 + -1*b \<up> 2" and
   144 
   145   real_num_collect:           "[| l is_num; m is_num |] ==>
   146 			      l * n + m * n = (l + m) * n" and
   147 (* FIXME.MG.0401: replace 'real_num_collect_assoc' 
   148 	by 'real_num_collect_assoc_l' ... are equal, introduced by MG ! *)
   149   real_num_collect_assoc:     "[| l is_num; m is_num |] ==> 
   150 			      l * n + (m * n + k) = (l + m) * n + k" and
   151   real_num_collect_assoc_l:   "[| l is_num; m is_num |] ==>
   152 			      l * n + (m * n + k) = (l + m)
   153 				* n + k" and
   154   real_num_collect_assoc_r:   "[| l is_num; m is_num |] ==>
   155 			      (k + m * n) + l * n = k + (l + m) * n" and
   156   real_one_collect:           "m is_num ==> n + m * n = (1 + m) * n" and
   157 (* FIXME.MG.0401: replace 'real_one_collect_assoc' 
   158 	by 'real_one_collect_assoc_l' ... are equal, introduced by MG ! *)
   159   real_one_collect_assoc:     "m is_num ==> n + (m * n + k) = (1 + m)* n + k" and
   160 
   161   real_one_collect_assoc_l:   "m is_num ==> n + (m * n + k) = (1 + m) * n + k" and
   162   real_one_collect_assoc_r:  "m is_num ==> (k + n) +  m * n = k + (1 + m) * n" and
   163 
   164 (* FIXME.MG.0401: replace 'real_mult_2_assoc' 
   165 	by 'real_mult_2_assoc_l' ... are equal, introduced by MG ! *)
   166   real_mult_2_assoc:          "z1 + (z1 + k) = 2 * z1 + k" and
   167   real_mult_2_assoc_l:        "z1 + (z1 + k) = 2 * z1 + k" and
   168   real_mult_2_assoc_r:        "(k + z1) + z1 = k + 2 * z1" and
   169 
   170   real_mult_left_commute: "z1 * (z2 * z3) = z2 * (z1 * z3)" and
   171   real_mult_minus1:       "-1 * z = - (z::real)" and
   172   (*sym_real_mult_minus1 expands indefinitely without assumptions ...*)
   173   real_mult_minus1_sym:   "[| \<not>(matches (- 1 * x) z); \<not>(z is_num) |] ==> - (z::real) = -1 * z" and
   174   real_minus_mult_left:   "\<not> ((a::real) is_num) ==> (- a) * b = - (a * b)" and
   175   real_mult_2:            "2 * z = z + (z::real)" and
   176                                                                                                             
   177   real_add_mult_distrib_poly: "w is_polyexp ==> (z1 + z2) * w = z1 * w + z2 * w" and
   178   real_add_mult_distrib2_poly:"w is_polyexp ==> w * (z1 + z2) = w * z1 + w * z2"
   179 
   180 
   181 subsection \<open>auxiliary functions\<close>
   182 ML \<open>
   183 val poly_consts =
   184   [\<^const_name>\<open>plus\<close>, \<^const_name>\<open>minus\<close>,
   185   \<^const_name>\<open>divide\<close>, \<^const_name>\<open>times\<close>,
   186   \<^const_name>\<open>realpow\<close>];
   187 
   188 val int_ord_SAVE = int_ord;
   189 (*for tests on rewrite orders*)
   190 fun int_ord (i1, i2) =
   191 (@{print} {a = "int_ord (" ^ string_of_int i1 ^ ", " ^ string_of_int i2 ^ ") = ", z = Int.compare (i1, i2)};
   192   Int.compare (i1, i2));
   193 (**)val int_ord = int_ord_SAVE; (*..outcomment for tests*)
   194 \<close>
   195 subsubsection \<open>for predicates in specifications (ML)\<close>
   196 ML \<open>
   197 (*--- auxiliary for is_expanded_in, is_poly_in, has_degree_in ---*)
   198 (*. a "monomial t in variable v" is a term t with
   199   either (1) v NOT existent in t, or (2) v contained in t,
   200   if (1) then degree 0
   201   if (2) then v is a factor on the very right, casually with exponent.*)
   202 fun factor_right_deg (*case 2*)
   203 	    (Const (\<^const_name>\<open>Groups.times_class.times\<close>, _) $
   204         t1 $ (Const (\<^const_name>\<open>realpow\<close>,_) $ vv $ num)) v =
   205 	  if vv = v andalso not (Prog_Expr.occurs_in v t1) then SOME (snd (HOLogic.dest_number num))
   206     else NONE
   207   | factor_right_deg (Const (\<^const_name>\<open>realpow\<close>,_) $ vv $ num) v =
   208 	   if (vv = v) then SOME (snd (HOLogic.dest_number num)) else NONE
   209 
   210   | factor_right_deg (Const (\<^const_name>\<open>times\<close>,_) $ t1 $ vv) v = 
   211 	   if vv = v andalso not (Prog_Expr.occurs_in v t1) then SOME 1 else NONE
   212   | factor_right_deg vv v =
   213 	  if (vv = v) then SOME 1 else NONE;    
   214 fun mono_deg_in m v =  (*case 1*)
   215 	if not (Prog_Expr.occurs_in v m) then (*case 1*) SOME 0 else factor_right_deg m v;
   216 
   217 fun expand_deg_in t v =
   218 	let
   219     fun edi ~1 ~1 (Const (\<^const_name>\<open>plus\<close>, _) $ t1 $ t2) =
   220           (case mono_deg_in t2 v of (* $ is left associative*)
   221             SOME d' => edi d' d' t1 | NONE => NONE)
   222       | edi ~1 ~1 (Const (\<^const_name>\<open>minus\<close>, _) $ t1 $ t2) =
   223           (case mono_deg_in t2 v of
   224             SOME d' => edi d' d' t1 | NONE => NONE)
   225       | edi d dmax (Const (\<^const_name>\<open>minus\<close>, _) $ t1 $ t2) =
   226           (case mono_deg_in t2 v of (*(d = 0 andalso d' = 0) handle 3+4-...4 +x*)
   227 	        SOME d' => if d > d' orelse (d = 0 andalso d' = 0) then edi d' dmax t1 else NONE
   228           | NONE => NONE)
   229       | edi d dmax (Const (\<^const_name>\<open>plus\<close>,_) $ t1 $ t2) =
   230           (case mono_deg_in t2 v of
   231             SOME d' =>    (*RL (d = 0 andalso d' = 0) need to handle 3+4-...4 +x*)
   232               if d > d' orelse (d = 0 andalso d' = 0) then edi d' dmax t1 else NONE
   233           | NONE => NONE)
   234       | edi ~1 ~1 t =
   235           (case mono_deg_in t v of d as SOME _ => d | NONE => NONE)
   236       | edi d dmax t = (*basecase last*)
   237     	    (case mono_deg_in t v of
   238     	      SOME d' => if d > d' orelse (d = 0 andalso d' = 0) then SOME dmax else NONE
   239 		      | NONE => NONE)
   240 	in edi ~1 ~1 t end;
   241 
   242 fun poly_deg_in t v =
   243 	let
   244     fun edi ~1 ~1 (Const (\<^const_name>\<open>plus\<close>,_) $ t1 $ t2) =
   245 		    (case mono_deg_in t2 v of (* $ is left associative *)
   246 		      SOME d' => edi d' d' t1
   247         | NONE => NONE)
   248 	    | edi d dmax (Const (\<^const_name>\<open>plus\<close>,_) $ t1 $ t2) =
   249 		    (case mono_deg_in t2 v of
   250 	        SOME d' =>    (*RL (d = 0 andalso (d' = 0)) handle 3+4-...4 +x*)
   251             if d > d' orelse (d = 0 andalso d' = 0) then edi d' dmax t1 else NONE
   252         | NONE => NONE)
   253 	    | edi ~1 ~1 t =
   254         (case mono_deg_in t v of
   255 		      d as SOME _ => d
   256         | NONE => NONE)
   257 	    | edi d dmax t = (* basecase last *)
   258 		    (case mono_deg_in t v of
   259 		      SOME d' =>
   260             if d > d' orelse (d = 0 andalso d' = 0) then SOME dmax else NONE
   261         | NONE => NONE)
   262 	in edi ~1 ~1 t end;
   263 \<close>
   264 
   265 subsubsection \<open>for hard-coded AC rewriting (MG)\<close>
   266 ML \<open>
   267 (**. MG.03: make_polynomial_ ... uses SML-fun for ordering .**)
   268 
   269 (*FIXME.0401: make SML-order local to make_polynomial(_) *)
   270 (*FIXME.0401: replace 'make_polynomial'(old) by 'make_polynomial_'(MG) *)
   271 (* Polynom --> List von Monomen *) 
   272 fun poly2list (Const (\<^const_name>\<open>plus\<close>,_) $ t1 $ t2) = 
   273     (poly2list t1) @ (poly2list t2)
   274   | poly2list t = [t];
   275 
   276 (* Monom --> Liste von Variablen *)
   277 fun monom2list (Const (\<^const_name>\<open>times\<close>,_) $ t1 $ t2) = 
   278     (monom2list t1) @ (monom2list t2)
   279   | monom2list t = [t];
   280 
   281 (* liefert Variablenname (String) einer Variablen und Basis bei Potenz *)
   282 fun get_basStr (Const (\<^const_name>\<open>realpow\<close>,_) $ Free (str, _) $ _) = str
   283   | get_basStr (Const (\<^const_name>\<open>realpow\<close>,_) $ n $ _) = TermC.to_string n
   284   | get_basStr (Free (str, _)) = str
   285   | get_basStr t =
   286     if TermC.is_num t then TermC.to_string t
   287     else "|||"; (* gross gewichtet; für Brüche ect. *)
   288 
   289 (* liefert Hochzahl (String) einer Variablen bzw Gewichtstring (zum Sortieren) *)
   290 fun get_potStr (Const (\<^const_name>\<open>realpow\<close>, _) $ Free _ $ Free (str, _)) = str
   291   | get_potStr (Const (\<^const_name>\<open>realpow\<close>, _) $ Free _ $ t) =
   292     if TermC.is_num t then TermC.to_string t else "|||"
   293   | get_potStr (Free _) = "---" (* keine Hochzahl --> kleinst gewichtet *)
   294   | get_potStr _ = "||||||"; (* gross gewichtet; für Brüch ect. *)
   295 
   296 (* Umgekehrte string_ord *)
   297 val string_ord_rev =  rev_order o string_ord;
   298 		
