src/Tools/isac/Interpret/solve-step.sml
author wneuper <Walther.Neuper@jku.at>
Thu, 04 Aug 2022 12:48:37 +0200
changeset 60509 2e0b7ca391dc
parent 60506 145e45cd7a0f
child 60527 ff2da703f546
permissions -rw-r--r--
polish naming in Rewrite_Order
     1 (* Title:  Specify/solve-step.sml
     2    Author: Walther Neuper
     3    (c) due to copyright terms
     4 
     5 Code for the solve-phase in analogy to structure Specify_Step for the specify-phase.
     6 *)
     7 
     8 signature SOLVE_STEP =
     9 sig
    10   val check: Tactic.input -> Calc.T -> Applicable.T
    11   val add: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    12 
    13   val add_general: Tactic.T -> Istate_Def.T * Proof.context -> Calc.T -> Test_Out.T
    14   val s_add_general: State_Steps.T ->
    15     Ctree.ctree * Pos.pos' list * Pos.pos' -> Ctree.ctree * Pos.pos' list * Pos.pos'
    16   val add_hard:
    17     theory -> Tactic.T -> Pos.pos' -> Ctree.ctree -> Test_Out.T
    18 
    19   val get_ruleset: 'a -> Pos.pos -> Ctree.ctree ->
    20     string * ThyC.id * Rewrite_Ord.id * Rule_Def.rule_set * bool
    21   val get_eval: string -> Pos.pos ->Ctree.ctree ->
    22     string * ThyC.id * (string * Rule_Def.eval_fn)
    23 \<^isac_test>\<open>
    24   val rew_info: Rule_Def.rule_set -> string * Rule_Def.rule_set * Rule_Def.calc list
    25 \<close>
    26 end
    27 
    28 (**)
    29 structure Solve_Step(**): SOLVE_STEP(**) =
    30 struct
    31 (**)
    32 
    33 (** get data from Calc.T **)
    34 
    35 (* the source is the parent node, either a problem or a Rule_Set (with inter_steps) *)
    36 fun rew_info (Rule_Def.Repeat {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    37     (rew_ord', erls, ca)
    38   | rew_info (Rule_Set.Sequence {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    39     (rew_ord', erls, ca)
    40   | rew_info (Rule_Set.Rrls {erls, rew_ord = (rew_ord', _), calc = ca, ...}) =
    41     (rew_ord', erls, ca)
    42   | rew_info rls = raise ERROR ("rew_info called with '" ^ Rule_Set.id rls ^ "'");
    43 
    44 fun get_ruleset _ p pt = 
    45   let 
    46     val (pbl, p', rls') = Ctree.parent_node pt p
    47   in                                                      
    48     if pbl
    49     then 
    50       let 
    51         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    52         val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')              
    53 	    in ("OK", thy', rew_ord', erls, false) end
    54      else 
    55       let
    56         val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p)
    57 		    val (rew_ord', erls, _) = rew_info rls'
    58 		  in ("OK", thy', rew_ord', erls, false) end
    59   end;
    60 
    61 fun get_eval scrop p pt = 
    62   let
    63     val (pbl, p', rls') =  Ctree.parent_node pt p
    64   in
    65     if pbl
    66     then
    67       let
    68         val thy' = Ctree.get_obj Ctree.g_domID pt p'
    69         val {calc = scr_isa_fns, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt p')
    70         val opt = assoc (scr_isa_fns, scrop)
    71 	    in
    72 	      case opt of
    73 	        SOME isa_fn => ("OK", thy', isa_fn)
    74 	      | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval_Def.e_evalfn))
    75 	    end
    76     else 
    77 		  let
    78 		    val thy' = Ctree.get_obj Ctree.g_domID pt (Ctree.par_pblobj pt p);
    79 		    val (_, _,(*_,*)scr_isa_fns) = rew_info rls'(*rls*)
    80 		  in
    81 		    case assoc (scr_isa_fns, scrop) of
    82 		      SOME isa_fn => ("OK",thy',isa_fn)
    83 		    | NONE => ("applicable_in Calculate: unknown '" ^ scrop ^ "'", "", ("", Eval_Def.e_evalfn))
    84 		  end
    85   end;
    86 
    87 (** Solve_Step.check **)
    88 
    89 (*
    90   check tactics (input by the user, mostly) for applicability
    91   and determine as much of the result of the tactic as possible initially.
