src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Tue, 26 Jul 2011 14:53:00 +0200
changeset 44858 2850b7dc27a4
parent 44856 33d8b99531c2
child 44860 eb763b3ff9ed
permissions -rw-r--r--
further worked around LEO-II parser limitation, with eta-expansion
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Metis and Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   datatype locality =
    19     General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
    20     Chained
    21 
    22   datatype order = First_Order | Higher_Order
    23   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    24   datatype type_level =
    25     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    26     No_Types
    27   datatype type_heaviness = Heavyweight | Lightweight
    28 
    29   datatype type_enc =
    30     Simple_Types of order * type_level |
    31     Preds of polymorphism * type_level * type_heaviness |
    32     Tags of polymorphism * type_level * type_heaviness
    33 
    34   val bound_var_prefix : string
    35   val schematic_var_prefix : string
    36   val fixed_var_prefix : string
    37   val tvar_prefix : string
    38   val tfree_prefix : string
    39   val const_prefix : string
    40   val type_const_prefix : string
    41   val class_prefix : string
    42   val polymorphic_free_prefix : string
    43   val skolem_const_prefix : string
    44   val old_skolem_const_prefix : string
    45   val new_skolem_const_prefix : string
    46   val type_decl_prefix : string
    47   val sym_decl_prefix : string
    48   val preds_sym_formula_prefix : string
    49   val lightweight_tags_sym_formula_prefix : string
    50   val fact_prefix : string
    51   val conjecture_prefix : string
    52   val helper_prefix : string
    53   val class_rel_clause_prefix : string
    54   val arity_clause_prefix : string
    55   val tfree_clause_prefix : string
    56   val typed_helper_suffix : string
    57   val untyped_helper_suffix : string
    58   val type_tag_idempotence_helper_name : string
    59   val predicator_name : string
    60   val app_op_name : string
    61   val type_tag_name : string
    62   val type_pred_name : string
    63   val simple_type_prefix : string
    64   val prefixed_predicator_name : string
    65   val prefixed_app_op_name : string
    66   val prefixed_type_tag_name : string
    67   val ascii_of : string -> string
    68   val unascii_of : string -> string
    69   val strip_prefix_and_unascii : string -> string -> string option
    70   val proxy_table : (string * (string * (thm * (string * string)))) list
    71   val proxify_const : string -> (string * string) option
    72   val invert_const : string -> string
    73   val unproxify_const : string -> string
    74   val new_skolem_var_name_from_const : string -> string
    75   val atp_irrelevant_consts : string list
    76   val atp_schematic_consts_of : term -> typ list Symtab.table
    77   val is_locality_global : locality -> bool
    78   val type_enc_from_string : string -> type_enc
    79   val is_type_enc_higher_order : type_enc -> bool
    80   val polymorphism_of_type_enc : type_enc -> polymorphism
    81   val level_of_type_enc : type_enc -> type_level
    82   val is_type_enc_virtually_sound : type_enc -> bool
    83   val is_type_enc_fairly_sound : type_enc -> bool
    84   val choose_format : format list -> type_enc -> format * type_enc
    85   val mk_aconns :
    86     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
    87   val unmangled_const : string -> string * (string, 'b) ho_term list
    88   val unmangled_const_name : string -> string
    89   val helper_table : ((string * bool) * thm list) list
    90   val factsN : string
    91   val introduce_combinators : Proof.context -> term -> term
    92   val prepare_atp_problem :
    93     Proof.context -> format -> formula_kind -> formula_kind -> type_enc -> bool
    94     -> bool -> (term list -> term list * term list) -> bool -> bool -> term list
    95     -> term -> ((string * locality) * term) list
    96     -> string problem * string Symtab.table * int * int
    97        * (string * locality) list vector * int list * int Symtab.table
    98   val atp_problem_weights : string problem -> (string * real) list
    99 end;
   100 
   101 structure ATP_Translate : ATP_TRANSLATE =
   102 struct
   103 
   104 open ATP_Util
   105 open ATP_Problem
   106 
   107 type name = string * string
   108 
   109 val generate_info = false (* experimental *)
   110 
   111 fun isabelle_info s =
   112   if generate_info then SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   113   else NONE
   114 
   115 val introN = "intro"
   116 val elimN = "elim"
   117 val simpN = "simp"
   118 
   119 val bound_var_prefix = "B_"
   120 val schematic_var_prefix = "V_"
   121 val fixed_var_prefix = "v_"
   122 val tvar_prefix = "T_"
   123 val tfree_prefix = "t_"
   124 val const_prefix = "c_"
   125 val type_const_prefix = "tc_"
   126 val class_prefix = "cl_"
   127 
   128 val polymorphic_free_prefix = "poly_free"
   129 
   130 val skolem_const_prefix = "ATP" ^ Long_Name.separator ^ "Sko"
   131 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   132 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   133 
   134 val type_decl_prefix = "ty_"
   135 val sym_decl_prefix = "sy_"
   136 val preds_sym_formula_prefix = "psy_"
   137 val lightweight_tags_sym_formula_prefix = "tsy_"
   138 val fact_prefix = "fact_"
   139 val conjecture_prefix = "conj_"
   140 val helper_prefix = "help_"
   141 val class_rel_clause_prefix = "clar_"
   142 val arity_clause_prefix = "arity_"
   143 val tfree_clause_prefix = "tfree_"
   144 
   145 val lambda_fact_prefix = "ATP.lambda_"
   146 val typed_helper_suffix = "_T"
   147 val untyped_helper_suffix = "_U"
   148 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   149 
   150 val predicator_name = "hBOOL"
   151 val app_op_name = "hAPP"
   152 val type_tag_name = "ti"
   153 val type_pred_name = "is"
   154 val simple_type_prefix = "ty_"
   155 
   156 val prefixed_predicator_name = const_prefix ^ predicator_name
   157 val prefixed_app_op_name = const_prefix ^ app_op_name
   158 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   159 
   160 (* Freshness almost guaranteed! *)
   161 val atp_weak_prefix = "ATP:"
   162 
   163 (*Escaping of special characters.