   299  (* Ordnung zum lexikographischen Vergleich zweier Variablen (oder Potenzen) 
   300     innerhalb eines Monomes:
   301     - zuerst lexikographisch nach Variablenname 
   302     - wenn gleich: nach steigender Potenz *)
   303 fun var_ord (a, b) = 
   304 (@{print} {a = "var_ord ", a_b = "(" ^ UnparseC.term a ^ ", " ^ UnparseC.term b ^ ")",
   305    sort_args = "(" ^ get_basStr a ^ ", " ^ get_potStr a ^ "), (" ^ get_basStr b ^ ", " ^ get_potStr b ^ ")"};
   306   prod_ord string_ord string_ord 
   307   ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b))
   308 );
   309 fun var_ord (a,b: term) = 
   310   prod_ord string_ord string_ord 
   311     ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b));
   312 
   313 (* Ordnung zum lexikographischen Vergleich zweier Variablen (oder Potenzen); 
   314    verwendet zum Sortieren von Monomen mittels Gesamtgradordnung:
   315    - zuerst lexikographisch nach Variablenname 
   316    - wenn gleich: nach sinkender Potenz*)
   317 fun var_ord_revPow (a, b: term) = 
   318 (@{print} {a = "var_ord_revPow ", at_bt = "(" ^ UnparseC.term a ^ ", " ^ UnparseC.term b ^ ")",
   319     sort_args = "(" ^ get_basStr a ^ ", " ^ get_potStr a ^ "), (" ^ get_basStr b ^ ", " ^ get_potStr b ^ ")"};
   320   prod_ord string_ord string_ord_rev 
   321     ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b))
   322 );
   323 fun var_ord_revPow (a, b: term) =
   324   prod_ord string_ord string_ord_rev 
   325     ((get_basStr a, get_potStr a), (get_basStr b, get_potStr b));
   326 
   327 
   328 (* Ordnet ein Liste von Variablen (und Potenzen) lexikographisch *)
   329 fun sort_varList ts =
   330 (@{print} {a = "sort_varList", args = UnparseC.terms ts};
   331   sort var_ord ts);
   332 val sort_varList = sort var_ord;
   333 
   334 (* Entfernet aeussersten Operator (Wurzel) aus einem Term und schreibt 
   335    Argumente in eine Liste *)
   336 fun args u : term list =
   337   let
   338     fun stripc (f $ t, ts) = stripc (f, t::ts)
   339   	  | stripc (t as Free _, ts) = (t::ts)
   340   	  | stripc (_, ts) = ts
   341   in stripc (u, []) end;
   342                                     
   343 (* liefert True, falls der Term (Liste von Termen) nur Zahlen 
   344    (keine Variablen) enthaelt *)
   345 fun filter_num ts = fold (curry and_) (map TermC.is_num ts) true
   346 
   347 (* liefert True, falls der Term nur Zahlen (keine Variablen) enthaelt 
   348    dh. er ist ein numerischer Wert und entspricht einem Koeffizienten *)
   349 fun is_nums t = filter_num [t];
   350 
   351 (* Berechnet den Gesamtgrad eines Monoms *)
   352 (**)local(**)
   353   fun counter (n, []) = n
   354     | counter (n, x :: xs) = 
   355 	    if (is_nums x) then counter (n, xs)
   356 	    else 
   357 	      (case x of 
   358 		      (Const (\<^const_name>\<open>realpow\<close>, _) $ Free _ $ t) =>
   359             if TermC.is_num t
   360             then counter (t |> HOLogic.dest_number |> snd |> curry op + n, xs)
   361             else counter (n + 1000, xs) (*FIXME.MG?!*)
   362 	      | (Const (\<^const_name>\<open>numeral\<close>, _) $ num) =>
   363             counter (n + 1 + HOLogic.dest_numeral num, xs)
   364 	      | _ => counter (n + 1, xs)) (*FIXME.MG?! ... Brüche ect.*)
   365 (**)in(**)
   366   fun monom_degree l = counter (0, l) 
   367 (**)end;(*local*)
   368 
   369 (* wie Ordnung dict_ord (lexicographische Ordnung zweier Listen, mit Vergleich 
   370    der Listen-Elemente mit elem_ord) - Elemente die Bedingung cond erfuellen, 
   371    werden jedoch dabei ignoriert (uebersprungen)  *)
   372 fun dict_cond_ord _ _ ([], [])     = (@{print} {a = "dict_cond_ord ([], [])"}; EQUAL)
   373   | dict_cond_ord _ _ ([], _ :: _) = (@{print} {a = "dict_cond_ord ([], _ :: _)"}; LESS)
   374   | dict_cond_ord _ _ (_ :: _, []) = (@{print} {a = "dict_cond_ord (_ :: _, [])"}; GREATER)
   375   | dict_cond_ord elem_ord cond (x :: xs, y :: ys) =
   376     (@{print} {a = "dict_cond_ord", args = "(" ^ UnparseC.terms (x :: xs) ^ ", " ^ UnparseC.terms (y :: ys) ^ ")", 
   377       is_nums = "(" ^ LibraryC.bool2str (cond x) ^ ", " ^ LibraryC.bool2str (cond y) ^ ")"};
   378      case (cond x, cond y) of 
   379 	    (false, false) =>
   380         (case elem_ord (x, y) of 
   381 				  EQUAL => dict_cond_ord elem_ord cond (xs, ys) 
   382 			  | ord => ord)
   383     | (false, true)  => dict_cond_ord elem_ord cond (x :: xs, ys)
   384     | (true, false)  => dict_cond_ord elem_ord cond (xs, y :: ys)
   385     | (true, true)  =>  dict_cond_ord elem_ord cond (xs, ys) );
   386 fun dict_cond_ord _ _ ([], []) = EQUAL
   387   | dict_cond_ord _ _ ([], _ :: _) = LESS
   388   | dict_cond_ord _ _ (_ :: _, []) = GREATER
   389   | dict_cond_ord elem_ord cond (x :: xs, y :: ys) =
   390     (case (cond x, cond y) of 
   391 	    (false, false) =>
   392         (case elem_ord (x, y) of 
   393 				  EQUAL => dict_cond_ord elem_ord cond (xs, ys) 
   394 			  | ord => ord)
   395     | (false, true)  => dict_cond_ord elem_ord cond (x :: xs, ys)
   396     | (true, false)  => dict_cond_ord elem_ord cond (xs, y :: ys)
   397     | (true, true)  =>  dict_cond_ord elem_ord cond (xs, ys) );
   398 
   399 (* Gesamtgradordnung zum Vergleich von Monomen (Liste von Variablen/Potenzen):
   400    zuerst nach Gesamtgrad, bei gleichem Gesamtgrad lexikographisch ordnen - 
   401    dabei werden Koeffizienten ignoriert (2*3*a \<up> 2*4*b gilt wie a \<up> 2*b) *)
   402 fun degree_ord (xs, ys) =
   403 	prod_ord int_ord (dict_cond_ord var_ord_revPow is_nums)
   404 	  ((monom_degree xs, xs), (monom_degree ys, ys));
   405 
   406 fun hd_str str = substring (str, 0, 1);
   407 fun tl_str str = substring (str, 1, (size str) - 1);
   408 
   409 (* liefert nummerischen Koeffizienten eines Monoms oder NONE *)
   410 fun get_koeff_of_mon [] = raise ERROR "get_koeff_of_mon: called with l = []"
   411   | get_koeff_of_mon (x :: _) = if is_nums x then SOME x else NONE;
   412 
   413 (* wandelt Koeffizient in (zum sortieren geeigneten) String um *)
   414 fun koeff2ordStr (SOME t) =
   415     if TermC.is_num t
   416     then 
   417       if (t |> HOLogic.dest_number |> snd) < 0
   418       then (t |> HOLogic.dest_number |> snd |> curry op * ~1 |> string_of_int) ^ "0"  (* 3 < -3 *)
   419       else (t |> HOLogic.dest_number |> snd |> string_of_int)
   420     else "aaa"                                                      (* "num.Ausdruck" --> gross *)
   421   | koeff2ordStr NONE = "---";                                     (* "kein Koeff" --> kleinste *)
   422 
   423 (* Order zum Vergleich von Koeffizienten (strings): 
   424    "kein Koeff" < "0" < "1" < "-1" < "2" < "-2" < ... < "num.Ausdruck" *)
   425 fun compare_koeff_ord (xs, ys) = string_ord
   426   ((koeff2ordStr o get_koeff_of_mon) xs,
   427    (koeff2ordStr o get_koeff_of_mon) ys);
   428 
   429 (* Gesamtgradordnung degree_ord + Ordnen nach Koeffizienten falls EQUAL *)
   430 fun koeff_degree_ord (xs, ys) =
   431 	    prod_ord degree_ord compare_koeff_ord ((xs, xs), (ys, ys));
   432 
   433 (* Ordnet ein Liste von Monomen (Monom = Liste von Variablen) mittels 
   434    Gesamtgradordnung *)
   435 val sort_monList = sort koeff_degree_ord;
   436 
   437 (* Alternativ zu degree_ord koennte auch die viel einfachere und 
   438    kuerzere Ordnung simple_ord verwendet werden - ist aber nicht 
   439    fuer unsere Zwecke geeignet!
   440 
   441 fun simple_ord (al,bl: term list) = dict_ord string_ord 
   442 	 (map get_basStr al, map get_basStr bl); 
   443 
   444 val sort_monList = sort simple_ord; *)
   445 
   446 (* aus 2 Variablen wird eine Summe bzw ein Produkt erzeugt 
   447    (mit gewuenschtem Typen T) *)
   448 fun plus T = Const (\<^const_name>\<open>plus\<close>, [T,T] ---> T);
   449 fun mult T = Const (\<^const_name>\<open>times\<close>, [T,T] ---> T);
   450 fun binop op_ t1 t2 = op_ $ t1 $ t2;
   451 fun create_prod T (a,b) = binop (mult T) a b;
   452 fun create_sum T (a,b) = binop (plus T) a b;
   453 
   454 (* löscht letztes Element einer Liste *)
   455 fun drop_last l = take ((length l)-1,l);
   456 
   457 (* Liste von Variablen --> Monom *)
   458 fun create_monom T vl = foldr (create_prod T) (drop_last vl, last_elem vl);
   459 (* Bemerkung: 
   460    foldr bewirkt rechtslastige Klammerung des Monoms - ist notwendig, damit zwei 
   461    gleiche Monome zusammengefasst werden können (collect_numerals)! 