    92 *)
    93 fun check (Tactic.Apply_Method mI) (pt, (p, _)) =
    94       let
    95         val (dI, pI, probl, ctxt) = case Ctree.get_obj I pt p of
    96           Ctree.PblObj {origin = (_, (dI, pI, _), _), probl, ctxt, ...} => (dI, pI, probl, ctxt)
    97         | _ => raise ERROR "Specify_Step.check Apply_Method: uncovered case Ctree.get_obj"
    98         val {where_, ...} = Problem.from_store pI
    99         val pres = map (I_Model.environment probl |> subst_atomic) where_
   100         val ctxt = if ContextC.is_empty ctxt (*vvvvvvvvvvvvvv DO THAT EARLIER?!?*)
   101           then ThyC.get_theory dI |> Proof_Context.init_global |> ContextC.insert_assumptions pres
   102           else ctxt
   103       in
   104         Applicable.Yes (Tactic.Apply_Method' (mI, NONE, Istate_Def.empty (*filled later*), ctxt))
   105       end
   106   | check (Tactic.Calculate op_) (cs as (pt, (p, _))) =
   107       let 
   108         val (msg, thy', isa_fn) = get_eval op_ p pt;
   109         val f = Calc.current_formula cs;
   110       in
   111         if msg = "OK"
   112         then
   113     	    case Rewrite.calculate_ (ThyC.id_to_ctxt thy') isa_fn f of
   114     	      SOME (f', (id, thm))
   115     	        => Applicable.Yes (Tactic.Calculate' (thy', op_, f, (f', (id, thm))))
   116     	    | NONE => Applicable.No ("'calculate " ^ op_ ^ "' not applicable") 
   117         else Applicable.No msg                                              
   118       end
   119   | check (Tactic.Check_Postcond pI) (_, _) = (*TODO: only applicable, if evaluating to True*)
   120       Applicable.Yes (Tactic.Check_Postcond' (pI, TermC.empty))
   121   | check (Tactic.Check_elementwise pred) cs =
   122       let 
   123         val f = Calc.current_formula cs;
   124       in
   125         Applicable.Yes (Tactic.Check_elementwise' (f, pred, (f, [])))
   126       end
   127   | check Tactic.Empty_Tac _ = Applicable.No "Empty_Tac is not applicable"
   128   | check (Tactic.Free_Solve) _ = Applicable.Yes (Tactic.Free_Solve')
   129   | check Tactic.Or_to_List cs =
   130        let 
   131         val f = Calc.current_formula cs;
   132         val ls = Prog_Expr.or2list f;
   133       in
   134         Applicable.Yes (Tactic.Or_to_List' (f, ls))
   135       end
   136   | check (Tactic.Rewrite thm) (cs as (pt, (p, _))) = 
   137       let
   138         val (msg, thy', ro, rls', _) = get_ruleset thm p pt;
   139         val thy = ThyC.get_theory thy';
   140         val ctxt = Proof_Context.init_global thy;
   141         val f = Calc.current_formula cs;
   142       in
   143         if msg = "OK" 
   144         then
   145           case Rewrite.rewrite_ ctxt (assoc_rew_ord thy ro) rls' false (snd thm) f of
   146             SOME (f',asm) => Applicable.Yes (Tactic.Rewrite' (thy', ro, rls', false, thm, f, (f', asm)))
   147           | NONE => Applicable.No ((thm |> fst |> quote) ^ " not applicable") 
   148         else Applicable.No msg
   149       end
   150   | check (Tactic.Rewrite_Inst (subs, thm)) (cs as (pt, (p, _))) = 
   151       let 
   152         val pp = Ctree.par_pblobj pt p;
   153         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   154         val thy = ThyC.get_theory thy';
   155         val ctxt = Proof_Context.init_global thy;
   156         val {rew_ord' = ro', erls = erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp);
   157         val f = Calc.current_formula cs;
   158         val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   159       in 
   160         case Rewrite.rewrite_inst_ ctxt (assoc_rew_ord thy ro') erls false subst (snd thm) f of
   161           SOME (f', asm) =>