   164   Alphanumeric characters are left unchanged.
   165   The character _ goes to __
   166   Characters in the range ASCII space to / go to _A to _P, respectively.
   167   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   168 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   169 
   170 fun stringN_of_int 0 _ = ""
   171   | stringN_of_int k n =
   172     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   173 
   174 fun ascii_of_char c =
   175   if Char.isAlphaNum c then
   176     String.str c
   177   else if c = #"_" then
   178     "__"
   179   else if #" " <= c andalso c <= #"/" then
   180     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   181   else
   182     (* fixed width, in case more digits follow *)
   183     "_" ^ stringN_of_int 3 (Char.ord c)
   184 
   185 val ascii_of = String.translate ascii_of_char
   186 
   187 (** Remove ASCII armoring from names in proof files **)
   188 
   189 (* We don't raise error exceptions because this code can run inside a worker
   190    thread. Also, the errors are impossible. *)
   191 val unascii_of =
   192   let
   193     fun un rcs [] = String.implode(rev rcs)
   194       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   195         (* Three types of _ escapes: __, _A to _P, _nnn *)
   196       | un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
   197       | un rcs (#"_" :: c :: cs) =
   198         if #"A" <= c andalso c<= #"P" then
   199           (* translation of #" " to #"/" *)
   200           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   201         else
   202           let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
   203             case Int.fromString (String.implode digits) of
   204               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   205             | NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
   206           end
   207       | un rcs (c :: cs) = un (c :: rcs) cs
   208   in un [] o String.explode end
   209 
   210 (* If string s has the prefix s1, return the result of deleting it,
   211    un-ASCII'd. *)
   212 fun strip_prefix_and_unascii s1 s =
   213   if String.isPrefix s1 s then
   214     SOME (unascii_of (String.extract (s, size s1, NONE)))
   215   else
   216     NONE
   217 
   218 val proxy_table =
   219   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   220        ("fFalse", @{const_name ATP.fFalse})))),
   221    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   222        ("fTrue", @{const_name ATP.fTrue})))),
   223    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   224        ("fNot", @{const_name ATP.fNot})))),
   225    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   226        ("fconj", @{const_name ATP.fconj})))),
   227    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   228        ("fdisj", @{const_name ATP.fdisj})))),
   229    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   230        ("fimplies", @{const_name ATP.fimplies})))),
   231    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   232        ("fequal", @{const_name ATP.fequal})))),
   233    ("c_All", (@{const_name All}, (@{thm fAll_def},
   234        ("fAll", @{const_name ATP.fAll})))),
   235    ("c_Ex", (@{const_name Ex}, (@{thm fEx_def},
   236        ("fEx", @{const_name ATP.fEx}))))]
   237 
   238 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   239 
   240 (* Readable names for the more common symbolic functions. Do not mess with the
   241    table unless you know what you are doing. *)
   242 val const_trans_table =
   243   [(@{type_name Product_Type.prod}, "prod"),
   244    (@{type_name Sum_Type.sum}, "sum"),
   245    (@{const_name False}, "False"),
   246    (@{const_name True}, "True"),
   247    (@{const_name Not}, "Not"),
   248    (@{const_name conj}, "conj"),
   249    (@{const_name disj}, "disj"),
   250    (@{const_name implies}, "implies"),
   251    (@{const_name HOL.eq}, "equal"),
   252    (@{const_name All}, "All"),
   253    (@{const_name Ex}, "Ex"),
   254    (@{const_name If}, "If"),
   255    (@{const_name Set.member}, "member"),
   256    (@{const_name Meson.COMBI}, "COMBI"),
   257    (@{const_name Meson.COMBK}, "COMBK"),
   258    (@{const_name Meson.COMBB}, "COMBB"),
   259    (@{const_name Meson.COMBC}, "COMBC"),
   260    (@{const_name Meson.COMBS}, "COMBS")]
   261   |> Symtab.make
   262   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   263 
   264 (* Invert the table of translations between Isabelle and ATPs. *)
   265 val const_trans_table_inv =
   266   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   267 val const_trans_table_unprox =
   268   Symtab.empty
   269   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   270 
   271 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   272 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   273 
   274 fun lookup_const c =
   275   case Symtab.lookup const_trans_table c of
   276     SOME c' => c'
   277   | NONE => ascii_of c
   278 
   279 fun ascii_of_indexname (v, 0) = ascii_of v
   280   | ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
   281 
   282 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   283 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   284 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   285 
   286 fun make_schematic_type_var (x, i) =
   287       tvar_prefix ^ (ascii_of_indexname (unprefix "'" x, i))
   288 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (unprefix "'" x))
   289 
   290 (* "HOL.eq" is mapped to the ATP's equality. *)
   291 fun make_fixed_const @{const_name HOL.eq} = tptp_old_equal
   292   | make_fixed_const c = const_prefix ^ lookup_const c
   293 
   294 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   295 
   296 fun make_type_class clas = class_prefix ^ ascii_of clas
   297 
   298 fun new_skolem_var_name_from_const s =
   299   let val ss = s |> space_explode Long_Name.separator in
   300     nth ss (length ss - 2)
   301   end
   302 
   303 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   304    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   305 val atp_irrelevant_consts =
   306   [@{const_name False}, @{const_name True}, @{const_name Not},
   307    @{const_name conj}, @{const_name disj}, @{const_name implies},
   308    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   309 
   310 val atp_monomorph_bad_consts =
   311   atp_irrelevant_consts @
   312   (* These are ignored anyway by the relevance filter (unless they appear in
   313      higher-order places) but not by the monomorphizer. *)
   314   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   315    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   316    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   317 
   318 fun add_schematic_const (x as (_, T)) =
   319   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   320 val add_schematic_consts_of =
   321   Term.fold_aterms (fn Const (x as (s, _)) =>
   322                        not (member (op =) atp_monomorph_bad_consts s)
   323                        ? add_schematic_const x
   324                       | _ => I)
   325 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   326 
   327 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   328 
   329 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   330 datatype type_literal =
   331   TyLitVar of name * name |
   332   TyLitFree of name * name
   333 
   334 
   335 (** Isabelle arities **)
   336 
   337 datatype arity_literal =
   338   TConsLit of name * name * name list |
   339   TVarLit of name * name
   340 
   341 fun gen_TVars 0 = []
   342   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   343 
   344 val type_class = the_single @{sort type}
   345 
   346 fun add_packed_sort tvar =
   347   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   348 
   349 type arity_clause =
   350   {name : string,
   351    prem_lits : arity_literal list,
   352    concl_lits : arity_literal}
   353 
   354 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   355 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   356   let
   357     val tvars = gen_TVars (length args)
   358     val tvars_srts = ListPair.zip (tvars, args)
   359   in
   360     {name = name,
   361      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   362      concl_lits = TConsLit (`make_type_class cls,
   363                             `make_fixed_type_const tcons,
   364                             tvars ~~ tvars)}
   365   end
   366 
   367 fun arity_clause _ _ (_, []) = []
   368   | arity_clause seen n (tcons, ("HOL.type", _) :: ars) =  (* ignore *)
   369     arity_clause seen n (tcons, ars)
   370   | arity_clause seen n (tcons, (ar as (class, _)) :: ars) =
   371     if member (op =) seen class then
   372       (* multiple arities for the same (tycon, class) pair *)
   373       make_axiom_arity_clause (tcons,
   374           lookup_const tcons ^ "___" ^ ascii_of class ^ "_" ^ string_of_int n,
   375           ar) ::
   376       arity_clause seen (n + 1) (tcons, ars)
   377     else
   378       make_axiom_arity_clause (tcons, lookup_const tcons ^ "___" ^
   379                                ascii_of class, ar) ::
   380       arity_clause (class :: seen) n (tcons, ars)
   381 
   382 fun multi_arity_clause [] = []
   383   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   384       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   385 
   386 (* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
   387    theory thy provided its arguments have the corresponding sorts. *)
   388 fun type_class_pairs thy tycons classes =
   389   let
   390     val alg = Sign.classes_of thy
   391     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   392     fun add_class tycon class =
   393       cons (class, domain_sorts tycon class)
   394       handle Sorts.CLASS_ERROR _ => I
   395     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   396   in map try_classes tycons end
   397 
   398 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   399 fun iter_type_class_pairs _ _ [] = ([], [])
   400   | iter_type_class_pairs thy tycons classes =
   401       let
   402         fun maybe_insert_class s =
   403           (s <> type_class andalso not (member (op =) classes s))
   404           ? insert (op =) s
   405         val cpairs = type_class_pairs thy tycons classes
   406         val newclasses =
   407           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   408         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   409       in (classes' @ classes, union (op =) cpairs' cpairs) end
   410 
   411 fun make_arity_clauses thy tycons =
   412   iter_type_class_pairs thy tycons ##> multi_arity_clause
   413 
   414 
   415 (** Isabelle class relations **)
   416 
   417 type class_rel_clause =
   418   {name : string,
   419    subclass : name,
   420    superclass : name}
   421 
   422 (* Generate all pairs (sub, super) such that sub is a proper subclass of super
   423    in theory "thy". *)
   424 fun class_pairs _ [] _ = []
   425   | class_pairs thy subs supers =
   426       let
   427         val class_less = Sorts.class_less (Sign.classes_of thy)
   428         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   429         fun add_supers sub = fold (add_super sub) supers
   430       in fold add_supers subs [] end
   431 
   432 fun make_class_rel_clause (sub, super) =
   433   {name = sub ^ "_" ^ super, subclass = `make_type_class sub,
   434    superclass = `make_type_class super}
   435 
   436 fun make_class_rel_clauses thy subs supers =
   437   map make_class_rel_clause (class_pairs thy subs supers)
   438 
   439 (* intermediate terms *)
   440 datatype iterm =
   441   IConst of name * typ * typ list |
   442   IVar of name * typ |
   443   IApp of iterm * iterm |
   444   IAbs of (name * typ) * iterm
   445 
   446 fun ityp_of (IConst (_, T, _)) = T
   447   | ityp_of (IVar (_, T)) = T
   448   | ityp_of (IApp (t1, _)) = snd (dest_funT (ityp_of t1))
   449   | ityp_of (IAbs ((_, T), tm)) = T --> ityp_of tm
   450 
   451 (*gets the head of a combinator application, along with the list of arguments*)
   452 fun strip_iterm_comb u =
   453   let
   454     fun stripc (IApp (t, u), ts) = stripc (t, u :: ts)
   455       | stripc x = x
   456   in stripc (u, []) end
   457 
   458 fun atyps_of T = fold_atyps (insert (op =)) T []
   459 
   460 fun new_skolem_const_name s num_T_args =
   461   [new_skolem_const_prefix, s, string_of_int num_T_args]
   462   |> space_implode Long_Name.separator
   463 
   464 (* Converts an Isabelle/HOL term (with combinators) into an intermediate term.