   462    zB: 2*(x*(y*z)) + 3*(x*(y*z)) --> (2+3)*(x*(y*z))*)
   463 
   464 (* Liste von Monomen --> Polynom *)	
   465 fun create_polynom T ml = foldl (create_sum T) (hd ml, tl ml);
   466 (* Bemerkung: 
   467    foldl bewirkt linkslastige Klammerung des Polynoms (der Summanten) - 
   468    bessere Darstellung, da keine Klammern sichtbar! 
   469    (und discard_parentheses in make_polynomial hat weniger zu tun) *)
   470 
   471 (* sorts the variables (faktors) of an expanded polynomial lexicographical *)
   472 fun sort_variables t = 
   473   let
   474   	val ll = map monom2list (poly2list t);
   475   	val lls = map sort_varList ll; 
   476   	val T = type_of t;
   477   	val ls = map (create_monom T) lls;
   478   in create_polynom T ls end;
   479 
   480 (* sorts the monoms of an expanded and variable-sorted polynomial 
   481    by total_degree *)
   482 fun sort_monoms t = 
   483   let
   484   	val ll =  map monom2list (poly2list t);
   485   	val lls = sort_monList ll;
   486   	val T = Term.type_of t;
   487   	val ls = map (create_monom T) lls;
   488   in create_polynom T ls end;
   489 \<close>
   490 
   491 subsubsection \<open>rewrite order for hard-coded AC rewriting\<close>
   492 ML \<open>
   493 local (*. for make_polynomial .*)
   494 
   495 open Term;  (* for type order = EQUAL | LESS | GREATER *)
   496 
   497 fun pr_ord EQUAL = "EQUAL"
   498   | pr_ord LESS  = "LESS"
   499   | pr_ord GREATER = "GREATER";
   500 
   501 fun dest_hd' (Const (a, T)) =                          (* ~ term.ML *)
   502   (case a of
   503      \<^const_name>\<open>realpow\<close> => ((("|||||||||||||", 0), T), 0)    (*WN greatest string*)
   504    | _ => (((a, 0), T), 0))
   505   | dest_hd' (Free (a, T)) = (((a, 0), T), 1)(*TODOO handle this as numeral, too? see EqSystem.thy*)
   506   | dest_hd' (Var v) = (v, 2)
   507   | dest_hd' (Bound i) = ((("", i), dummyT), 3)
   508   | dest_hd' (Abs (_, T, _)) = ((("", 0), T), 4)
   509   | dest_hd' t = raise TERM ("dest_hd'", [t]);
   510 
   511 fun size_of_term' (Const(str,_) $ t) =
   512   if \<^const_name>\<open>realpow\<close>= str then 1000 + size_of_term' t else 1+size_of_term' t(*WN*)
   513   | size_of_term' (Abs (_,_,body)) = 1 + size_of_term' body
   514   | size_of_term' (f$t) = size_of_term' f  +  size_of_term' t
   515   | size_of_term' _ = 1;
   516 
   517 fun term_ord' pr thy (Abs (_, T, t), Abs(_, U, u)) =       (* ~ term.ML *)
   518     (case term_ord' pr thy (t, u) of EQUAL => Term_Ord.typ_ord (T, U) | ord => ord)
   519   | term_ord' pr thy (t, u) =
   520     (if pr then 
   521 	   let
   522        val (f, ts) = strip_comb t and (g, us) = strip_comb u;
   523        val _ = tracing ("t= f@ts= \"" ^ UnparseC.term_in_thy thy f ^ "\" @ \"[" ^
   524          commas (map (UnparseC.term_in_thy thy) ts) ^ "]\"");
   525        val _ = tracing("u= g@us= \"" ^ UnparseC.term_in_thy thy g ^ "\" @ \"[" ^
   526          commas (map (UnparseC.term_in_thy thy) us) ^ "]\"");
   527        val _ = tracing ("size_of_term(t,u)= (" ^ string_of_int (size_of_term' t) ^ ", " ^
   528          string_of_int (size_of_term' u) ^ ")");
   529        val _ = tracing ("hd_ord(f,g)      = " ^ (pr_ord o hd_ord) (f,g));
   530        val _ = tracing ("terms_ord(ts,us) = " ^ (pr_ord o terms_ord str false) (ts, us));
   531        val _ = tracing ("-------");
   532      in () end
   533        else ();
   534 	 case int_ord (size_of_term' t, size_of_term' u) of
   535 	   EQUAL =>
   536 	     let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
   537 	       (case hd_ord (f, g) of EQUAL => (terms_ord str pr) (ts, us) 
   538 	     | ord => ord)
   539 	     end
   540 	 | ord => ord)
   541 and hd_ord (f, g) =                                        (* ~ term.ML *)
   542   prod_ord (prod_ord Term_Ord.indexname_ord Term_Ord.typ_ord) int_ord (dest_hd' f, dest_hd' g)
   543 and terms_ord _ pr (ts, us) = 
   544     list_ord (term_ord' pr (ThyC.get_theory "Isac_Knowledge"))(ts, us);
   545 
   546 in
   547 
   548 fun ord_make_polynomial (pr:bool) thy (_: subst) (ts, us) =
   549     (term_ord' pr thy(***) (TermC.numerals_to_Free ts, TermC.numerals_to_Free us) = LESS );
   550 
   551 end;(*local*)
   552 \<close> 
   553 setup \<open>KEStore_Elems.add_rew_ord [
   554   ("termlessI", termlessI), 
   555   ("ord_make_polynomial", ord_make_polynomial false \<^theory>)]\<close>
   556 
   557 subsection \<open>predicates\<close>
   558 subsubsection \<open>in specifications\<close>
   559 ML \<open>
   560 (* is_polyrat_in becomes true, if no bdv is in the denominator of a fraction*)
   561 fun is_polyrat_in t v = 
   562   let
   563    	fun finddivide (_ $ _ $ _ $ _) _ = raise ERROR("is_polyrat_in:")
   564 	    (* at the moment there is no term like this, but ....*)
   565 	  | finddivide (Const (\<^const_name>\<open>divide\<close>,_) $ _ $ b) v = not (Prog_Expr.occurs_in v b)
   566 	  | finddivide (_ $ t1 $ t2) v = finddivide t1 v orelse finddivide t2 v
   567 	  | finddivide (_ $ t1) v = finddivide t1 v
   568 	  | finddivide _ _ = false;
   569   in finddivide t v end;
   570     
   571 fun is_expanded_in t v = case expand_deg_in t v of SOME _ => true | NONE => false;
   572 fun is_poly_in t v =     case poly_deg_in t v of SOME _ => true | NONE => false;
   573 fun has_degree_in t v =  case expand_deg_in t v of SOME d => d | NONE => ~1;
   574 
   575 (*.the expression contains + - * ^ only ?
   576    this is weaker than 'is_polynomial' !.*)
   577 fun is_polyexp (Free _) = true
   578   | is_polyexp (Const _) = true (* potential danger: bdv is not considered *)
   579   | is_polyexp (Const (\<^const_name>\<open>plus\<close>,_) $ Free _ $ num) =
   580     if TermC.is_num num then true
   581     else if TermC.is_variable num then true
   582     else is_polyexp num
   583   | is_polyexp (Const (\<^const_name>\<open>plus\<close>, _) $ num $ Free _) =
   584     if TermC.is_num num then true
   585     else if TermC.is_variable num then true
   586     else is_polyexp num
   587   | is_polyexp (Const (\<^const_name>\<open>minus\<close>, _) $ Free _ $ num) =
   588     if TermC.is_num num then true
   589     else if TermC.is_variable num then true
   590     else is_polyexp num
   591   | is_polyexp (Const (\<^const_name>\<open>times\<close>, _) $ num $ Free _) =
   592     if TermC.is_num num then true
   593     else if TermC.is_variable num then true
   594     else is_polyexp num
   595   | is_polyexp (Const (\<^const_name>\<open>realpow\<close>,_) $ Free _ $ num) =
   596     if TermC.is_num num then true
   597     else if TermC.is_variable num then true
   598     else is_polyexp num
   599   | is_polyexp (Const (\<^const_name>\<open>plus_class.plus\<close>,_) $ t1 $ t2) = 
   600     ((is_polyexp t1) andalso (is_polyexp t2))
   601   | is_polyexp (Const (\<^const_name>\<open>Groups.minus_class.minus\<close>,_) $ t1 $ t2) = 
   602     ((is_polyexp t1) andalso (is_polyexp t2))
   603   | is_polyexp (Const (\<^const_name>\<open>Groups.times_class.times\<close>,_) $ t1 $ t2) = 
   604     ((is_polyexp t1) andalso (is_polyexp t2))
   605   | is_polyexp (Const (\<^const_name>\<open>realpow\<close>,_) $ t1 $ t2) = 
   606     ((is_polyexp t1) andalso (is_polyexp t2))
   607   | is_polyexp num = TermC.is_num num;
   608 \<close>
   609 
   610 subsubsection \<open>for hard-coded AC rewriting\<close>
   611 ML \<open>
   612 (* auch Klammerung muss übereinstimmen;
   613    sort_variables klammert Produkte rechtslastig*)
   614 fun is_multUnordered t = ((is_polyexp t) andalso not (t = sort_variables t));
   615 
   616 fun is_addUnordered t = ((is_polyexp t) andalso not (t = sort_monoms t));
   617 \<close>
   618 
   619 subsection \<open>evaluations functions\<close>
   620 subsubsection \<open>for predicates\<close>
   621 ML \<open>
   622 fun eval_is_polyrat_in _ _(p as (Const (\<^const_name>\<open>Poly.is_polyrat_in\<close>, _) $ t $ v)) _  =
   623     if is_polyrat_in t v 
   624     then SOME ((UnparseC.term p) ^ " = True",
   625 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   626     else SOME ((UnparseC.term p) ^ " = True",
   627 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   628   | eval_is_polyrat_in _ _ _ _ = ((*tracing"### no matches";*) NONE);
   629 
   630 (*("is_expanded_in", ("Poly.is_expanded_in", eval_is_expanded_in ""))*)
   631 fun eval_is_expanded_in _ _ 
   632        (p as (Const (\<^const_name>\<open>Poly.is_expanded_in\<close>, _) $ t $ v)) _ =
   633     if is_expanded_in t v
   634     then SOME ((UnparseC.term p) ^ " = True",
   635 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   636     else SOME ((UnparseC.term p) ^ " = True",
   637 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   638   | eval_is_expanded_in _ _ _ _ = NONE;
   639 
   640 (*("is_poly_in", ("Poly.is_poly_in", eval_is_poly_in ""))*)
   641 fun eval_is_poly_in _ _ 
   642        (p as (Const (\<^const_name>\<open>Poly.is_poly_in\<close>, _) $ t $ v)) _ =
   643     if is_poly_in t v
   644     then SOME ((UnparseC.term p) ^ " = True",
   645 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
   646     else SOME ((UnparseC.term p) ^ " = True",
   647 	        HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
   648   | eval_is_poly_in _ _ _ _ = NONE;
