src/HOL/Library/Abstract_Rat.thy
author haftmann
Mon, 14 Jul 2008 11:04:42 +0200
changeset 27556 292098f2efdf
parent 27368 9f90ac19e32b
child 27567 e3fe9a327c63
permissions -rw-r--r--
unified curried gcd, lcm, zgcd, zlcm
     1 (*  Title:      HOL/Library/Abstract_Rat.thy
     2     ID:         $Id$
     3     Author:     Amine Chaieb
     4 *)
     5 
     6 header {* Abstract rational numbers *}
     7 
     8 theory Abstract_Rat
     9 imports Plain GCD
    10 begin
    11 
    12 types Num = "int \<times> int"
    13 
    14 abbreviation
    15   Num0_syn :: Num ("0\<^sub>N")
    16 where "0\<^sub>N \<equiv> (0, 0)"
    17 
    18 abbreviation
    19   Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N")
    20 where "i\<^sub>N \<equiv> (i, 1)"
    21 
    22 definition
    23   isnormNum :: "Num \<Rightarrow> bool"
    24 where
    25   "isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> zgcd a b = 1))"
    26 
    27 definition
    28   normNum :: "Num \<Rightarrow> Num"
    29 where
    30   "normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else 
    31   (let g = zgcd a b 
    32    in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
    33 
    34 lemma normNum_isnormNum [simp]: "isnormNum (normNum x)"
    35 proof -
    36   have " \<exists> a b. x = (a,b)" by auto
    37   then obtain a b where x[simp]: "x = (a,b)" by blast
    38   {assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)}  
    39   moreover
    40   {assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0" 
    41     let ?g = "zgcd a b"
    42     let ?a' = "a div ?g"
    43     let ?b' = "b div ?g"
    44     let ?g' = "zgcd ?a' ?b'"
    45     from anz bnz have "?g \<noteq> 0" by simp  with zgcd_pos[of a b] 
    46     have gpos: "?g > 0"  by arith
    47     have gdvd: "?g dvd a" "?g dvd b" by (simp_all add: zgcd_dvd1 zgcd_dvd2)
    48     from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)]
    49     anz bnz
    50     have nz':"?a' \<noteq> 0" "?b' \<noteq> 0" 
    51       by - (rule notI,simp add:zgcd_def)+
    52     from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by blast
    53     from div_zgcd_relprime[OF stupid] have gp1: "?g' = 1" .
    54     from bnz have "b < 0 \<or> b > 0" by arith
    55     moreover
    56     {assume b: "b > 0"
    57       from pos_imp_zdiv_nonneg_iff[OF gpos] b
    58       have "?b' \<ge> 0" by simp
    59       with nz' have b': "?b' > 0" by simp
    60       from b b' anz bnz nz' gp1 have ?thesis 
    61 	by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
    62     moreover {assume b: "b < 0"
    63       {assume b': "?b' \<ge> 0" 
    64 	from gpos have th: "?g \<ge> 0" by arith
    65 	from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)]
    66 	have False using b by simp }
    67       hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) 
    68       from anz bnz nz' b b' gp1 have ?thesis 
    69 	by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
    70     ultimately have ?thesis by blast
    71   }
    72   ultimately show ?thesis by blast
    73 qed
    74 
    75 text {* Arithmetic over Num *}
    76 
    77 definition
    78   Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60)
    79 where
    80   "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') 
    81     else if a'=0 \<or> b' = 0 then normNum(a,b) 
    82     else normNum(a*b' + b*a', b*b'))"
    83 
    84 definition
    85   Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60)
    86 where
    87   "Nmul = (\<lambda>(a,b) (a',b'). let g = zgcd (a*a') (b*b') 
    88     in (a*a' div g, b*b' div g))"
    89 
    90 definition
    91   Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
    92 where
    93   "Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
    94 
    95 definition
    96   Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60)
    97 where
    98   "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
    99 
   100 definition
   101   Ninv :: "Num \<Rightarrow> Num" 
   102 where
   103   "Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)"
   104 
   105 definition
   106   Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60)
   107 where
   108   "Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b"
   109 
   110 lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)"
   111   by(simp add: isnormNum_def Nneg_def split_def)
   112 lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)"
   113   by (simp add: Nadd_def split_def)