   465    Also accumulates sort infomation. *)
   466 fun iterm_from_term thy bs (P $ Q) =
   467     let
   468       val (P', P_atomics_Ts) = iterm_from_term thy bs P
   469       val (Q', Q_atomics_Ts) = iterm_from_term thy bs Q
   470     in (IApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   471   | iterm_from_term thy _ (Const (c, T)) =
   472     (IConst (`make_fixed_const c, T,
   473              if String.isPrefix old_skolem_const_prefix c then
   474                [] |> Term.add_tvarsT T |> map TVar
   475              else
   476                (c, T) |> Sign.const_typargs thy),
   477      atyps_of T)
   478   | iterm_from_term _ _ (Free (s, T)) =
   479     (IConst (`make_fixed_var s, T,
   480              if String.isPrefix polymorphic_free_prefix s then [T] else []),
   481      atyps_of T)
   482   | iterm_from_term _ _ (Var (v as (s, _), T)) =
   483     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   484        let
   485          val Ts = T |> strip_type |> swap |> op ::
   486          val s' = new_skolem_const_name s (length Ts)
   487        in IConst (`make_fixed_const s', T, Ts) end
   488      else
   489        IVar ((make_schematic_var v, s), T), atyps_of T)
   490   | iterm_from_term _ bs (Bound j) =
   491     nth bs j |> (fn (s, T) => (IConst (`make_bound_var s, T, []), atyps_of T))
   492   | iterm_from_term thy bs (Abs (s, T, t)) =
   493     let
   494       fun vary s = s |> AList.defined (op =) bs s ? vary o Symbol.bump_string
   495       val s = vary s
   496       val (tm, atomic_Ts) = iterm_from_term thy ((s, T) :: bs) t
   497     in
   498       (IAbs ((`make_bound_var s, T), tm),
   499        union (op =) atomic_Ts (atyps_of T))
   500     end
   501 
   502 datatype locality =
   503   General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
   504   Chained
   505 
   506 (* (quasi-)underapproximation of the truth *)
   507 fun is_locality_global Local = false
   508   | is_locality_global Assum = false
   509   | is_locality_global Chained = false
   510   | is_locality_global _ = true
   511 
   512 datatype order = First_Order | Higher_Order
   513 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   514 datatype type_level =
   515   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   516   No_Types
   517 datatype type_heaviness = Heavyweight | Lightweight
   518 
   519 datatype type_enc =
   520   Simple_Types of order * type_level |
   521   Preds of polymorphism * type_level * type_heaviness |
   522   Tags of polymorphism * type_level * type_heaviness
   523 
   524 fun try_unsuffixes ss s =
   525   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   526 
   527 fun type_enc_from_string s =
   528   (case try (unprefix "poly_") s of
   529      SOME s => (SOME Polymorphic, s)
   530    | NONE =>
   531      case try (unprefix "mono_") s of
   532        SOME s => (SOME Monomorphic, s)
   533      | NONE =>
   534        case try (unprefix "mangled_") s of
   535          SOME s => (SOME Mangled_Monomorphic, s)
   536        | NONE => (NONE, s))
   537   ||> (fn s =>
   538           (* "_query" and "_bang" are for the ASCII-challenged Metis and
   539              Mirabelle. *)
   540           case try_unsuffixes ["?", "_query"] s of
   541             SOME s => (Noninf_Nonmono_Types, s)
   542           | NONE =>
   543             case try_unsuffixes ["!", "_bang"] s of
   544               SOME s => (Fin_Nonmono_Types, s)
   545             | NONE => (All_Types, s))
   546   ||> apsnd (fn s =>
   547                 case try (unsuffix "_heavy") s of
   548                   SOME s => (Heavyweight, s)
   549                 | NONE => (Lightweight, s))
   550   |> (fn (poly, (level, (heaviness, core))) =>
   551          case (core, (poly, level, heaviness)) of
   552            ("simple", (NONE, _, Lightweight)) =>
   553            Simple_Types (First_Order, level)
   554          | ("simple_higher", (NONE, _, Lightweight)) =>
   555            if level = Noninf_Nonmono_Types then raise Same.SAME
   556            else Simple_Types (Higher_Order, level)
   557          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   558          | ("tags", (SOME Polymorphic, _, _)) =>
   559            Tags (Polymorphic, level, heaviness)
   560          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   561          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   562            Preds (poly, Const_Arg_Types, Lightweight)
   563          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   564            Preds (Polymorphic, No_Types, Lightweight)
   565          | _ => raise Same.SAME)
   566   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   567 
   568 fun is_type_enc_higher_order (Simple_Types (Higher_Order, _)) = true
   569   | is_type_enc_higher_order _ = false
   570 
   571 fun polymorphism_of_type_enc (Simple_Types _) = Mangled_Monomorphic
   572   | polymorphism_of_type_enc (Preds (poly, _, _)) = poly
   573   | polymorphism_of_type_enc (Tags (poly, _, _)) = poly
   574 
   575 fun level_of_type_enc (Simple_Types (_, level)) = level
   576   | level_of_type_enc (Preds (_, level, _)) = level
   577   | level_of_type_enc (Tags (_, level, _)) = level
   578 
   579 fun heaviness_of_type_enc (Simple_Types _) = Heavyweight
   580   | heaviness_of_type_enc (Preds (_, _, heaviness)) = heaviness
   581   | heaviness_of_type_enc (Tags (_, _, heaviness)) = heaviness
   582 
   583 fun is_type_level_virtually_sound level =
   584   level = All_Types orelse level = Noninf_Nonmono_Types
   585 val is_type_enc_virtually_sound =
   586   is_type_level_virtually_sound o level_of_type_enc
   587 
   588 fun is_type_level_fairly_sound level =
   589   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   590 val is_type_enc_fairly_sound = is_type_level_fairly_sound o level_of_type_enc
   591 
   592 fun choose_format formats (Simple_Types (order, level)) =
   593     if member (op =) formats THF then
   594       (THF, Simple_Types (order, level))
   595     else if member (op =) formats TFF then
   596       (TFF, Simple_Types (First_Order, level))
   597     else
   598       choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   599   | choose_format formats type_enc =
   600     (case hd formats of
   601        CNF_UEQ =>
   602        (CNF_UEQ, case type_enc of
   603                    Preds stuff =>
   604                    (if is_type_enc_fairly_sound type_enc then Tags else Preds)
   605                        stuff
   606                  | _ => type_enc)
   607      | format => (format, type_enc))
   608 
   609 type translated_formula =
   610   {name : string,
   611    locality : locality,
   612    kind : formula_kind,
   613    iformula : (name, typ, iterm) formula,
   614    atomic_types : typ list}
   615 
   616 fun update_iformula f ({name, locality, kind, iformula, atomic_types}
   617                        : translated_formula) =
   618   {name = name, locality = locality, kind = kind, iformula = f iformula,
   619    atomic_types = atomic_types} : translated_formula
   620 
   621 fun fact_lift f ({iformula, ...} : translated_formula) = f iformula
   622 
   623 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   624 
   625 fun insert_type ctxt get_T x xs =
   626   let val T = get_T x in
   627     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   628     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   629   end
   630 
   631 (* The Booleans indicate whether all type arguments should be kept. *)
   632 datatype type_arg_policy =
   633   Explicit_Type_Args of bool |
   634   Mangled_Type_Args of bool |
   635   No_Type_Args
   636 
   637 fun should_drop_arg_type_args (Simple_Types _) =
   638     false (* since TFF doesn't support overloading *)
   639   | should_drop_arg_type_args type_enc =
   640     level_of_type_enc type_enc = All_Types andalso
   641     heaviness_of_type_enc type_enc = Heavyweight
   642 
   643 fun type_arg_policy type_enc s =
   644   if s = type_tag_name then
   645     (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   646        Mangled_Type_Args
   647      else