   649 
   650 (*("has_degree_in", ("Poly.has_degree_in", eval_has_degree_in ""))*)
   651 fun eval_has_degree_in _ _ 
   652 	     (p as (Const (\<^const_name>\<open>Poly.has_degree_in\<close>, _) $ t $ v)) _ =
   653     let val d = has_degree_in t v
   654 	val d' = TermC.term_of_num HOLogic.realT d
   655     in SOME ((UnparseC.term p) ^ " = " ^ (string_of_int d),
   656 	      HOLogic.Trueprop $ (TermC.mk_equality (p, d')))
   657     end
   658   | eval_has_degree_in _ _ _ _ = NONE;
   659 
   660 (*("is_polyexp", ("Poly.is_polyexp", eval_is_polyexp ""))*)
   661 fun eval_is_polyexp (thmid:string) _ 
   662 		       (t as (Const (\<^const_name>\<open>is_polyexp\<close>, _) $ arg)) ctxt = 
   663     if is_polyexp arg
   664     then SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   665 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
   666     else SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   667 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
   668   | eval_is_polyexp _ _ _ _ = NONE; 
   669 \<close>
   670 
   671 subsubsection \<open>for hard-coded AC rewriting\<close>
   672 ML \<open>
   673 (*WN.18.6.03 *)
   674 (*("is_addUnordered", ("Poly.is_addUnordered", eval_is_addUnordered ""))*)
   675 fun eval_is_addUnordered (thmid:string) _ 
   676 		       (t as (Const (\<^const_name>\<open>is_addUnordered\<close>, _) $ arg)) ctxt = 
   677     if is_addUnordered arg
   678     then SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   679 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
   680     else SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   681 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
   682   | eval_is_addUnordered _ _ _ _ = NONE; 
   683 
   684 fun eval_is_multUnordered (thmid:string) _ 
   685 		       (t as (Const (\<^const_name>\<open>is_multUnordered\<close>, _) $ arg)) ctxt = 
   686     if is_multUnordered arg
   687     then SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   688 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
   689     else SOME (TermC.mk_thmid thmid (UnparseC.term_in_ctxt ctxt arg) "", 
   690 	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
   691   | eval_is_multUnordered _ _ _ _ = NONE; 
   692 \<close>
   693 calculation is_polyrat_in = \<open>eval_is_polyrat_in "#eval_is_polyrat_in"\<close>
   694 calculation is_expanded_in = \<open>eval_is_expanded_in ""\<close>
   695 calculation is_poly_in = \<open>eval_is_poly_in ""\<close>
   696 calculation has_degree_in = \<open>eval_has_degree_in ""\<close>
   697 calculation is_polyexp = \<open>eval_is_polyexp ""\<close>
   698 calculation is_multUnordered = \<open>eval_is_multUnordered ""\<close>
   699 calculation is_addUnordered = \<open>eval_is_addUnordered ""\<close>
   700 
   701 subsection \<open>rule-sets\<close>
   702 subsubsection \<open>without specific order\<close>
   703 ML \<open>
   704 (* used only for merge *)
   705 val calculate_Poly = Rule_Set.append_rules "calculate_PolyFIXXXME.not.impl." Rule_Set.empty [];
   706 
   707 (*.for evaluation of conditions in rewrite rules.*)
   708 val Poly_erls = Rule_Set.append_rules "Poly_erls" Atools_erls [
   709   \<^rule_eval>\<open>HOL.eq\<close> (Prog_Expr.eval_equal "#equal_"),
   710   \<^rule_thm>\<open>real_unari_minus\<close>,
   711   \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"),
   712   \<^rule_eval>\<open>minus\<close> (eval_binop "#sub_"),
   713   \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
   714   \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_")];
   715 
   716 val poly_crls = Rule_Set.append_rules "poly_crls" Atools_crls [
   717   \<^rule_eval>\<open>HOL.eq\<close> (Prog_Expr.eval_equal "#equal_"),
   718   \<^rule_thm>\<open>real_unari_minus\<close>,
   719   \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"),
   720   \<^rule_eval>\<open>minus\<close> (eval_binop "#sub_"),
   721   \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
   722   \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_")];
   723 \<close>
   724 ML \<open>
   725 val expand =
   726   Rule_Def.Repeat {id = "expand", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   727       erls = Rule_Set.empty,srls = Rule_Set.Empty, calc = [], errpatts = [],
   728       rules = [
   729         \<^rule_thm>\<open>distrib_right\<close>, (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   730 	      \<^rule_thm>\<open>distrib_left\<close> (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)],
   731       scr = Rule.Empty_Prog};
   732 
   733 \<close> ML \<open>
   734 \<close> ML \<open>@{term "1 is_num"}\<close>
   735 ML \<open>
   736 (* erls for calculate_Rational + etc *)
   737 val powers_erls =
   738   Rule_Def.Repeat {id = "powers_erls", preconds = [], rew_ord = ("dummy_ord",Rewrite_Ord.function_empty), 
   739       erls = Rule_Set.empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   740       rules = [
   741         \<^rule_eval>\<open>matches\<close> (Prog_Expr.eval_matches "#matches_"),
   742         \<^rule_eval>\<open>is_atom\<close> (Prog_Expr.eval_is_atom "#is_atom_"),
   743         \<^rule_eval>\<open>is_num\<close> (Prog_Expr.eval_is_num "#is_num_"),
   744         \<^rule_eval>\<open>is_even\<close> (Prog_Expr.eval_is_even "#is_even_"),
   745         \<^rule_eval>\<open>ord_class.less\<close> (Prog_Expr.eval_equ "#less_"),
   746         \<^rule_thm>\<open>not_false\<close>,
   747         \<^rule_thm>\<open>not_true\<close>,
   748         \<^rule_eval>\<open>plus_class.plus\<close> (eval_binop "#add_")],
   749       scr = Rule.Empty_Prog};
   750 
   751 \<close> ML \<open>
   752 val discard_minus =
   753   Rule_Def.Repeat {id = "discard_minus", preconds = [], rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   754       erls = powers_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   755       rules = [
   756         \<^rule_thm>\<open>real_diff_minus\<close> (*"a - b = a + -1 * b"*),
   757         \<^rule_thm>\<open>real_mult_minus1_sym\<close> (*"\<not>(z is_num) ==> - (z::real) = -1 * z"*)],
   758 	    scr = Rule.Empty_Prog};
   759 
   760 val expand_poly_ = 
   761   Rule_Def.Repeat{id = "expand_poly_", preconds = [], 
   762       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   763       erls = powers_erls, srls = Rule_Set.Empty,
   764       calc = [], errpatts = [],
   765       rules = [
   766         \<^rule_thm>\<open>real_plus_binom_pow4\<close>, (*"(a + b) \<up> 4 = ... "*)
   767         \<^rule_thm>\<open>real_plus_binom_pow5\<close>, (*"(a + b) \<up> 5 = ... "*)
   768         \<^rule_thm>\<open>real_plus_binom_pow3\<close>, (*"(a + b) \<up> 3 = a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3" *)
   769       (*WN071229 changed/removed for Schaerding -----vvv*)
   770         (*\<^rule_thm>\<open>real_plus_binom_pow2\<close>,*) (*"(a + b) \<up> 2 = a \<up> 2 + 2*a*b + b \<up> 2"*)
   771         \<^rule_thm>\<open>real_plus_binom_pow2\<close>, (*"(a + b) \<up> 2 = (a + b) * (a + b)"*)
   772         (*\<^rule_thm>\<open>real_plus_minus_binom1_p_p\<close>,*) (*"(a + b)*(a + -1 * b) = a \<up> 2 + -1*b \<up> 2"*)
   773         (*\<^rule_thm>\<open>real_plus_minus_binom2_p_p\<close>,*) (*"(a + -1 * b)*(a + b) = a \<up> 2 + -1*b \<up> 2"*)
   774       (*WN071229 changed/removed for Schaerding -----^^^*)
   775 
   776         \<^rule_thm>\<open>distrib_right\<close>, (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   777         \<^rule_thm>\<open>distrib_left\<close>, (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   778 
   779         \<^rule_thm>\<open>realpow_multI\<close>, (*"(r * s) \<up> n = r \<up> n * s \<up> n"*)
   780         \<^rule_thm>\<open>realpow_pow\<close>, (*"(a \<up> b) \<up> c = a \<up> (b * c)"*)
   781 
   782         \<^rule_thm>\<open>realpow_minus_even\<close>, (*"n is_even ==> (- r) \<up> n = r \<up> n"*)
   783         \<^rule_thm>\<open>realpow_minus_odd\<close> (*"Not (n is_even) ==> (- r) \<up> n = -1 * r \<up> n"*)],
   784       scr = Rule.Empty_Prog};
   785 
   786 val expand_poly_rat_ = 
   787   Rule_Def.Repeat{id = "expand_poly_rat_", preconds = [], 
   788       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   789       erls =  Rule_Set.append_rules "Rule_Set.empty-expand_poly_rat_" Rule_Set.empty [
   790         \<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp ""),
   791         \<^rule_eval>\<open>is_even\<close> (Prog_Expr.eval_is_even "#is_even_"),
   792         \<^rule_thm>\<open>not_false\<close>,
   793         \<^rule_thm>\<open>not_true\<close> ],
   794       srls = Rule_Set.Empty,
   795       calc = [], errpatts = [],
   796       rules = [
   797         \<^rule_thm>\<open>real_plus_binom_pow4_poly\<close>, (*"[| a is_polyexp; b is_polyexp |] ==> (a + b) \<up> 4 = ... "*)
   798         \<^rule_thm>\<open>real_plus_binom_pow5_poly\<close>, (*"[| a is_polyexp; b is_polyexp |] ==> (a + b) \<up> 5 = ... "*)
   799         \<^rule_thm>\<open>real_plus_binom_pow2_poly\<close>, (*"[| a is_polyexp; b is_polyexp |] ==> (a + b) \<up> 2 = a \<up> 2 + 2*a*b + b \<up> 2"*)
   800       	 \<^rule_thm>\<open>real_plus_binom_pow3_poly\<close>,
   801       	   (*"[| a is_polyexp; b is_polyexp |] ==> (a + b) \<up> 3 = a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3" *)