   114 lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)"
   115   by (simp add: Nsub_def split_def)
   116 lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y"
   117   shows "isnormNum (x *\<^sub>N y)"
   118 proof-
   119   have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto
   120   then obtain a b a' b' where ab: "x = (a,b)"  and ab': "y = (a',b')" by blast 
   121   {assume "a = 0"
   122     hence ?thesis using xn ab ab'
   123       by (simp add: zgcd_def isnormNum_def Let_def Nmul_def split_def)}
   124   moreover
   125   {assume "a' = 0"
   126     hence ?thesis using yn ab ab' 
   127       by (simp add: zgcd_def isnormNum_def Let_def Nmul_def split_def)}
   128   moreover
   129   {assume a: "a \<noteq>0" and a': "a'\<noteq>0"
   130     hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def)
   131     from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')" 
   132       using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def)
   133     hence ?thesis by simp}
   134   ultimately show ?thesis by blast
   135 qed
   136 
   137 lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)"
   138   by (simp add: Ninv_def isnormNum_def split_def)
   139     (cases "fst x = 0", auto simp add: zgcd_commute)
   140 
   141 lemma isnormNum_int[simp]: 
   142   "isnormNum 0\<^sub>N" "isnormNum (1::int)\<^sub>N" "i \<noteq> 0 \<Longrightarrow> isnormNum i\<^sub>N"
   143   by (simp_all add: isnormNum_def zgcd_def)
   144 
   145 
   146 text {* Relations over Num *}
   147 
   148 definition
   149   Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N")
   150 where
   151   "Nlt0 = (\<lambda>(a,b). a < 0)"
   152 
   153 definition
   154   Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N")
   155 where
   156   "Nle0 = (\<lambda>(a,b). a \<le> 0)"
   157 
   158 definition
   159   Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N")
   160 where
   161   "Ngt0 = (\<lambda>(a,b). a > 0)"
   162 
   163 definition
   164   Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N")
   165 where
   166   "Nge0 = (\<lambda>(a,b). a \<ge> 0)"
   167 
   168 definition
   169   Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55)
   170 where
   171   "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
   172 
   173 definition
   174   Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55)
   175 where
   176   "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
   177 
   178 definition
   179   "INum = (\<lambda>(a,b). of_int a / of_int b)"
   180 
   181 lemma INum_int [simp]: "INum i\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)"
   182   by (simp_all add: INum_def)
   183 
   184 lemma isnormNum_unique[simp]: 
   185   assumes na: "isnormNum x" and nb: "isnormNum y" 
   186   shows "((INum x ::'a::{ring_char_0,field, division_by_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
   187 proof
   188   have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto
   189   then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast
   190   assume H: ?lhs 
   191   {assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" hence ?rhs
   192       using na nb H
   193       apply (simp add: INum_def split_def isnormNum_def)
   194       apply (cases "a = 0", simp_all)
   195       apply (cases "b = 0", simp_all)
   196       apply (cases "a' = 0", simp_all)
   197       apply (cases "a' = 0", simp_all add: of_int_eq_0_iff)
   198       done}
   199   moreover
   200   { assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
   201     from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def)
   202     from prems have eq:"a * b' = a'*b" 
   203       by (simp add: INum_def  eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult)
   204     from prems have gcd1: "zgcd a b = 1" "zgcd b a = 1" "zgcd a' b' = 1" "zgcd b' a' = 1"       
   205       by (simp_all add: isnormNum_def add: zgcd_commute)
   206     from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" 
   207       apply(unfold dvd_def)
   208       apply (rule_tac x="b'" in exI, simp add: mult_ac)
   209       apply (rule_tac x="a'" in exI, simp add: mult_ac)
   210       apply (rule_tac x="b" in exI, simp add: mult_ac)
   211       apply (rule_tac x="a" in exI, simp add: mult_ac)
   212       done
   213     from zdvd_dvd_eq[OF bz zrelprime_dvd_mult[OF gcd1(2) raw_dvd(2)]
   214       zrelprime_dvd_mult[OF gcd1(4) raw_dvd(4)]]
   215       have eq1: "b = b'" using pos by simp_all