   162             Applicable.Yes (Tactic.Rewrite_Inst' (thy', ro', erls, false, subst, thm, f, (f', asm)))
   163         | NONE => Applicable.No (fst thm ^ " not applicable")
   164       end
   165   | check (Tactic.Rewrite_Set rls) (cs as (pt, (p, _))) =
   166       let 
   167         val pp = Ctree.par_pblobj pt p; 
   168         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   169         val f = Calc.current_formula cs;
   170       in
   171         case Rewrite.rewrite_set_ (ThyC.id_to_ctxt thy') false (assoc_rls rls) f of
   172           SOME (f', asm)
   173             => Applicable.Yes (Tactic.Rewrite_Set' (thy', false, assoc_rls rls, f, (f', asm)))
   174           | NONE => Applicable.No (rls ^ " not applicable")
   175       end
   176   | check (Tactic.Rewrite_Set_Inst (subs, rls)) (cs as (pt, (p, _))) =
   177       let 
   178         val pp = Ctree.par_pblobj pt p;
   179         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   180         val thy = ThyC.get_theory thy';
   181         val ctxt = Proof_Context.init_global thy;
   182         val f = Calc.current_formula cs;
   183     	  val subst = Subst.T_from_input ctxt subs; (*TODO: input requires parse _: _ -> _ option*)
   184       in 
   185         case Rewrite.rewrite_set_inst_ ctxt false subst (assoc_rls rls) f of
   186           SOME (f', asm)
   187             => Applicable.Yes (Tactic.Rewrite_Set_Inst' (thy', false, subst, assoc_rls rls, f, (f', asm)))
   188         | NONE => Applicable.No (rls ^ " not applicable")
   189       end
   190   | check (Tactic.Subproblem (domID, pblID)) (_, _) = 
   191       Applicable.Yes (Tactic.Subproblem' ((domID, pblID, MethodC.id_empty), [], 
   192 			  TermC.empty, [], ContextC.empty, Auto_Prog.subpbl domID pblID))
   193   | check (Tactic.Substitute sube) (cs as (pt, (p, _))) =
   194       let
   195         val pp = Ctree.par_pblobj pt p
   196         val thy = ThyC.get_theory (Ctree.get_obj Ctree.g_domID pt pp)
   197         val ctxt = Proof_Context.init_global thy;
   198         val f = Calc.current_formula cs;
   199 		    val {rew_ord', erls, ...} = MethodC.from_store (Ctree.get_obj Ctree.g_metID pt pp)
   200 		    val subte = Subst.input_to_terms sube (*TODO: input requires parse _: _ -> _ option*)
   201 		    val subst = Subst.T_from_string_eqs thy sube
   202 		    val ro = assoc_rew_ord thy rew_ord'
   203 		  in
   204 		    if foldl and_ (true, map TermC.contains_Var subte)
   205 		    then (*1*)
   206 		      let val f' = subst_atomic subst f
   207 		      in if f = f'
   208 		        then Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   209 		        else Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   210 		      end
   211 		    else (*2*)
   212 		      case Rewrite.rewrite_terms_ ctxt ro erls subte f of
   213 		        SOME (f', _) =>  Applicable.Yes (Tactic.Substitute' (ro, erls, subte, f, f'))
   214 		      | NONE => Applicable.No (Subst.string_eqs_to_string sube ^ " not applicable")
   215 		  end
   216   | check (Tactic.Tac id) (cs as (pt, (p, _))) =
   217       let 
   218         val pp = Ctree.par_pblobj pt p; 
   219         val thy' = Ctree.get_obj Ctree.g_domID pt pp;
   220         val thy = ThyC.get_theory thy';
   221         val f = Calc.current_formula cs;
   222       in
   223         Applicable.Yes (Tactic.Tac_ (thy, UnparseC.term f, id, UnparseC.term f))
   224       end
   225   | check (Tactic.Take str) _ = Applicable.Yes (Tactic.Take' (TermC.str2term str)) (* always applicable ?*)
   226   | check (Tactic.Begin_Trans) cs =
   227       Applicable.Yes (Tactic.Begin_Trans' (Calc.current_formula cs))