   802       	 \<^rule_thm>\<open>real_plus_minus_binom1_p_p\<close>, (*"(a + b)*(a + -1 * b) = a \<up> 2 + -1*b \<up> 2"*)
   803       	 \<^rule_thm>\<open>real_plus_minus_binom2_p_p\<close>, (*"(a + -1 * b)*(a + b) = a \<up> 2 + -1*b \<up> 2"*)
   804       	      
   805       	 \<^rule_thm>\<open>real_add_mult_distrib_poly\<close>, (*"w is_polyexp ==> (z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   806       	 \<^rule_thm>\<open>real_add_mult_distrib2_poly\<close>, (*"w is_polyexp ==> w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   807       	       
   808       	 \<^rule_thm>\<open>realpow_multI_poly\<close>, (*"[| r is_polyexp; s is_polyexp |] ==> (r * s) \<up> n = r \<up> n * s \<up> n"*)
   809       	 \<^rule_thm>\<open>realpow_pow\<close>, (*"(a \<up> b) \<up> c = a \<up> (b * c)"*)
   810       	 \<^rule_thm>\<open>realpow_minus_even\<close>, (*"n is_even ==> (- r) \<up> n = r \<up> n"*)
   811      	   \<^rule_thm>\<open>realpow_minus_odd\<close> (*"\<not> (n is_even) ==> (- r) \<up> n = -1 * r \<up> n"*) ],
   812       scr = Rule.Empty_Prog};
   813 
   814 val simplify_power_ = 
   815   Rule_Def.Repeat{id = "simplify_power_", preconds = [], 
   816       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   817       erls = Rule_Set.empty, srls = Rule_Set.Empty,
   818       calc = [], errpatts = [],
   819       rules = [
   820          (*MG: Reihenfolge der folgenden 2 Rule.Thm muss so bleiben, wegen
   821 	        	a*(a*a) --> a*a \<up> 2 und nicht a*(a*a) --> a \<up> 2*a *)
   822         \<^rule_thm_sym>\<open>realpow_twoI\<close>, (*"r * r = r \<up> 2"*)
   823         \<^rule_thm>\<open>realpow_twoI_assoc_l\<close>, (*"r * (r * s) = r \<up> 2 * s"*)
   824         
   825         \<^rule_thm>\<open>realpow_plus_1\<close>, (*"r * r \<up> n = r \<up> (n + 1)"*)
   826         \<^rule_thm>\<open>realpow_plus_1_assoc_l\<close>, (*"r * (r \<up> m * s) = r \<up> (1 + m) * s"*)
   827         (*MG 9.7.03: neues Rule.Thm wegen a*(a*(a*b)) --> a \<up> 2*(a*b) *)
   828         \<^rule_thm>\<open>realpow_plus_1_assoc_l2\<close>, (*"r \<up> m * (r * s) = r \<up> (1 + m) * s"*)
   829         
   830         \<^rule_thm_sym>\<open>realpow_addI\<close>, (*"r \<up> n * r \<up> m = r \<up> (n + m)"*)
   831         \<^rule_thm>\<open>realpow_addI_assoc_l\<close>, (*"r \<up> n * (r \<up> m * s) = r \<up> (n + m) * s"*)
   832         
   833         (* ist in expand_poly - wird hier aber auch gebraucht, wegen: "r * r = r \<up> 2" wenn r=a \<up> b*)
   834         \<^rule_thm>\<open>realpow_pow\<close> (*"(a \<up> b) \<up> c = a \<up> (b * c)"*)], 
   835       scr = Rule.Empty_Prog};
   836 
   837 val calc_add_mult_pow_ = 
   838   Rule_Def.Repeat{id = "calc_add_mult_pow_", preconds = [], 
   839       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   840       erls = Atools_erls(*erls3.4.03*),srls = Rule_Set.Empty,
   841       calc = [("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_")), 
   842 	      ("TIMES" , (\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
   843 	      ("POWER", (\<^const_name>\<open>realpow\<close>, eval_binop "#power_"))
   844 	      ],
   845       errpatts = [],
   846       rules = [
   847         \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"),
   848 	      \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
   849 	      \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_")],
   850       scr = Rule.Empty_Prog};
   851 
   852 val reduce_012_mult_ = 
   853   Rule_Def.Repeat{id = "reduce_012_mult_", preconds = [], 
   854       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   855       erls = Rule_Set.empty,srls = Rule_Set.Empty,
   856       calc = [], errpatts = [],
   857       rules = [(* MG: folgende Rule.Thm müssen hier stehen bleiben: *)
   858          \<^rule_thm>\<open>mult_1_right\<close>, (*"z * 1 = z"*) (*wegen "a * b * b \<up> (-1) + a"*) 
   859 	       \<^rule_thm>\<open>realpow_zeroI\<close>, (*"r \<up> 0 = 1"*) (*wegen "a*a \<up> (-1)*c + b + c"*)
   860 	       \<^rule_thm>\<open>realpow_oneI\<close>, (*"r \<up> 1 = r"*)
   861 	       \<^rule_thm>\<open>realpow_eq_oneI\<close> (*"1 \<up> n = 1"*)],
   862       scr = Rule.Empty_Prog};
   863 
   864 val collect_numerals_ = 
   865   Rule_Def.Repeat{id = "collect_numerals_", preconds = [], 
   866       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   867       erls = Atools_erls, srls = Rule_Set.Empty,
   868       calc = [("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_"))
   869 	      ], errpatts = [],
   870       rules = [
   871         \<^rule_thm>\<open>real_num_collect\<close>, (*"[| l is_num; m is_num |]==>l * n + m * n = (l + m) * n"*)
   872 	      \<^rule_thm>\<open>real_num_collect_assoc_r\<close>,
   873 	        (*"[| l is_num; m is_num |] ==> (k + m * n) + l * n = k + (l + m)*n"*)
   874         \<^rule_thm>\<open>real_one_collect\<close>, (*"m is_num ==> n + m * n = (1 + m) * n"*)
   875         \<^rule_thm>\<open>real_one_collect_assoc_r\<close>, (*"m is_num ==> (k + n) + m * n = k + (m + 1) * n"*)
   876 
   877         \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"),
   878 
   879       	 (*MG: Reihenfolge der folgenden 2 Rule.Thm muss so bleiben, wegen
   880 		       (a+a)+a --> a + 2*a --> 3*a and not (a+a)+a --> 2*a + a *)
   881         \<^rule_thm>\<open>real_mult_2_assoc_r\<close>, (*"(k + z1) + z1 = k + 2 * z1"*)
   882       	 \<^rule_thm_sym>\<open>real_mult_2\<close> (*"z1 + z1 = 2 * z1"*)],
   883       scr = Rule.Empty_Prog};
   884 
   885 val reduce_012_ = 
   886   Rule_Def.Repeat{id = "reduce_012_", preconds = [], 
   887       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   888       erls = Rule_Set.empty,srls = Rule_Set.Empty, calc = [], errpatts = [],
   889       rules = [
   890         \<^rule_thm>\<open>mult_1_left\<close>, (*"1 * z = z"*)
   891 	      \<^rule_thm>\<open>mult_zero_left\<close>, (*"0 * z = 0"*)
   892 	      \<^rule_thm>\<open>mult_zero_right\<close>, (*"z * 0 = 0"*)
   893 	      \<^rule_thm>\<open>add_0_left\<close>, (*"0 + z = z"*)
   894 	      \<^rule_thm>\<open>add_0_right\<close>, (*"z + 0 = z"*) (*wegen a+b-b --> a+(1-1)*b --> a+0 --> a*)
   895    
   896 	      (*\<^rule_thm>\<open>realpow_oneI\<close>*) (*"?r \<up> 1 = ?r"*)
   897 	      \<^rule_thm>\<open>division_ring_divide_zero\<close> (*"0 / ?x = 0"*)],
   898       scr = Rule.Empty_Prog};
   899 
   900 val discard_parentheses1 = 
   901     Rule_Set.append_rules "discard_parentheses1" Rule_Set.empty [
   902       \<^rule_thm_sym>\<open>mult.assoc\<close> (*"?z1.1 * (?z2.1 * ?z3.1) = ?z1.1 * ?z2.1 * ?z3.1"*)
   903 		   (*\<^rule_thm_sym>\<open>add.assoc\<close>*) (*"?z1.1 + (?z2.1 + ?z3.1) = ?z1.1 + ?z2.1 + ?z3.1"*)];
   904 
   905 val expand_poly =
   906   Rule_Def.Repeat{id = "expand_poly", preconds = [], 
   907       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   908       erls = powers_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
   909       rules = [
   910         \<^rule_thm>\<open>distrib_right\<close>, (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   911         \<^rule_thm>\<open>distrib_left\<close>, (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   912 
   913         \<^rule_thm>\<open>real_plus_binom_pow2\<close>, (*"(a + b) \<up> 2 = a \<up> 2 + 2*a*b + b \<up> 2"*)
   914         \<^rule_thm>\<open>real_minus_binom_pow2_p\<close>, (*"(a - b) \<up> 2 = a \<up> 2 + -2*a*b + b \<up> 2"*)
   915         \<^rule_thm>\<open>real_plus_minus_binom1_p\<close>, (*"(a + b)*(a - b) = a \<up> 2 + -1*b \<up> 2"*)
   916         \<^rule_thm>\<open>real_plus_minus_binom2_p\<close>, (*"(a - b)*(a + b) = a \<up> 2 + -1*b \<up> 2"*)
   917 
   918         \<^rule_thm>\<open>minus_minus\<close> (*"- (- ?z) = ?z"*),
   919         \<^rule_thm>\<open>real_diff_minus\<close> (*"a - b = a + -1 * b"*),
   920         \<^rule_thm>\<open>real_mult_minus1_sym\<close> (*"\<not>(z is_num) ==> - (z::real) = -1 * z"*)
   921 
   922 	       (*\<^rule_thm>\<open>real_minus_add_distrib\<close>,*) (*"- (?x + ?y) = - ?x + - ?y"*)
   923 	       (*\<^rule_thm>\<open>real_diff_plus\<close>*) (*"a - b = a + -b"*)],
   924       scr = Rule.Empty_Prog};
   925 
   926 val simplify_power = 
   927   Rule_Def.Repeat{id = "simplify_power", preconds = [], 
   928       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   929       erls = Rule_Set.empty, srls = Rule_Set.Empty,
   930       calc = [], errpatts = [],
   931       rules = [
   932         \<^rule_thm>\<open>realpow_multI\<close>, (*"(r * s) \<up> n = r \<up> n * s \<up> n"*)
   933 
   934         \<^rule_thm_sym>\<open>realpow_twoI\<close>, (*"r1 * r1 = r1 \<up> 2"*)
   935         \<^rule_thm>\<open>realpow_plus_1\<close>, (*"r * r \<up> n = r \<up> (n + 1)"*)
   936         \<^rule_thm>\<open>realpow_pow\<close>, (*"(a \<up> b) \<up> c = a \<up> (b * c)"*)
   937         \<^rule_thm_sym>\<open>realpow_addI\<close>, (*"r \<up> n * r \<up> m = r \<up> (n + m)"*)
   938         \<^rule_thm>\<open>realpow_oneI\<close>, (*"r \<up> 1 = r"*)
   939         \<^rule_thm>\<open>realpow_eq_oneI\<close> (*"1 \<up> n = 1"*)],
   940       scr = Rule.Empty_Prog};
   941 
   942 val collect_numerals = 