   216       with eq have "a = a'" using pos by simp
   217       with eq1 have ?rhs by simp}
   218   ultimately show ?rhs by blast
   219 next
   220   assume ?rhs thus ?lhs by simp
   221 qed
   222 
   223 
   224 lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_by_zero})) = (x = 0\<^sub>N)"
   225   unfolding INum_int(2)[symmetric]
   226   by (rule isnormNum_unique, simp_all)
   227 
   228 lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = 
   229     of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
   230 proof -
   231   assume "d ~= 0"
   232   hence dz: "of_int d \<noteq> (0::'a)" by (simp add: of_int_eq_0_iff)
   233   let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)"
   234   let ?f = "\<lambda>x. x / of_int d"
   235   have "x = (x div d) * d + x mod d"
   236     by auto
   237   then have eq: "of_int x = ?t"
   238     by (simp only: of_int_mult[symmetric] of_int_add [symmetric])
   239   then have "of_int x / of_int d = ?t / of_int d" 
   240     using cong[OF refl[of ?f] eq] by simp
   241   then show ?thesis by (simp add: add_divide_distrib ring_simps prems)
   242 qed
   243 
   244 lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
   245     (of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d"
   246   apply (frule of_int_div_aux [of d n, where ?'a = 'a])
   247   apply simp
   248   apply (simp add: zdvd_iff_zmod_eq_0)
   249 done
   250 
   251 
   252 lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_by_zero})"
   253 proof-
   254   have "\<exists> a b. x = (a,b)" by auto
   255   then obtain a b where x[simp]: "x = (a,b)" by blast
   256   {assume "a=0 \<or> b = 0" hence ?thesis
   257       by (simp add: INum_def normNum_def split_def Let_def)}
   258   moreover 
   259   {assume a: "a\<noteq>0" and b: "b\<noteq>0"
   260     let ?g = "zgcd a b"
   261     from a b have g: "?g \<noteq> 0"by simp
   262     from of_int_div[OF g, where ?'a = 'a]
   263     have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)}
   264   ultimately show ?thesis by blast
   265 qed
   266 
   267 lemma INum_normNum_iff: "(INum x ::'a::{field, division_by_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
   268 proof -
   269   have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
   270     by (simp del: normNum)
   271   also have "\<dots> = ?lhs" by simp
   272   finally show ?thesis by simp
   273 qed
   274 
   275 lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_by_zero,field})"
   276 proof-
   277 let ?z = "0:: 'a"
   278   have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
   279   then obtain a b a' b' where x[simp]: "x = (a,b)" 
   280     and y[simp]: "y = (a',b')" by blast
   281   {assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis 
   282       apply (cases "a=0",simp_all add: Nadd_def)
   283       apply (cases "b= 0",simp_all add: INum_def)
   284        apply (cases "a'= 0",simp_all)
   285        apply (cases "b'= 0",simp_all)
   286        done }
   287   moreover 
   288   {assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" 
   289     {assume z: "a * b' + b * a' = 0"
   290       hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp
   291       hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z"  by (simp add:add_divide_distrib) 
   292       hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp 
   293       from z aa' bb' have ?thesis 
   294 	by (simp add: th Nadd_def normNum_def INum_def split_def)}
   295     moreover {assume z: "a * b' + b * a' \<noteq> 0"
   296       let ?g = "zgcd (a * b' + b * a') (b*b')"
   297       have gz: "?g \<noteq> 0" using z by simp
   298       have ?thesis using aa' bb' z gz
   299 	of_int_div[where ?'a = 'a, 
   300 	OF gz zgcd_dvd1[where i="a * b' + b * a'" and j="b*b'"]]
   301 	of_int_div[where ?'a = 'a,
   302 	OF gz zgcd_dvd2[where i="a * b' + b * a'" and j="b*b'"]]
   303 	by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)}
   304     ultimately have ?thesis using aa' bb' 
   305       by (simp add: Nadd_def INum_def normNum_def x y Let_def) }
   306   ultimately show ?thesis by blast
   307 qed
   308 
   309 lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_by_zero,field}) "
   310 proof-
   311   let ?z = "0::'a"
   312   have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
   313   then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast
   314   {assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis 