   648        Explicit_Type_Args) false
   649   else case type_enc of
   650     Tags (_, All_Types, Heavyweight) => No_Type_Args
   651   | _ =>
   652     if level_of_type_enc type_enc = No_Types orelse
   653        s = @{const_name HOL.eq} orelse
   654        (s = app_op_name andalso
   655         level_of_type_enc type_enc = Const_Arg_Types) then
   656       No_Type_Args
   657     else
   658       should_drop_arg_type_args type_enc
   659       |> (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   660             Mangled_Type_Args
   661           else
   662             Explicit_Type_Args)
   663 
   664 (* Make literals for sorted type variables. *)
   665 fun generic_add_sorts_on_type (_, []) = I
   666   | generic_add_sorts_on_type ((x, i), s :: ss) =
   667     generic_add_sorts_on_type ((x, i), ss)
   668     #> (if s = the_single @{sort HOL.type} then
   669           I
   670         else if i = ~1 then
   671           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   672         else
   673           insert (op =) (TyLitVar (`make_type_class s,
   674                                    (make_schematic_type_var (x, i), x))))
   675 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   676   | add_sorts_on_tfree _ = I
   677 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   678   | add_sorts_on_tvar _ = I
   679 
   680 fun type_literals_for_types type_enc add_sorts_on_typ Ts =
   681   [] |> level_of_type_enc type_enc <> No_Types ? fold add_sorts_on_typ Ts
   682 
   683 fun mk_aconns c phis =
   684   let val (phis', phi') = split_last phis in
   685     fold_rev (mk_aconn c) phis' phi'
   686   end
   687 fun mk_ahorn [] phi = phi
   688   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   689 fun mk_aquant _ [] phi = phi
   690   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   691     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   692   | mk_aquant q xs phi = AQuant (q, xs, phi)
   693 
   694 fun close_universally atom_vars phi =
   695   let
   696     fun formula_vars bounds (AQuant (_, xs, phi)) =
   697         formula_vars (map fst xs @ bounds) phi
   698       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   699       | formula_vars bounds (AAtom tm) =
   700         union (op =) (atom_vars tm []
   701                       |> filter_out (member (op =) bounds o fst))
   702   in mk_aquant AForall (formula_vars [] phi []) phi end
   703 
   704 fun iterm_vars (IApp (tm1, tm2)) = fold iterm_vars [tm1, tm2]
   705   | iterm_vars (IConst _) = I
   706   | iterm_vars (IVar (name, T)) = insert (op =) (name, SOME T)
   707   | iterm_vars (IAbs (_, tm)) = iterm_vars tm
   708 fun close_iformula_universally phi = close_universally iterm_vars phi
   709 
   710 fun term_vars bounds (ATerm (name as (s, _), tms)) =
   711     (is_tptp_variable s andalso not (member (op =) bounds name))
   712     ? insert (op =) (name, NONE) #> fold (term_vars bounds) tms
   713   | term_vars bounds (AAbs ((name, _), tm)) = term_vars (name :: bounds) tm
   714 fun close_formula_universally phi = close_universally (term_vars []) phi
   715 
   716 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   717 val homo_infinite_type = Type (homo_infinite_type_name, [])
   718 
   719 fun ho_term_from_typ format type_enc =
   720   let
   721     fun term (Type (s, Ts)) =
   722       ATerm (case (is_type_enc_higher_order type_enc, s) of
   723                (true, @{type_name bool}) => `I tptp_bool_type
   724              | (true, @{type_name fun}) => `I tptp_fun_type
   725              | _ => if s = homo_infinite_type_name andalso
   726                        (format = TFF orelse format = THF) then
   727                       `I tptp_individual_type
   728                     else
   729                       `make_fixed_type_const s,
   730              map term Ts)
   731     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   732     | term (TVar ((x as (s, _)), _)) =
   733       ATerm ((make_schematic_type_var x, s), [])
   734   in term end
   735 
   736 fun ho_term_for_type_arg format type_enc T =
   737   if T = dummyT then NONE else SOME (ho_term_from_typ format type_enc T)
   738 
   739 (* This shouldn't clash with anything else. *)
   740 val mangled_type_sep = "\000"
   741 
   742 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   743   | generic_mangled_type_name f (ATerm (name, tys)) =
   744     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   745     ^ ")"
   746   | generic_mangled_type_name _ _ = raise Fail "unexpected type abstraction"
   747 
   748 val bool_atype = AType (`I tptp_bool_type)
   749 
   750 fun make_simple_type s =
   751   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   752      s = tptp_individual_type then
   753     s
   754   else
   755     simple_type_prefix ^ ascii_of s
   756 
   757 fun ho_type_from_ho_term type_enc pred_sym ary =
   758   let
   759     fun to_atype ty =
   760       AType ((make_simple_type (generic_mangled_type_name fst ty),
   761               generic_mangled_type_name snd ty))
   762     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   763     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   764       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   765       | to_fo _ _ = raise Fail "unexpected type abstraction"
   766     fun to_ho (ty as ATerm ((s, _), tys)) =
   767         if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   768       | to_ho _ = raise Fail "unexpected type abstraction"
   769   in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
   770 
   771 fun ho_type_from_typ format type_enc pred_sym ary =
   772   ho_type_from_ho_term type_enc pred_sym ary
   773   o ho_term_from_typ format type_enc
   774 
   775 fun mangled_const_name format type_enc T_args (s, s') =
   776   let
   777     val ty_args = T_args |> map_filter (ho_term_for_type_arg format type_enc)
   778     fun type_suffix f g =
   779       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   780                 o generic_mangled_type_name f) ty_args ""
   781   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   782 
   783 val parse_mangled_ident =
   784   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   785 
   786 fun parse_mangled_type x =
   787   (parse_mangled_ident
   788    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   789                     [] >> ATerm) x
   790 and parse_mangled_types x =
   791   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   792 
   793 fun unmangled_type s =
   794   s |> suffix ")" |> raw_explode
   795     |> Scan.finite Symbol.stopper
   796            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   797                                                 quote s)) parse_mangled_type))
   798     |> fst
   799 
   800 val unmangled_const_name = space_explode mangled_type_sep #> hd
   801 fun unmangled_const s =
   802   let val ss = space_explode mangled_type_sep s in
   803     (hd ss, map unmangled_type (tl ss))
   804   end
   805 
   806 fun introduce_proxies type_enc =
   807   let
   808     fun tweak_ho_quant ho_quant T [IAbs _] = IConst (`I ho_quant, T, [])
   809       | tweak_ho_quant ho_quant (T as Type (_, [p_T as Type (_, [x_T, _]), _]))
   810                        _ =
   811         (* Eta-expand "!!" and "??", to work around LEO-II 1.2.8 parser
   812            limitation. This works in conjuction with special code in
   813            "ATP_Problem" that uses the syntactic sugar "!" and "?" whenever
   814            possible. *)
   815         IAbs ((`I "P", p_T),
   816               IApp (IConst (`I ho_quant, T, []),
   817                     IAbs ((`I "X", x_T),
   818                           IApp (IConst (`I "P", p_T, []),
   819                                 IConst (`I "X", x_T, [])))))
   820       | tweak_ho_quant _ _ _ = raise Fail "unexpected type for quantifier"
   821     fun intro top_level args (IApp (tm1, tm2)) =
   822         IApp (intro top_level (tm2 :: args) tm1, intro false [] tm2)
   823       | intro top_level args (IConst (name as (s, _), T, T_args)) =