   943   Rule_Def.Repeat{id = "collect_numerals", preconds = [], 
   944       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   945       erls = Atools_erls(*erls3.4.03*),srls = Rule_Set.Empty,
   946       calc = [("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_")), 
   947 	      ("TIMES" , (\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
   948 	      ("POWER", (\<^const_name>\<open>realpow\<close>, eval_binop "#power_"))
   949 	      ], errpatts = [],
   950       rules =[
   951         \<^rule_thm>\<open>real_num_collect\<close>, (*"[| l is_num; m is_num |]==>l * n + m * n = (l + m) * n"*)
   952 	      \<^rule_thm>\<open>real_num_collect_assoc\<close>,
   953           (*"[| l is_num; m is_num |] ==> l * n + (m * n + k) =  (l + m) * n + k"*)
   954 	      \<^rule_thm>\<open>real_one_collect\<close>,	 (*"m is_num ==> n + m * n = (1 + m) * n"*)
   955 	      \<^rule_thm>\<open>real_one_collect_assoc\<close>, (*"m is_num ==> k + (n + m * n) = k + (1 + m) * n"*)
   956 	      \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"), 
   957 	      \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
   958 	      \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_")],
   959       scr = Rule.Empty_Prog};
   960 val reduce_012 = 
   961   Rule_Def.Repeat{id = "reduce_012", preconds = [], 
   962       rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
   963       erls = Rule_Set.append_rules "erls_in_reduce_012" Rule_Set.empty [
   964         \<^rule_eval>\<open>is_num\<close> (Prog_Expr.eval_is_num "#is_num_"),
   965         \<^rule_thm>\<open>not_false\<close>,
   966         \<^rule_thm>\<open>not_true\<close>],
   967       srls = Rule_Set.Empty, calc = [], errpatts = [],
   968       rules = [
   969         \<^rule_thm>\<open>mult_1_left\<close>, (*"1 * z = z"*)
   970 	       (*\<^rule_thm>\<open>real_mult_minus1\<close>,14.3.03*) (*"-1 * z = - z"*)
   971 	       \<^rule_thm>\<open>real_minus_mult_left\<close>, (*"\<not> ((a::real) is_num) ==> (- a) * b = - (a * b)"*)
   972 	       (*\<^rule_thm>\<open>real_minus_mult_cancel\<close>, (*"- ?x * - ?y = ?x * ?y"*)---*)
   973 	       \<^rule_thm>\<open>mult_zero_left\<close>, (*"0 * z = 0"*)
   974 	       \<^rule_thm>\<open>add_0_left\<close>, (*"0 + z = z"*)
   975 	       \<^rule_thm>\<open>add_0_right\<close>, (*"a + - a = 0"*)
   976 	       \<^rule_thm>\<open>right_minus\<close>, (*"?z + - ?z = 0"*)
   977 	       \<^rule_thm_sym>\<open>real_mult_2\<close>,	 (*"z1 + z1 = 2 * z1"*)
   978 	       \<^rule_thm>\<open>real_mult_2_assoc\<close> (*"z1 + (z1 + k) = 2 * z1 + k"*)],
   979       scr = Rule.Empty_Prog};
   980 
   981 val discard_parentheses = 
   982     Rule_Set.append_rules "discard_parentheses" Rule_Set.empty 
   983 	       [\<^rule_thm_sym>\<open>mult.assoc\<close>,	\<^rule_thm_sym>\<open>add.assoc\<close>];
   984 \<close>
   985 
   986 subsubsection \<open>hard-coded AC rewriting\<close>
   987 ML \<open>
   988 (*MG.0401: termorders for multivariate polys dropped due to principal problems:
   989   (total-degree-)ordering of monoms NOT possible with size_of_term GIVEN*)
   990 val order_add_mult = 
   991   Rule_Def.Repeat{id = "order_add_mult", preconds = [], 
   992       rew_ord = ("ord_make_polynomial", ord_make_polynomial false \<^theory>),
   993       erls = Rule_Set.empty,srls = Rule_Set.Empty,
   994       calc = [], errpatts = [],
   995       rules = [
   996         \<^rule_thm>\<open>mult.commute\<close>, (* z * w = w * z *)
   997 	       \<^rule_thm>\<open>real_mult_left_commute\<close>, (*z1.0 * (z2.0 * z3.0) = z2.0 * (z1.0 * z3.0)*)
   998 	       \<^rule_thm>\<open>mult.assoc\<close>, (*z1.0 * z2.0 * z3.0 = z1.0 * (z2.0 * z3.0)*)
   999 	       \<^rule_thm>\<open>add.commute\<close>,	 (*z + w = w + z*)
  1000 	       \<^rule_thm>\<open>add.left_commute\<close>, (*x + (y + z) = y + (x + z)*)
  1001 	       \<^rule_thm>\<open>add.assoc\<close> (*z1.0 + z2.0 + z3.0 = z1.0 + (z2.0 + z3.0)*)],
  1002       scr = Rule.Empty_Prog};
  1003 (*MG.0401: termorders for multivariate polys dropped due to principal problems:
  1004   (total-degree-)ordering of monoms NOT possible with size_of_term GIVEN*)
  1005 val order_mult = 
  1006   Rule_Def.Repeat{id = "order_mult", preconds = [], 
  1007       rew_ord = ("ord_make_polynomial",ord_make_polynomial false \<^theory>),
  1008       erls = Rule_Set.empty,srls = Rule_Set.Empty,
  1009       calc = [], errpatts = [],
  1010       rules = [
  1011         \<^rule_thm>\<open>mult.commute\<close>, (* z * w = w * z *)
  1012 	       \<^rule_thm>\<open>real_mult_left_commute\<close>, (*z1.0 * (z2.0 * z3.0) = z2.0 * (z1.0 * z3.0)*)
  1013 	       \<^rule_thm>\<open>mult.assoc\<close>	 (*z1.0 * z2.0 * z3.0 = z1.0 * (z2.0 * z3.0)*)],
  1014       scr = Rule.Empty_Prog};
  1015 \<close>
  1016 ML \<open>
  1017 fun attach_form (_: Rule.rule list list) (_: term) (_: term) = (*still missing*)
  1018     []:(Rule.rule * (term * term list)) list;
  1019 fun init_state (_: term) = Rule_Set.e_rrlsstate;
  1020 fun locate_rule (_: Rule.rule list list) (_: term) (_: Rule.rule) =
  1021     ([]:(Rule.rule * (term * term list)) list);
  1022 fun next_rule (_: Rule.rule list list) (_: term) = (NONE: Rule.rule option);
  1023 fun normal_form t = SOME (sort_variables t, []: term list);
  1024 
  1025 val order_mult_ =
  1026     Rule_Set.Rrls {id = "order_mult_", 
  1027 	  prepat = 
  1028           (* ?p matched with the current term gives an environment,
  1029              which evaluates (the instantiated) "?p is_multUnordered" to true *)
  1030 	  [([TermC.parse_patt \<^theory> "?p is_multUnordered"], 
  1031              TermC.parse_patt \<^theory> "?p :: real")],
  1032 	  rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1033 	  erls = Rule_Set.append_rules "Rule_Set.empty-is_multUnordered" Rule_Set.empty
  1034 			    [\<^rule_eval>\<open>is_multUnordered\<close> (eval_is_multUnordered "")],
  1035 	  calc = [("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_")),
  1036 		  ("TIMES" , (\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
  1037 		  ("DIVIDE", (\<^const_name>\<open>divide\<close>, Prog_Expr.eval_cancel "#divide_e")),
  1038 		  ("POWER" , (\<^const_name>\<open>realpow\<close>, eval_binop "#power_"))],
  1039     errpatts = [],
  1040 	  scr = Rule.Rfuns {init_state  = init_state,
  1041 		     normal_form = normal_form,
  1042 		     locate_rule = locate_rule,
  1043 		     next_rule   = next_rule,
  1044 		     attach_form = attach_form}};
  1045 val order_mult_rls_ = 
  1046   Rule_Def.Repeat {id = "order_mult_rls_", preconds = [], 
  1047     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1048     erls = Rule_Set.empty,srls = Rule_Set.Empty,
  1049     calc = [], errpatts = [],
  1050     rules = [
  1051       Rule.Rls_ order_mult_],
  1052     scr = Rule.Empty_Prog};
  1053 
  1054 \<close> ML \<open>
  1055 
  1056 fun attach_form (_: Rule.rule list list) (_: term) (_: term) = (*still missing*)
  1057     []: (Rule.rule * (term * term list)) list;
  1058 fun init_state (_: term) = Rule_Set.e_rrlsstate;
  1059 fun locate_rule (_: Rule.rule list list) (_: term) (_: Rule.rule) =
  1060     ([]: (Rule.rule * (term * term list)) list);
  1061 fun next_rule (_: Rule.rule list list) (_: term) = (NONE: Rule.rule option);
  1062 fun normal_form t = SOME (sort_monoms t,[]: term list);
  1063 \<close> ML \<open>
  1064 val order_add_ =
  1065   Rule_Set.Rrls {id = "order_add_", 
  1066 	  prepat = [(*WN.18.6.03 Preconditions und Pattern,
  1067 		    die beide passen muessen, damit das Rule_Set.Rrls angewandt wird*)
  1068 	    ([TermC.parse_patt @{theory} "?p is_addUnordered"], 
  1069 	      TermC.parse_patt @{theory} "?p :: real" 
  1070 	    (*WN.18.6.03 also KEIN pattern, dieses erzeugt nur das Environment 
  1071 	      fuer die Evaluation der Precondition "p is_addUnordered"*))],
  1072 	  rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1073 	  erls = Rule_Set.append_rules "Rule_Set.empty-is_addUnordered" Rule_Set.empty(*MG: poly_erls*)
  1074 			[\<^rule_eval>\<open>is_addUnordered\<close> (eval_is_addUnordered "")],
  1075 	  calc = [
  1076       ("PLUS"  ,(\<^const_name>\<open>plus\<close>, eval_binop "#add_")),
  1077 		  ("TIMES" ,(\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
  1078 		  ("DIVIDE",(\<^const_name>\<open>divide\<close>, Prog_Expr.eval_cancel "#divide_e")),
  1079 		  ("POWER" ,(\<^const_name>\<open>realpow\<close>  , eval_binop "#power_"))],
  1080 	  errpatts = [],
  1081 	  scr = Rule.Rfuns {
  1082       init_state  = init_state,
  1083 		  normal_form = normal_form,
  1084 		  locate_rule = locate_rule,
  1085 		  next_rule   = next_rule,
  1086 		  attach_form = attach_form}};
  1087 
  1088 val order_add_rls_ =
  1089   Rule_Def.Repeat {id = "order_add_rls_", preconds = [], 
  1090     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1091     erls = Rule_Set.empty, srls = Rule_Set.Empty,
  1092     calc = [], errpatts = [],
  1093     rules = [
  1094       Rule.Rls_ order_add_],
  1095     scr = Rule.Empty_Prog};
  1096 \<close>
  1097 
  1098 text \<open>rule-set make_polynomial also named norm_Poly:
  1099   Rewrite order has not been implemented properly; the order is better in 
  1100   make_polynomial_in (coded in SML).