   228   | check (Tactic.End_Trans) (pt, (p, p_)) = (*TODO: check parent branches*)
   229     if p_ = Pos.Res 
   230 	  then Applicable.Yes (Tactic.End_Trans' (Ctree.get_obj Ctree.g_result pt p))
   231     else Applicable.No "'End_Trans' is not applicable at the beginning of a transitive sequence"
   232   | check Tactic.End_Proof' _ = Applicable.Yes Tactic.End_Proof''
   233   | check m _ = raise ERROR ("Solve_Step.check called for " ^ Tactic.input_to_string m);
   234 
   235 
   236 (** Solve_Step.add **)
   237 
   238 fun add (Tactic.Apply_Method' (_, topt, is, _)) (_, ctxt) (pt, pos as (p, _)) = 
   239     (case topt of 
   240       SOME t => 
   241         let val (pt, c) = Ctree.cappend_form pt p (is, ctxt) t
   242         in (pos, c, Test_Out.EmptyMout, pt) end
   243     | NONE => (pos, [], Test_Out.EmptyMout, pt))
   244   | add (Tactic.Take' t) l (pt, (p, _)) = (* val (Take' t) = m; *)
   245     let
   246       val p =
   247         let val (ps, p') = split_last p (* no connex to prev.ppobj *)
   248 	      in if p' = 0 then ps @ [1] else p end
   249       val (pt, c) = Ctree.cappend_form pt p l t
   250     in
   251       ((p, Pos.Frm), c, Test_Out.FormKF (UnparseC.term t), pt)
   252     end
   253   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Frm)) =
   254     let
   255       val (pt, c) = Ctree.cappend_form pt p l t
   256       val pt = Ctree.update_branch pt p Ctree.TransitiveB (*040312*)
   257       (* replace the old PrfOjb ~~~~~ *)
   258       val p = (Pos.lev_on o Pos.lev_dn (* starts with [...,0] *)) p
   259       val (pt, c') = Ctree.cappend_form pt p l t (*FIXME.0402 same istate ???*)
   260     in
   261       ((p, Pos.Frm), c @ c', Test_Out.FormKF (UnparseC.term t), pt)
   262     end
   263   | add (Tactic.Begin_Trans' t) l (pt, (p, Pos.Res)) = 
   264     (*append after existing PrfObj    vvvvvvvvvvvvv*)
   265     add (Tactic.Begin_Trans' t) l (pt, (Pos.lev_on p, Pos.Frm))
   266   | add (Tactic.End_Trans' tasm) l (pt, (p, _)) =
   267     let
   268       val p' = Pos.lev_up p
   269       val (pt, c) = Ctree.append_result pt p' l tasm Ctree.Complete
   270     in
   271       ((p', Pos.Res), c, Test_Out.FormKF "DUMMY" (*term2str t ..ERROR (t) has not been declared*), pt)
   272     end
   273   | add (Tactic.Rewrite_Inst' (_, _, _, _, subs', thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   274     let
   275       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f
   276         (Tactic.Rewrite_Inst (Subst.T_to_input subs', thm')) (f',asm) Ctree.Complete;
   277       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   278     in
   279       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   280     end
   281  | add (Tactic.Rewrite' (_, _, _, _, thm', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   282    let
   283      val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f (Tactic.Rewrite thm') (f', asm) Ctree.Complete
   284      val pt = Ctree.update_branch pt p Ctree.TransitiveB
   285    in
   286     ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   287    end
   288   | add (Tactic.Rewrite_Set_Inst' (_, _, subs', rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   289     let
   290       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   291         (Tactic.Rewrite_Set_Inst (Subst.T_to_input subs', Rule_Set.id rls')) (f', asm) Ctree.Complete
   292       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   293     in
   294       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   295     end
   296   | add (Tactic.Rewrite_Set' (_, _, rls', f, (f', asm))) (is, ctxt) (pt, (p, _)) =
   297     let
   298       val (pt, c) = Ctree.cappend_atomic pt p (is, ctxt) f 