   824         (case proxify_const s of
   825            SOME proxy_base =>
   826            if top_level orelse is_type_enc_higher_order type_enc then
   827              case (top_level, s) of
   828                (_, "c_False") => IConst (`I tptp_false, T, [])
   829              | (_, "c_True") => IConst (`I tptp_true, T, [])
   830              | (false, "c_Not") => IConst (`I tptp_not, T, [])
   831              | (false, "c_conj") => IConst (`I tptp_and, T, [])
   832              | (false, "c_disj") => IConst (`I tptp_or, T, [])
   833              | (false, "c_implies") => IConst (`I tptp_implies, T, [])
   834              | (false, "c_All") => tweak_ho_quant tptp_ho_forall T args
   835              | (false, "c_Ex") => tweak_ho_quant tptp_ho_exists T args
   836              | (false, s) =>
   837                if is_tptp_equal s then IConst (`I tptp_equal, T, [])
   838                else IConst (proxy_base |>> prefix const_prefix, T, T_args)
   839              | _ => IConst (name, T, [])
   840            else
   841              IConst (proxy_base |>> prefix const_prefix, T, T_args)
   842           | NONE => IConst (name, T, T_args))
   843       | intro _ _ (IAbs (bound, tm)) = IAbs (bound, intro false [] tm)
   844       | intro _ _ tm = tm
   845   in intro true [] end
   846 
   847 fun iformula_from_prop thy type_enc eq_as_iff =
   848   let
   849     fun do_term bs t atomic_types =
   850       iterm_from_term thy bs (Envir.eta_contract t)
   851       |>> (introduce_proxies type_enc #> AAtom)
   852       ||> union (op =) atomic_types
   853     fun do_quant bs q s T t' =
   854       let val s = singleton (Name.variant_list (map fst bs)) s in
   855         do_formula ((s, T) :: bs) t'
   856         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   857       end
   858     and do_conn bs c t1 t2 =
   859       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   860     and do_formula bs t =
   861       case t of
   862         @{const Trueprop} $ t1 => do_formula bs t1
   863       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   864       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   865         do_quant bs AForall s T t'
   866       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   867         do_quant bs AExists s T t'
   868       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   869       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   870       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   871       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   872         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   873       | _ => do_term bs t
   874   in do_formula [] end
   875 
   876 fun presimplify_term _ [] t = t
   877   | presimplify_term ctxt presimp_consts t =
   878     t |> exists_Const (member (op =) presimp_consts o fst) t
   879          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   880             #> Meson.presimplify ctxt
   881             #> prop_of)
   882 
   883 fun concealed_bound_name j = atp_weak_prefix ^ string_of_int j
   884 fun conceal_bounds Ts t =
   885   subst_bounds (map (Free o apfst concealed_bound_name)
   886                     (0 upto length Ts - 1 ~~ Ts), t)
   887 fun reveal_bounds Ts =
   888   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   889                     (0 upto length Ts - 1 ~~ Ts))
   890 
   891 fun is_fun_equality (@{const_name HOL.eq},
   892                      Type (_, [Type (@{type_name fun}, _), _])) = true
   893   | is_fun_equality _ = false
   894 
   895 fun extensionalize_term ctxt t =
   896   if exists_Const is_fun_equality t then
   897     let val thy = Proof_Context.theory_of ctxt in
   898       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   899         |> prop_of |> Logic.dest_equals |> snd
   900     end
   901   else
   902     t
   903 
   904 fun simple_translate_lambdas do_lambdas ctxt t =
   905   let val thy = Proof_Context.theory_of ctxt in
   906     if Meson.is_fol_term thy t then
   907       t
   908     else
   909       let
   910         fun aux Ts t =
   911           case t of
   912             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   913           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   914             t0 $ Abs (s, T, aux (T :: Ts) t')
   915           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   916             aux Ts (t0 $ eta_expand Ts t1 1)
   917           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   918             t0 $ Abs (s, T, aux (T :: Ts) t')
   919           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   920             aux Ts (t0 $ eta_expand Ts t1 1)
   921           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   922           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   923           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   924           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   925               $ t1 $ t2 =>
   926             t0 $ aux Ts t1 $ aux Ts t2
   927           | _ =>
   928             if not (exists_subterm (fn Abs _ => true | _ => false) t) then t
   929             else t |> Envir.eta_contract |> do_lambdas ctxt Ts
   930         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   931       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   932   end
   933 
   934 fun do_conceal_lambdas Ts (t1 $ t2) =
   935     do_conceal_lambdas Ts t1 $ do_conceal_lambdas Ts t2
   936   | do_conceal_lambdas Ts (Abs (_, T, t)) =
   937     (* slightly unsound because of hash collisions *)
   938     Free (polymorphic_free_prefix ^ serial_string (), T --> fastype_of1 (Ts, t))
   939   | do_conceal_lambdas _ t = t
   940 
   941 fun do_introduce_combinators ctxt Ts t =
   942   let val thy = Proof_Context.theory_of ctxt in
   943     t |> conceal_bounds Ts
   944       |> cterm_of thy
   945       |> Meson_Clausify.introduce_combinators_in_cterm
   946       |> prop_of |> Logic.dest_equals |> snd
   947       |> reveal_bounds Ts
   948   end
   949   (* A type variable of sort "{}" will make abstraction fail. *)
   950   handle THM _ => t |> do_conceal_lambdas Ts
   951 val introduce_combinators = simple_translate_lambdas do_introduce_combinators
   952 
   953 fun preprocess_abstractions_in_terms trans_lambdas facts =
   954   let
   955     val (facts, lambda_ts) =
   956       facts |> map (snd o snd) |> trans_lambdas 
   957             |>> map2 (fn (name, (kind, _)) => fn t => (name, (kind, t))) facts
   958     val lambda_facts =
   959       map2 (fn t => fn j =>
   960                ((lambda_fact_prefix ^ Int.toString j, Helper), (Axiom, t)))
   961            lambda_ts (1 upto length lambda_ts)
   962   in (facts, lambda_facts) end
   963 
   964 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   965    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   966 fun freeze_term t =
   967   let
   968     fun aux (t $ u) = aux t $ aux u
   969       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   970       | aux (Var ((s, i), T)) =
   971         Free (atp_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   972       | aux t = t
   973   in t |> exists_subterm is_Var t ? aux end
   974 
   975 fun presimp_prop ctxt presimp_consts t =
   976   let
   977     val thy = Proof_Context.theory_of ctxt
   978     val t = t |> Envir.beta_eta_contract
   979               |> transform_elim_prop
   980               |> Object_Logic.atomize_term thy
   981     val need_trueprop = (fastype_of t = @{typ bool})
   982   in
   983     t |> need_trueprop ? HOLogic.mk_Trueprop
   984       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   985       |> extensionalize_term ctxt
   986       |> presimplify_term ctxt presimp_consts
   987       |> perhaps (try (HOLogic.dest_Trueprop))
   988   end
   989 
   990 (* making fact and conjecture formulas *)
   991 fun make_formula thy type_enc eq_as_iff name loc kind t =
   992   let
   993     val (iformula, atomic_types) =
   994       iformula_from_prop thy type_enc eq_as_iff t []
   995   in
   996     {name = name, locality = loc, kind = kind, iformula = iformula,