  1101   Notes on state of development:
  1102   \# surprise 2006: test --- norm_Poly NOT COMPLETE ---
  1103   \# migration Isabelle2002 --> 2011 weakened the rule set, see test
  1104   --- Matthias Goldgruber 2003 rewrite orders ---, raise ERROR "ord_make_polynomial_in #16b"
  1105 \<close>
  1106 ML \<open>
  1107 (*. see MG-DA.p.52ff .*)
  1108 val make_polynomial(*MG.03, overwrites version from above, 
  1109     previously 'make_polynomial_'*) =
  1110   Rule_Set.Sequence {id = "make_polynomial", preconds = []:term list, 
  1111     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1112     erls = Atools_erls, srls = Rule_Set.Empty,calc = [], errpatts = [],
  1113     rules = [
  1114        Rule.Rls_ discard_minus,
  1115 	     Rule.Rls_ expand_poly_,
  1116 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1117 	     Rule.Rls_ order_mult_rls_,
  1118 	     Rule.Rls_ simplify_power_, 
  1119 	     Rule.Rls_ calc_add_mult_pow_, 
  1120 	     Rule.Rls_ reduce_012_mult_,
  1121 	     Rule.Rls_ order_add_rls_,
  1122 	     Rule.Rls_ collect_numerals_, 
  1123 	     Rule.Rls_ reduce_012_,
  1124 	     Rule.Rls_ discard_parentheses1],
  1125     scr = Rule.Empty_Prog};
  1126 \<close>
  1127 ML \<open>
  1128 val norm_Poly(*=make_polynomial*) = 
  1129   Rule_Set.Sequence {id = "norm_Poly", preconds = []:term list, 
  1130     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1131     erls = Atools_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
  1132     rules = [
  1133        Rule.Rls_ discard_minus,
  1134 	     Rule.Rls_ expand_poly_,
  1135 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1136 	     Rule.Rls_ order_mult_rls_,
  1137 	     Rule.Rls_ simplify_power_, 
  1138 	     Rule.Rls_ calc_add_mult_pow_, 
  1139 	     Rule.Rls_ reduce_012_mult_,
  1140 	     Rule.Rls_ order_add_rls_,
  1141 	     Rule.Rls_ collect_numerals_, 
  1142 	     Rule.Rls_ reduce_012_,
  1143 	     Rule.Rls_ discard_parentheses1],
  1144     scr = Rule.Empty_Prog};
  1145 \<close>
  1146 ML \<open>
  1147 (* MG:03 Like make_polynomial_ but without Rule.Rls_ discard_parentheses1 
  1148    and expand_poly_rat_ instead of expand_poly_, see MG-DA.p.56ff*)
  1149 (* MG necessary  for termination of norm_Rational(*_mg*) in Rational.ML*)
  1150 val make_rat_poly_with_parentheses =
  1151   Rule_Set.Sequence{id = "make_rat_poly_with_parentheses", preconds = []:term list, 
  1152     rew_ord = ("dummy_ord", Rewrite_Ord.function_empty),
  1153     erls = Atools_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
  1154     rules = [
  1155       Rule.Rls_ discard_minus,
  1156 	    Rule.Rls_ expand_poly_rat_,(*ignors rationals*)
  1157 	    \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1158 	    Rule.Rls_ order_mult_rls_,
  1159 	    Rule.Rls_ simplify_power_, 
  1160 	    Rule.Rls_ calc_add_mult_pow_, 
  1161 	    Rule.Rls_ reduce_012_mult_,
  1162 	    Rule.Rls_ order_add_rls_,
  1163 	    Rule.Rls_ collect_numerals_, 
  1164 	    Rule.Rls_ reduce_012_
  1165 	    (*Rule.Rls_ discard_parentheses1 *)],
  1166     scr = Rule.Empty_Prog};
  1167 \<close>
  1168 ML \<open>
  1169 (*.a minimal ruleset for reverse rewriting of factions [2];
  1170    compare expand_binoms.*)
  1171 val rev_rew_p = 
  1172   Rule_Set.Sequence{id = "rev_rew_p", preconds = [], rew_ord = ("termlessI",termlessI),
  1173     erls = Atools_erls, srls = Rule_Set.Empty,
  1174     calc = [(*("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_")), 
  1175 	    ("TIMES" , (\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
  1176 	    ("POWER", (\<^const_name>\<open>realpow\<close>, eval_binop "#power_"))*)
  1177 	    ], errpatts = [],
  1178     rules = [
  1179        \<^rule_thm>\<open>real_plus_binom_times\<close>, (*"(a + b)*(a + b) = a ^ 2 + 2 * a * b + b ^ 2*)
  1180 	     \<^rule_thm>\<open>real_plus_binom_times1\<close>, (*"(a +  1*b)*(a + -1*b) = a \<up> 2 + -1*b \<up> 2"*)
  1181 	     \<^rule_thm>\<open>real_plus_binom_times2\<close>, (*"(a + -1*b)*(a +  1*b) = a \<up> 2 + -1*b \<up> 2"*)
  1182 
  1183 	     \<^rule_thm>\<open>mult_1_left\<close>,(*"1 * z = z"*)
  1184 
  1185        \<^rule_thm>\<open>distrib_right\<close>, (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1186 	     \<^rule_thm>\<open>distrib_left\<close>, (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1187 	       
  1188 	     \<^rule_thm>\<open>mult.assoc\<close>, (*"?z1.1 * ?z2.1 * ?z3. =1 ?z1.1 * (?z2.1 * ?z3.1)"*)
  1189 	     Rule.Rls_ order_mult_rls_,
  1190 	     (*Rule.Rls_ order_add_rls_,*)
  1191 
  1192 	     \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"), 
  1193 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1194 	     \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_"),
  1195 	     
  1196 	     \<^rule_thm_sym>\<open>realpow_twoI\<close>, (*"r1 * r1 = r1 \<up> 2"*)
  1197 	     \<^rule_thm_sym>\<open>real_mult_2\<close>, (*"z1 + z1 = 2 * z1"*)
  1198 	     \<^rule_thm>\<open>real_mult_2_assoc\<close>, (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1199 
  1200 	     \<^rule_thm>\<open>real_num_collect\<close>,  (*"[| l is_num; m is_num |]==>l * n + m * n = (l + m) * n"*)
  1201 	     \<^rule_thm>\<open>real_num_collect_assoc\<close>, (*"[| l is_num; m is_num |] ==> l * n + (m * n + k) =  (l + m) * n + k"*)
  1202 	     \<^rule_thm>\<open>real_one_collect\<close>, (*"m is_num ==> n + m * n = (1 + m) * n"*)
  1203 	     \<^rule_thm>\<open>real_one_collect_assoc\<close>, (*"m is_num ==> k + (n + m * n) = k + (1 + m) * n"*)
  1204 
  1205 	     \<^rule_thm>\<open>realpow_multI\<close>, (*"(r * s) \<up> n = r \<up> n * s \<up> n"*)
  1206 
  1207 	     \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"),
  1208 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1209 	     \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_"),
  1210 
  1211 	     \<^rule_thm>\<open>mult_1_left\<close>, (*"1 * z = z"*)
  1212 	     \<^rule_thm>\<open>mult_zero_left\<close>, (*"0 * z = 0"*)
  1213 	     \<^rule_thm>\<open>add_0_left\<close> (*0 + z = z*)
  1214 
  1215 	     (*Rule.Rls_ order_add_rls_*)
  1216 	     ],
  1217     scr = Rule.Empty_Prog};      
  1218 \<close>
  1219 
  1220 subsection \<open>rule-sets with explicit program for intermediate steps\<close>
  1221 partial_function (tailrec) expand_binoms_2 :: "real \<Rightarrow> real"
  1222   where
  1223 "expand_binoms_2 term = (
  1224   Repeat (
  1225     (Try (Repeat (Rewrite ''real_plus_binom_pow2''))) #>
  1226     (Try (Repeat (Rewrite ''real_plus_binom_times''))) #>
  1227     (Try (Repeat (Rewrite ''real_minus_binom_pow2''))) #>
  1228     (Try (Repeat (Rewrite ''real_minus_binom_times''))) #>
  1229     (Try (Repeat (Rewrite ''real_plus_minus_binom1''))) #>
  1230     (Try (Repeat (Rewrite ''real_plus_minus_binom2''))) #>
  1231    
  1232     (Try (Repeat (Rewrite ''mult_1_left''))) #>
  1233     (Try (Repeat (Rewrite ''mult_zero_left''))) #>
  1234     (Try (Repeat (Rewrite ''add_0_left''))) #>
  1235    
  1236     (Try (Repeat (Calculate ''PLUS''))) #>
  1237     (Try (Repeat (Calculate ''TIMES''))) #>
  1238     (Try (Repeat (Calculate ''POWER''))) #>
  1239    
  1240     (Try (Repeat (Rewrite ''sym_realpow_twoI''))) #>
  1241     (Try (Repeat (Rewrite ''realpow_plus_1''))) #>
  1242     (Try (Repeat (Rewrite ''sym_real_mult_2''))) #>
  1243     (Try (Repeat (Rewrite ''real_mult_2_assoc''))) #>
  1244    
  1245     (Try (Repeat (Rewrite ''real_num_collect''))) #>
  1246     (Try (Repeat (Rewrite ''real_num_collect_assoc''))) #>
  1247    
  1248     (Try (Repeat (Rewrite ''real_one_collect''))) #>
  1249     (Try (Repeat (Rewrite ''real_one_collect_assoc''))) #>
  1250    
  1251     (Try (Repeat (Calculate ''PLUS''))) #>