   299         (Tactic.Rewrite_Set (Rule_Set.id rls')) (f', asm) Ctree.Complete
   300       val pt = Ctree.update_branch pt p Ctree.TransitiveB
   301     in
   302       ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   303     end
   304   | add (Tactic.Check_Postcond' (_, scval)) l (pt, (p, _)) =
   305       let
   306         val (pt, c) = Ctree.append_result pt p l (scval, []) Ctree.Complete
   307       in
   308         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term scval), pt)
   309       end
   310   | add (Tactic.Calculate' (_, op_, f, (f', _))) l (pt, (p, _)) =
   311       let
   312         val (pt,c) = Ctree.cappend_atomic pt p l f (Tactic.Calculate op_) (f', []) Ctree.Complete
   313       in
   314         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   315       end
   316   | add (Tactic.Check_elementwise' (consts, pred, (f', asm))) l (pt, (p, _)) =
   317       let
   318         val (pt,c) = Ctree.cappend_atomic pt p l consts (Tactic.Check_elementwise pred) (f', asm) Ctree.Complete
   319       in
   320         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term f'), pt)
   321       end
   322   | add (Tactic.Or_to_List' (ors, list)) l (pt, (p, _)) =
   323       let
   324         val (pt,c) = Ctree.cappend_atomic pt p l ors Tactic.Or_to_List (list, []) Ctree.Complete
   325       in
   326         ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term list), pt)
   327       end
   328   | add (Tactic.Substitute' (_, _, subte, t, t')) l (pt, (p, _)) =
   329       let
   330         val (pt,c) =
   331           Ctree.cappend_atomic pt p l t (Tactic.Substitute (Subst.eqs_to_input subte)) (t',[]) Ctree.Complete
   332         in ((p, Pos.Res), c, Test_Out.FormKF (UnparseC.term t'), pt) 
   333         end
   334   | add (Tactic.Tac_ (_, f, id, f')) l (pt, (p, _)) =
   335       let
   336         val (pt, c) = Ctree.cappend_atomic pt p l (TermC.str2term f) (Tactic.Tac id) (TermC.str2term f', []) Ctree.Complete
   337       in
   338         ((p,Pos.Res), c, Test_Out.FormKF f', pt)
   339       end
   340   | add (Tactic.Subproblem' ((domID, pblID, metID), oris, hdl, fmz_, ctxt_specify, f))
   341       (l as (_, ctxt)) (pt, (p, _)) =
   342       let
   343   	    val (pt, c) = Ctree.cappend_problem pt p l (fmz_, (domID, pblID, metID))
   344   	      (oris, (domID, pblID, metID), hdl, ctxt_specify)
   345   	    val f = Syntax.string_of_term ctxt f
   346       in
   347         ((p, Pos.Pbl), c, Test_Out.FormKF f, pt)
   348       end
   349   | add m' _ (_, pos) =
   350       raise ERROR ("Solve_Step.add: not impl.for " ^ Tactic.string_of m' ^ " at " ^ Pos.pos'2str pos)
   351 
   352 (* LI switches between solve-phase and specify-phase *)
   353 fun add_general tac ic cs =
   354   if Tactic.for_specify' tac
   355   then Specify_Step.add tac ic cs
   356   else add tac ic cs
   357 
   358 (* the order of State_Steps is reversed: insert last element first  *)
   359 fun s_add_general [] ptp = ptp
   360   | s_add_general tacis (pt, c, _) = 
   361     let
   362       val (tacis', (_, tac_, (p, is))) = split_last tacis
   363 	    val (p', c', _, pt') = add_general tac_ is (pt, p)
   364     in
   365       s_add_general tacis' (pt', c@c', p')
   366     end
   367 
   368 (* a still undeveloped concept: do a calculation without LI *)
   369 fun add_hard _(*thy*) m' (p, p_) pt =
   370   let  
   371     val p = case p_ of
   372       Pos.Frm => p | Pos.Res => Pos.lev_on p
   373     | _ => raise ERROR ("generate_hard: call by " ^ Pos.pos'2str (p,p_))
   374   in
   375     add_general m' (Istate_Def.empty, ContextC.empty) (pt, (p, p_))
   376   end
   377 
   378 (**)end(**);