   997      atomic_types = atomic_types}
   998   end
   999 
  1000 fun make_fact ctxt format type_enc eq_as_iff ((name, loc), t) =
  1001   let val thy = Proof_Context.theory_of ctxt in
  1002     case t |> make_formula thy type_enc (eq_as_iff andalso format <> CNF) name
  1003                            loc Axiom of
  1004       formula as {iformula = AAtom (IConst ((s, _), _, _)), ...} =>
  1005       if s = tptp_true then NONE else SOME formula
  1006     | formula => SOME formula
  1007   end
  1008 
  1009 fun make_conjecture ctxt format type_enc ps =
  1010   let
  1011     val thy = Proof_Context.theory_of ctxt
  1012     val last = length ps - 1
  1013   in
  1014     map2 (fn j => fn ((name, loc), (kind, t)) =>
  1015              t |> make_formula thy type_enc (format <> CNF) name loc kind
  1016                |> (j <> last) = (kind = Conjecture) ? update_iformula mk_anot)
  1017          (0 upto last) ps
  1018   end
  1019 
  1020 (** Finite and infinite type inference **)
  1021 
  1022 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1023   | deep_freeze_atyp T = T
  1024 val deep_freeze_type = map_atyps deep_freeze_atyp
  1025 
  1026 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1027    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1028    proofs. On the other hand, all HOL infinite types can be given the same
  1029    models in first-order logic (via Löwenheim-Skolem). *)
  1030 
  1031 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1032     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1033   | should_encode_type _ _ All_Types _ = true
  1034   | should_encode_type ctxt _ Fin_Nonmono_Types T =
  1035     is_type_surely_finite ctxt false T
  1036   | should_encode_type _ _ _ _ = false
  1037 
  1038 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1039                              should_predicate_on_var T =
  1040     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1041     should_encode_type ctxt nonmono_Ts level T
  1042   | should_predicate_on_type _ _ _ _ _ = false
  1043 
  1044 fun is_var_or_bound_var (IConst ((s, _), _, _)) =
  1045     String.isPrefix bound_var_prefix s
  1046   | is_var_or_bound_var (IVar _) = true
  1047   | is_var_or_bound_var _ = false
  1048 
  1049 datatype tag_site =
  1050   Top_Level of bool option |
  1051   Eq_Arg of bool option |
  1052   Elsewhere
  1053 
  1054 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1055   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1056                          u T =
  1057     (case heaviness of
  1058        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1059      | Lightweight =>
  1060        case (site, is_var_or_bound_var u) of
  1061          (Eq_Arg pos, true) =>
  1062          (* The first disjunct prevents a subtle soundness issue explained in
  1063             Blanchette's Ph.D. thesis. See also
  1064             "formula_lines_for_lightweight_tags_sym_decl". *)
  1065          (pos <> SOME false andalso poly = Polymorphic andalso
  1066           level <> All_Types andalso heaviness = Lightweight andalso
  1067           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1068          should_encode_type ctxt nonmono_Ts level T
  1069        | _ => false)
  1070   | should_tag_with_type _ _ _ _ _ _ = false
  1071 
  1072 fun homogenized_type ctxt nonmono_Ts level =
  1073   let
  1074     val should_encode = should_encode_type ctxt nonmono_Ts level
  1075     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1076       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1077         homo 0 T1 --> homo (ary - 1) T2
  1078       | homo _ _ = raise Fail "expected function type"
  1079   in homo end
  1080 
  1081 (** "hBOOL" and "hAPP" **)
  1082 
  1083 type sym_info =
  1084   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1085 
  1086 fun add_iterm_syms_to_table ctxt explicit_apply =
  1087   let
  1088     fun consider_var_arity const_T var_T max_ary =
  1089       let
  1090         fun iter ary T =
  1091           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1092              type_instance ctxt (T, var_T) then
  1093             ary
  1094           else
  1095             iter (ary + 1) (range_type T)
  1096       in iter 0 const_T end
  1097     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1098       if explicit_apply = NONE andalso
  1099          (can dest_funT T orelse T = @{typ bool}) then
  1100         let
  1101           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1102           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1103             {pred_sym = pred_sym andalso not bool_vars',
  1104              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1105              max_ary = max_ary, types = types}
  1106           val fun_var_Ts' =
  1107             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1108         in
  1109           if bool_vars' = bool_vars andalso
  1110              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1111             accum
  1112           else
  1113             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1114         end
  1115       else
  1116         accum
  1117     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1118       let val (head, args) = strip_iterm_comb tm in
  1119         (case head of
  1120            IConst ((s, _), T, _) =>
  1121            if String.isPrefix bound_var_prefix s then
  1122              add_var_or_bound_var T accum
  1123            else
  1124              let val ary = length args in
  1125                ((bool_vars, fun_var_Ts),
  1126                 case Symtab.lookup sym_tab s of
  1127                   SOME {pred_sym, min_ary, max_ary, types} =>
  1128                   let
  1129                     val pred_sym =
  1130                       pred_sym andalso top_level andalso not bool_vars
  1131                     val types' = types |> insert_type ctxt I T
  1132                     val min_ary =
  1133                       if is_some explicit_apply orelse
  1134                          pointer_eq (types', types) then
  1135                         min_ary
  1136                       else
  1137                         fold (consider_var_arity T) fun_var_Ts min_ary
  1138                   in
  1139                     Symtab.update (s, {pred_sym = pred_sym,
  1140                                        min_ary = Int.min (ary, min_ary),
  1141                                        max_ary = Int.max (ary, max_ary),
  1142                                        types = types'})
  1143                                   sym_tab
  1144                   end
  1145                 | NONE =>
  1146                   let
  1147                     val pred_sym = top_level andalso not bool_vars
  1148                     val min_ary =
  1149                       case explicit_apply of
  1150                         SOME true => 0
  1151                       | SOME false => ary
  1152                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1153                   in
  1154                     Symtab.update_new (s, {pred_sym = pred_sym,
  1155                                            min_ary = min_ary, max_ary = ary,
  1156                                            types = [T]})
  1157                                       sym_tab
  1158                   end)
  1159              end
  1160          | IVar (_, T) => add_var_or_bound_var T accum
  1161          | IAbs ((_, T), tm) => accum |> add_var_or_bound_var T |> add false tm
  1162          | _ => accum)
  1163         |> fold (add false) args
  1164       end
  1165   in add true end
  1166 fun add_fact_syms_to_table ctxt explicit_apply =
  1167   fact_lift (formula_fold NONE
  1168                           (K (add_iterm_syms_to_table ctxt explicit_apply)))
  1169 
  1170 val tvar_a = TVar (("'a", 0), HOLogic.typeS)
  1171 
  1172 val default_sym_tab_entries : (string * sym_info) list =
  1173   (prefixed_predicator_name,
  1174    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1175   (make_fixed_const @{const_name undefined},