  1252     (Try (Repeat (Calculate ''TIMES''))) #>
  1253     (Try (Repeat (Calculate ''POWER''))))
  1254   term)"
  1255 ML \<open>
  1256 val expand_binoms = 
  1257   Rule_Def.Repeat{id = "expand_binoms", preconds = [], rew_ord = ("termlessI",termlessI),
  1258     erls = Atools_erls, srls = Rule_Set.Empty,
  1259     calc = [("PLUS"  , (\<^const_name>\<open>plus\<close>, eval_binop "#add_")), 
  1260 	    ("TIMES" , (\<^const_name>\<open>times\<close>, eval_binop "#mult_")),
  1261 	    ("POWER", (\<^const_name>\<open>realpow\<close>, eval_binop "#power_"))
  1262 	    ], errpatts = [],
  1263     rules = [
  1264        \<^rule_thm>\<open>real_plus_binom_pow2\<close>, (*"(a + b) \<up> 2 = a \<up> 2 + 2 * a * b + b \<up> 2"*)
  1265 	     \<^rule_thm>\<open>real_plus_binom_times\<close>, (*"(a + b)*(a + b) = ...*)
  1266 	     \<^rule_thm>\<open>real_minus_binom_pow2\<close>,  (*"(a - b) \<up> 2 = a \<up> 2 - 2 * a * b + b \<up> 2"*)
  1267 	     \<^rule_thm>\<open>real_minus_binom_times\<close>, (*"(a - b)*(a - b) = ...*)
  1268 	     \<^rule_thm>\<open>real_plus_minus_binom1\<close>, (*"(a + b) * (a - b) = a \<up> 2 - b \<up> 2"*)
  1269 	     \<^rule_thm>\<open>real_plus_minus_binom2\<close>, (*"(a - b) * (a + b) = a \<up> 2 - b \<up> 2"*)
  1270 	     (*RL 020915*)
  1271 	     \<^rule_thm>\<open>real_pp_binom_times\<close>, (*(a + b)*(c + d) = a*c + a*d + b*c + b*d*)
  1272 	     \<^rule_thm>\<open>real_pm_binom_times\<close>, (*(a + b)*(c - d) = a*c - a*d + b*c - b*d*)
  1273 	     \<^rule_thm>\<open>real_mp_binom_times\<close>, (*(a - b)*(c + d) = a*c + a*d - b*c - b*d*)
  1274 	     \<^rule_thm>\<open>real_mm_binom_times\<close>, (*(a - b)*(c - d) = a*c - a*d - b*c + b*d*)
  1275 	     \<^rule_thm>\<open>realpow_multI\<close>, (*(a*b) \<up> n = a \<up> n * b \<up> n*)
  1276 	     \<^rule_thm>\<open>real_plus_binom_pow3\<close>, (* (a + b) \<up> 3 = a \<up> 3 + 3*a \<up> 2*b + 3*a*b \<up> 2 + b \<up> 3 *)
  1277 	     \<^rule_thm>\<open>real_minus_binom_pow3\<close>, (* (a - b) \<up> 3 = a \<up> 3 - 3*a \<up> 2*b + 3*a*b \<up> 2 - b \<up> 3 *)
  1278        (*
  1279        \<^rule_thm>\<open>distrib_right\<close>,	 (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1280 	     \<^rule_thm>\<open>distrib_left\<close>, (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1281 	     \<^rule_thm>\<open>left_diff_distrib\<close>,	 (*"(z1.0 - z2.0) * w = z1.0 * w - z2.0 * w"*)
  1282 	     \<^rule_thm>\<open>right_diff_distrib\<close>, (*"w * (z1.0 - z2.0) = w * z1.0 - w * z2.0"*)
  1283 	      *)
  1284 	     \<^rule_thm>\<open>mult_1_left\<close>, (*"1 * z = z"*)
  1285 	     \<^rule_thm>\<open>mult_zero_left\<close>, (*"0 * z = 0"*)
  1286 	     \<^rule_thm>\<open>add_0_left\<close>, (*"0 + z = z"*)
  1287     
  1288 	     \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"), 
  1289 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1290 	     \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_"),
  1291             (*\<^rule_thm>\<open>mult.commute\<close>,
  1292 		    (*AC-rewriting*)
  1293 	     \<^rule_thm>\<open>real_mult_left_commute\<close>,
  1294 	     \<^rule_thm>\<open>mult.assoc\<close>,
  1295 	     \<^rule_thm>\<open>add.commute\<close>,
  1296 	     \<^rule_thm>\<open>add.left_commute\<close>,
  1297 	     \<^rule_thm>\<open>add.assoc\<close>,
  1298 	      *)
  1299 	     \<^rule_thm_sym>\<open>realpow_twoI\<close>, (*"r1 * r1 = r1 \<up> 2"*)
  1300 	     \<^rule_thm>\<open>realpow_plus_1\<close>, (*"r * r \<up> n = r \<up> (n + 1)"*)
  1301 	     (*
  1302        \<^rule_thm_sym>\<open>real_mult_2\<close>, (*"z1 + z1 = 2 * z1"*)*)
  1303 	     \<^rule_thm>\<open>real_mult_2_assoc\<close>,	 (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1304     
  1305 	     \<^rule_thm>\<open>real_num_collect\<close>, (*"[| l is_num; m is_num |] ==>l * n + m * n = (l + m) * n"*)
  1306 	     \<^rule_thm>\<open>real_num_collect_assoc\<close>, (*"[| l is_num; m is_num |] ==> l * n + (m * n + k) =  (l + m) * n + k"*)
  1307 	     \<^rule_thm>\<open>real_one_collect\<close>, (*"m is_num ==> n + m * n = (1 + m) * n"*)
  1308 	     \<^rule_thm>\<open>real_one_collect_assoc\<close>, (*"m is_num ==> k + (n + m * n) = k + (1 + m) * n"*)
  1309     
  1310 	     \<^rule_eval>\<open>plus\<close> (eval_binop "#add_"), 
  1311 	     \<^rule_eval>\<open>times\<close> (eval_binop "#mult_"),
  1312 	     \<^rule_eval>\<open>realpow\<close> (eval_binop "#power_")],
  1313     scr = Rule.Prog (Program.prep_program @{thm expand_binoms_2.simps})};      
  1314 \<close>
  1315 
  1316 subsection \<open>add to Know_Store\<close>
  1317 subsubsection \<open>rule-sets\<close>
  1318 ML \<open>val prep_rls' = Auto_Prog.prep_rls @{theory}\<close>
  1319 
  1320 rule_set_knowledge
  1321   norm_Poly = \<open>prep_rls' norm_Poly\<close> and
  1322   Poly_erls = \<open>prep_rls' Poly_erls\<close> and
  1323   expand = \<open>prep_rls' expand\<close> and
  1324   expand_poly = \<open>prep_rls' expand_poly\<close> and
  1325   simplify_power = \<open>prep_rls' simplify_power\<close> and
  1326 
  1327   order_add_mult = \<open>prep_rls' order_add_mult\<close> and
  1328   collect_numerals = \<open>prep_rls' collect_numerals\<close> and
  1329   collect_numerals_= \<open>prep_rls' collect_numerals_\<close> and
  1330   reduce_012 = \<open>prep_rls' reduce_012\<close> and
  1331   discard_parentheses = \<open>prep_rls' discard_parentheses\<close> and
  1332  
  1333   make_polynomial = \<open>prep_rls' make_polynomial\<close> and
  1334   expand_binoms = \<open>prep_rls' expand_binoms\<close> and
  1335   rev_rew_p = \<open>prep_rls' rev_rew_p\<close> and
  1336   discard_minus = \<open>prep_rls' discard_minus\<close> and
  1337   expand_poly_ = \<open>prep_rls' expand_poly_\<close> and
  1338  
  1339   expand_poly_rat_ = \<open>prep_rls' expand_poly_rat_\<close> and
  1340   simplify_power_ = \<open>prep_rls' simplify_power_\<close> and
  1341   calc_add_mult_pow_ = \<open>prep_rls' calc_add_mult_pow_\<close> and
  1342   reduce_012_mult_ = \<open>prep_rls' reduce_012_mult_\<close> and
  1343   reduce_012_ = \<open>prep_rls' reduce_012_\<close> and
  1344  
  1345   discard_parentheses1 = \<open>prep_rls' discard_parentheses1\<close> and
  1346   order_mult_rls_ = \<open>prep_rls' order_mult_rls_\<close> and
  1347   order_add_rls_ = \<open>prep_rls' order_add_rls_\<close> and
  1348   make_rat_poly_with_parentheses = \<open>prep_rls' make_rat_poly_with_parentheses\<close>
  1349 
  1350 subsection \<open>problems\<close>
  1351 
  1352 problem pbl_simp_poly : "polynomial/simplification" =
  1353   \<open>Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)
  1354     \<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp "")]\<close>
  1355   Method_Ref: "simplification/for_polynomials"
  1356   CAS: "Simplify t_t"
  1357   Given: "Term t_t"
  1358   Where: "t_t is_polyexp"
  1359   Find: "normalform n_n"
  1360 
  1361 subsection \<open>methods\<close>
  1362 
  1363 partial_function (tailrec) simplify :: "real \<Rightarrow> real"
  1364   where
  1365 "simplify term = ((Rewrite_Set ''norm_Poly'') term)"
  1366 
  1367 method met_simp_poly : "simplification/for_polynomials" =
  1368   \<open>{rew_ord'="tless_true", rls' = Rule_Set.empty, calc = [], srls = Rule_Set.empty,
  1369     prls = Rule_Set.append_rules "simplification_for_polynomials_prls" Rule_Set.empty
  1370       [(*for preds in where_*) \<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp"")],
  1371     crls = Rule_Set.empty, errpats = [], nrls = norm_Poly}\<close>
  1372   Program: simplify.simps
  1373   Given: "Term t_t"
  1374   Where: "t_t is_polyexp"
  1375   Find: "normalform n_n"
  1376 ML \<open>
  1377 \<close> ML \<open>
  1378 \<close>
  1379 end