   315       apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def)
   316       apply (cases "b=0",simp_all)
   317       apply (cases "a'=0",simp_all) 
   318       done }
   319   moreover
   320   {assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
   321     let ?g="zgcd (a*a') (b*b')"
   322     have gz: "?g \<noteq> 0" using z by simp
   323     from z of_int_div[where ?'a = 'a, OF gz zgcd_dvd1[where i="a*a'" and j="b*b'"]] 
   324       of_int_div[where ?'a = 'a , OF gz zgcd_dvd2[where i="a*a'" and j="b*b'"]] 
   325     have ?thesis by (simp add: Nmul_def x y Let_def INum_def)}
   326   ultimately show ?thesis by blast
   327 qed
   328 
   329 lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
   330   by (simp add: Nneg_def split_def INum_def)
   331 
   332 lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_by_zero,field})"
   333 by (simp add: Nsub_def split_def)
   334 
   335 lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_by_zero,field}) / (INum x)"
   336   by (simp add: Ninv_def INum_def split_def)
   337 
   338 lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def)
   339 
   340 lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" 
   341   shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>\<^sub>N x "
   342 proof-
   343   have " \<exists> a b. x = (a,b)" by simp
   344   then obtain a b where x[simp]:"x = (a,b)" by blast
   345   {assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) }
   346   moreover
   347   {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   348     from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"]
   349     have ?thesis by (simp add: Nlt0_def INum_def)}
   350   ultimately show ?thesis by blast
   351 qed
   352 
   353 lemma Nle0_iff[simp]:assumes nx: "isnormNum x" 
   354   shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<le> 0) = 0\<ge>\<^sub>N x"
   355 proof-
   356   have " \<exists> a b. x = (a,b)" by simp
   357   then obtain a b where x[simp]:"x = (a,b)" by blast
   358   {assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) }
   359   moreover
   360   {assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def)
   361     from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"]
   362     have ?thesis by (simp add: Nle0_def INum_def)}
   363   ultimately show ?thesis by blast
   364 qed
   365 
   366 lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<\<^sub>N x"
   367 proof-
   368   have " \<exists> a b. x = (a,b)" by simp
   369   then obtain a b where x[simp]:"x = (a,b)" by blast
   370   {assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) }
   371   moreover
   372   {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   373     from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"]
   374     have ?thesis by (simp add: Ngt0_def INum_def)}
   375   ultimately show ?thesis by blast
   376 qed
   377 lemma Nge0_iff[simp]:assumes nx: "isnormNum x" 
   378   shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<ge> 0) = 0\<le>\<^sub>N x"
   379 proof-
   380   have " \<exists> a b. x = (a,b)" by simp
   381   then obtain a b where x[simp]:"x = (a,b)" by blast
   382   {assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) }
   383   moreover
   384   {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   385     from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
   386     have ?thesis by (simp add: Nge0_def INum_def)}
   387   ultimately show ?thesis by blast
   388 qed
   389 
   390 lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
   391   shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <\<^sub>N y)"
   392 proof-
   393   let ?z = "0::'a"
   394   have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp
   395   also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
   396   finally show ?thesis by (simp add: Nlt_def)
   397 qed
   398 
   399 lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
   400   shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})\<le> INum y) = (x \<le>\<^sub>N y)"
   401 proof-
   402   have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp
   403   also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp
   404   finally show ?thesis by (simp add: Nle_def)
   405 qed
   406 
   407 lemma Nadd_commute: "x +\<^sub>N y = y +\<^sub>N x"
   408 proof-
   409   have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
   410   have "(INum (x +\<^sub>N y)::'a :: {ring_char_0,division_by_zero,field}) = INum (y +\<^sub>N x)" by simp