  1176    {pred_sym = false, min_ary = 0, max_ary = 0, types = []}) ::
  1177   ([tptp_false, tptp_true]
  1178    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1179   ([tptp_equal, tptp_old_equal]
  1180    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1181 
  1182 fun sym_table_for_facts ctxt explicit_apply facts =
  1183   ((false, []), Symtab.empty)
  1184   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1185   |> fold Symtab.update default_sym_tab_entries
  1186 
  1187 fun min_arity_of sym_tab s =
  1188   case Symtab.lookup sym_tab s of
  1189     SOME ({min_ary, ...} : sym_info) => min_ary
  1190   | NONE =>
  1191     case strip_prefix_and_unascii const_prefix s of
  1192       SOME s =>
  1193       let val s = s |> unmangled_const_name |> invert_const in
  1194         if s = predicator_name then 1
  1195         else if s = app_op_name then 2
  1196         else if s = type_pred_name then 1
  1197         else 0
  1198       end
  1199     | NONE => 0
  1200 
  1201 (* True if the constant ever appears outside of the top-level position in
  1202    literals, or if it appears with different arities (e.g., because of different
  1203    type instantiations). If false, the constant always receives all of its
  1204    arguments and is used as a predicate. *)
  1205 fun is_pred_sym sym_tab s =
  1206   case Symtab.lookup sym_tab s of
  1207     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1208     pred_sym andalso min_ary = max_ary
  1209   | NONE => false
  1210 
  1211 val predicator_combconst =
  1212   IConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1213 fun predicator tm = IApp (predicator_combconst, tm)
  1214 
  1215 fun introduce_predicators_in_iterm sym_tab tm =
  1216   case strip_iterm_comb tm of
  1217     (IConst ((s, _), _, _), _) =>
  1218     if is_pred_sym sym_tab s then tm else predicator tm
  1219   | _ => predicator tm
  1220 
  1221 fun list_app head args = fold (curry (IApp o swap)) args head
  1222 
  1223 val app_op = `make_fixed_const app_op_name
  1224 
  1225 fun explicit_app arg head =
  1226   let
  1227     val head_T = ityp_of head
  1228     val (arg_T, res_T) = dest_funT head_T
  1229     val explicit_app = IConst (app_op, head_T --> head_T, [arg_T, res_T])
  1230   in list_app explicit_app [head, arg] end
  1231 fun list_explicit_app head args = fold explicit_app args head
  1232 
  1233 fun introduce_explicit_apps_in_iterm sym_tab =
  1234   let
  1235     fun aux tm =
  1236       case strip_iterm_comb tm of
  1237         (head as IConst ((s, _), _, _), args) =>
  1238         args |> map aux
  1239              |> chop (min_arity_of sym_tab s)
  1240              |>> list_app head
  1241              |-> list_explicit_app
  1242       | (head, args) => list_explicit_app head (map aux args)
  1243   in aux end
  1244 
  1245 fun chop_fun 0 T = ([], T)
  1246   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1247     chop_fun (n - 1) ran_T |>> cons dom_T
  1248   | chop_fun _ _ = raise Fail "unexpected non-function"
  1249 
  1250 fun filter_type_args _ _ _ [] = []
  1251   | filter_type_args thy s arity T_args =
  1252     let
  1253       (* will throw "TYPE" for pseudo-constants *)
  1254       val U = if s = app_op_name then
  1255                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1256               else
  1257                 s |> Sign.the_const_type thy
  1258     in
  1259       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1260         [] => []
  1261       | res_U_vars =>
  1262         let val U_args = (s, U) |> Sign.const_typargs thy in
  1263           U_args ~~ T_args
  1264           |> map (fn (U, T) =>
  1265                      if member (op =) res_U_vars (dest_TVar U) then T
  1266                      else dummyT)
  1267         end
  1268     end
  1269     handle TYPE _ => T_args
  1270 
  1271 fun enforce_type_arg_policy_in_iterm ctxt format type_enc =
  1272   let
  1273     val thy = Proof_Context.theory_of ctxt
  1274     fun aux arity (IApp (tm1, tm2)) = IApp (aux (arity + 1) tm1, aux 0 tm2)
  1275       | aux arity (IConst (name as (s, _), T, T_args)) =
  1276         (case strip_prefix_and_unascii const_prefix s of
  1277            NONE =>
  1278            (name, if level_of_type_enc type_enc = No_Types then [] else T_args)
  1279          | SOME s'' =>
  1280            let
  1281              val s'' = invert_const s''
  1282              fun filtered_T_args false = T_args
  1283                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1284            in
  1285              case type_arg_policy type_enc s'' of
  1286                Explicit_Type_Args drop_args =>
  1287                (name, filtered_T_args drop_args)
  1288              | Mangled_Type_Args drop_args =>
  1289                (mangled_const_name format type_enc (filtered_T_args drop_args)
  1290                                    name, [])
  1291              | No_Type_Args => (name, [])
  1292            end)
  1293         |> (fn (name, T_args) => IConst (name, T, T_args))
  1294       | aux _ (IAbs (bound, tm)) = IAbs (bound, aux 0 tm)
  1295       | aux _ tm = tm
  1296   in aux 0 end
  1297 
  1298 fun repair_iterm ctxt format type_enc sym_tab =
  1299   not (is_type_enc_higher_order type_enc)
  1300   ? (introduce_explicit_apps_in_iterm sym_tab
  1301      #> introduce_predicators_in_iterm sym_tab)
  1302   #> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1303 fun repair_fact ctxt format type_enc sym_tab =
  1304   update_iformula (formula_map (repair_iterm ctxt format type_enc sym_tab))
  1305 
  1306 (** Helper facts **)
  1307 
  1308 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1309 val helper_table =
  1310   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1311    (("COMBK", false), @{thms Meson.COMBK_def}),
  1312    (("COMBB", false), @{thms Meson.COMBB_def}),
  1313    (("COMBC", false), @{thms Meson.COMBC_def}),
  1314    (("COMBS", false), @{thms Meson.COMBS_def}),
  1315    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1316    (("fFalse", true), @{thms True_or_False}),
  1317    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1318    (("fTrue", true), @{thms True_or_False}),
  1319    (("fNot", false),
  1320     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1321            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1322    (("fconj", false),
  1323     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1324         by (unfold fconj_def) fast+}),
  1325    (("fdisj", false),
  1326     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1327         by (unfold fdisj_def) fast+}),
  1328    (("fimplies", false),
  1329     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1330         by (unfold fimplies_def) fast+}),
  1331    (("fequal", true),
  1332     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1333        However, this is done so for backward compatibility: Including the
  1334        equality helpers by default in Metis breaks a few existing proofs. *)
  1335     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1336            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1337    (("fAll", false), []), (*TODO: add helpers*)
  1338    (("fEx", false), []), (*TODO: add helpers*)
  1339    (("If", true), @{thms if_True if_False True_or_False})]
  1340   |> map (apsnd (map zero_var_indexes))
  1341 
  1342 val type_tag = `make_fixed_const type_tag_name
  1343 
  1344 fun type_tag_idempotence_fact () =
  1345   let
  1346     fun var s = ATerm (`I s, [])
  1347     fun tag tm = ATerm (type_tag, [var "T", tm])
  1348     val tagged_a = tag (var "A")
  1349   in
  1350     Formula (type_tag_idempotence_helper_name, Axiom,
  1351              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1352              |> close_formula_universally, isabelle_info simpN, NONE)
  1353   end
  1354 
  1355 fun should_specialize_helper type_enc t =
  1356   polymorphism_of_type_enc type_enc = Mangled_Monomorphic andalso
  1357   level_of_type_enc type_enc <> No_Types andalso
  1358   not (null (Term.hidden_polymorphism t))
  1359 