   411   with isnormNum_unique[OF n] show ?thesis by simp
   412 qed
   413 
   414 lemma[simp]: "(0, b) +\<^sub>N y = normNum y" "(a, 0) +\<^sub>N y = normNum y" 
   415   "x +\<^sub>N (0, b) = normNum x" "x +\<^sub>N (a, 0) = normNum x"
   416   apply (simp add: Nadd_def split_def, simp add: Nadd_def split_def)
   417   apply (subst Nadd_commute,simp add: Nadd_def split_def)
   418   apply (subst Nadd_commute,simp add: Nadd_def split_def)
   419   done
   420 
   421 lemma normNum_nilpotent_aux[simp]: assumes nx: "isnormNum x" 
   422   shows "normNum x = x"
   423 proof-
   424   let ?a = "normNum x"
   425   have n: "isnormNum ?a" by simp
   426   have th:"INum ?a = (INum x ::'a :: {ring_char_0, division_by_zero,field})" by simp
   427   with isnormNum_unique[OF n nx]  
   428   show ?thesis by simp
   429 qed
   430 
   431 lemma normNum_nilpotent[simp]: "normNum (normNum x) = normNum x"
   432   by simp
   433 lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N"
   434   by (simp_all add: normNum_def)
   435 lemma normNum_Nadd: "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp
   436 lemma Nadd_normNum1[simp]: "normNum x +\<^sub>N y = x +\<^sub>N y"
   437 proof-
   438   have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
   439   have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   440   also have "\<dots> = INum (x +\<^sub>N y)" by simp
   441   finally show ?thesis using isnormNum_unique[OF n] by simp
   442 qed
   443 lemma Nadd_normNum2[simp]: "x +\<^sub>N normNum y = x +\<^sub>N y"
   444 proof-
   445   have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
   446   have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   447   also have "\<dots> = INum (x +\<^sub>N y)" by simp
   448   finally show ?thesis using isnormNum_unique[OF n] by simp
   449 qed
   450 
   451 lemma Nadd_assoc: "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
   452 proof-
   453   have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
   454   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   455   with isnormNum_unique[OF n] show ?thesis by simp
   456 qed
   457 
   458 lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x"
   459   by (simp add: Nmul_def split_def Let_def zgcd_commute mult_commute)
   460 
   461 lemma Nmul_assoc: assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z"
   462   shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
   463 proof-
   464   from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" 
   465     by simp_all
   466   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   467   with isnormNum_unique[OF n] show ?thesis by simp
   468 qed
   469 
   470 lemma Nsub0: assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)"
   471 proof-
   472   {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
   473     from isnormNum_unique[where ?'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] 
   474     have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
   475     also have "\<dots> = (INum x = (INum y:: 'a))" by simp
   476     also have "\<dots> = (x = y)" using x y by simp
   477     finally show ?thesis .}
   478 qed
   479 
   480 lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N"
   481   by (simp_all add: Nmul_def Let_def split_def)
   482 
   483 lemma Nmul_eq0[simp]: assumes nx:"isnormNum x" and ny: "isnormNum y"
   484   shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)"
   485 proof-
   486   {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
   487   have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto
   488   then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast
   489   have n0: "isnormNum 0\<^sub>N" by simp
   490   show ?thesis using nx ny 
   491     apply (simp only: isnormNum_unique[where ?'a = 'a, OF  Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a])
   492     apply (simp add: INum_def split_def isnormNum_def fst_conv snd_conv)
   493     apply (cases "a=0",simp_all)
   494     apply (cases "a'=0",simp_all)
   495     done }
   496 qed
   497 lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c"
   498   by (simp add: Nneg_def split_def)
   499 
   500 lemma Nmul1[simp]: 
   501   "isnormNum c \<Longrightarrow> 1\<^sub>N *\<^sub>N c = c" 
   502   "isnormNum c \<Longrightarrow> c *\<^sub>N 1\<^sub>N  = c" 
   503   apply (simp_all add: Nmul_def Let_def split_def isnormNum_def)
   504   by (cases "fst c = 0", simp_all,cases c, simp_all)+
   505 
   506 end