  1360 fun helper_facts_for_sym ctxt format type_enc (s, {types, ...} : sym_info) =
  1361   case strip_prefix_and_unascii const_prefix s of
  1362     SOME mangled_s =>
  1363     let
  1364       val thy = Proof_Context.theory_of ctxt
  1365       val unmangled_s = mangled_s |> unmangled_const_name
  1366       fun dub needs_fairly_sound j k =
  1367         (unmangled_s ^ "_" ^ string_of_int j ^ "_" ^ string_of_int k ^
  1368          (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1369          (if needs_fairly_sound then typed_helper_suffix
  1370           else untyped_helper_suffix),
  1371          Helper)
  1372       fun dub_and_inst needs_fairly_sound (th, j) =
  1373         let val t = prop_of th in
  1374           if should_specialize_helper type_enc t then
  1375             map (fn T => specialize_type thy (invert_const unmangled_s, T) t)
  1376                 types
  1377           else
  1378             [t]
  1379         end
  1380         |> map (fn (k, t) => (dub needs_fairly_sound j k, t)) o tag_list 1
  1381       val make_facts = map_filter (make_fact ctxt format type_enc false)
  1382       val fairly_sound = is_type_enc_fairly_sound type_enc
  1383     in
  1384       helper_table
  1385       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1386                   if helper_s <> unmangled_s orelse
  1387                      (needs_fairly_sound andalso not fairly_sound) then
  1388                     []
  1389                   else
  1390                     ths ~~ (1 upto length ths)
  1391                     |> maps (dub_and_inst needs_fairly_sound)
  1392                     |> make_facts)
  1393     end
  1394   | NONE => []
  1395 fun helper_facts_for_sym_table ctxt format type_enc sym_tab =
  1396   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_enc) sym_tab
  1397                   []
  1398 
  1399 (***************************************************************)
  1400 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1401 (***************************************************************)
  1402 
  1403 fun set_insert (x, s) = Symtab.update (x, ()) s
  1404 
  1405 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1406 
  1407 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1408 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1409 
  1410 fun classes_of_terms get_Ts =
  1411   map (map snd o get_Ts)
  1412   #> List.foldl add_classes Symtab.empty
  1413   #> delete_type #> Symtab.keys
  1414 
  1415 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1416 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1417 
  1418 fun fold_type_constrs f (Type (s, Ts)) x =
  1419     fold (fold_type_constrs f) Ts (f (s, x))
  1420   | fold_type_constrs _ _ x = x
  1421 
  1422 (* Type constructors used to instantiate overloaded constants are the only ones
  1423    needed. *)
  1424 fun add_type_constrs_in_term thy =
  1425   let
  1426     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1427       | add (t $ u) = add t #> add u
  1428       | add (Const (x as (s, _))) =
  1429         if String.isPrefix skolem_const_prefix s then I
  1430         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1431       | add (Free (s, T)) =
  1432         if String.isPrefix polymorphic_free_prefix s then
  1433           T |> fold_type_constrs set_insert
  1434         else
  1435           I
  1436       | add (Abs (_, _, u)) = add u
  1437       | add _ = I
  1438   in add end
  1439 
  1440 fun type_constrs_of_terms thy ts =
  1441   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1442 
  1443 fun translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1444                        hyp_ts concl_t facts =
  1445   let
  1446     val thy = Proof_Context.theory_of ctxt
  1447     val presimp_consts = Meson.presimplified_consts ctxt
  1448     val fact_ts = facts |> map snd
  1449     (* Remove existing facts from the conjecture, as this can dramatically
  1450        boost an ATP's performance (for some reason). *)
  1451     val hyp_ts =
  1452       hyp_ts
  1453       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1454     val facts = facts |> map (apsnd (pair Axiom))
  1455     val conjs =
  1456       map (pair prem_kind) hyp_ts @ [(Conjecture, concl_t)]
  1457       |> map2 (pair o rpair Local o string_of_int) (0 upto length hyp_ts)
  1458     val ((conjs, facts), lambdas) =
  1459       if preproc then
  1460         conjs @ facts
  1461         |> map (apsnd (apsnd (presimp_prop ctxt presimp_consts)))
  1462         |> preprocess_abstractions_in_terms trans_lambdas
  1463         |>> chop (length conjs)
  1464         |>> apfst (map (apsnd (apsnd freeze_term)))
  1465       else
  1466         ((conjs, facts), [])
  1467     val conjs = conjs |> make_conjecture ctxt format type_enc
  1468     val (fact_names, facts) =
  1469       facts
  1470       |> map_filter (fn (name, (_, t)) =>
  1471                         make_fact ctxt format type_enc true (name, t)
  1472                         |> Option.map (pair name))
  1473       |> ListPair.unzip
  1474     val lambdas =
  1475       lambdas |> map_filter (make_fact ctxt format type_enc true o apsnd snd)
  1476     val all_ts = concl_t :: hyp_ts @ fact_ts
  1477     val subs = tfree_classes_of_terms all_ts
  1478     val supers = tvar_classes_of_terms all_ts
  1479     val tycons = type_constrs_of_terms thy all_ts
  1480     val (supers, arity_clauses) =
  1481       if level_of_type_enc type_enc = No_Types then ([], [])
  1482       else make_arity_clauses thy tycons supers
  1483     val class_rel_clauses = make_class_rel_clauses thy subs supers
  1484   in
  1485     (fact_names |> map single,
  1486      (conjs, facts @ lambdas, class_rel_clauses, arity_clauses))
  1487   end
  1488 
  1489 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1490     (true, ATerm (class, [ATerm (name, [])]))
  1491   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1492     (true, ATerm (class, [ATerm (name, [])]))
  1493 
  1494 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1495 
  1496 val type_pred = `make_fixed_const type_pred_name
  1497 
  1498 fun type_pred_iterm ctxt format type_enc T tm =
  1499   IApp (IConst (type_pred, T --> @{typ bool}, [T])
  1500         |> enforce_type_arg_policy_in_iterm ctxt format type_enc, tm)
  1501 
  1502 fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
  1503   | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1504     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1505   | is_var_positively_naked_in_term _ _ _ _ = true
  1506 fun should_predicate_on_var_in_formula pos phi (SOME true) name =
  1507     formula_fold pos (is_var_positively_naked_in_term name) phi false
  1508   | should_predicate_on_var_in_formula _ _ _ _ = true
  1509 
  1510 fun mk_aterm format type_enc name T_args args =
  1511   ATerm (name, map_filter (ho_term_for_type_arg format type_enc) T_args @ args)
  1512 
  1513 fun tag_with_type ctxt format nonmono_Ts type_enc pos T tm =
  1514   IConst (type_tag, T --> T, [T])
  1515   |> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1516   |> ho_term_from_iterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1517   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm])
  1518        | _ => raise Fail "unexpected lambda-abstraction")
  1519 and ho_term_from_iterm ctxt format nonmono_Ts type_enc =
  1520   let
  1521     fun aux site u =
  1522       let
  1523         val (head, args) = strip_iterm_comb u
  1524         val pos =
  1525           case site of
  1526             Top_Level pos => pos
  1527           | Eq_Arg pos => pos
  1528           | Elsewhere => NONE
  1529         val t =
  1530           case head of
  1531             IConst (name as (s, _), _, T_args) =>
  1532             let
  1533               val arg_site = if is_tptp_equal s then Eq_Arg pos else Elsewhere
  1534             in
  1535               mk_aterm format type_enc name T_args (map (aux arg_site) args)
  1536             end
  1537           | IVar (name, _) =>
  1538             mk_aterm format type_enc name [] (map (aux Elsewhere) args)
  1539           | IAbs ((name, T), tm) =>
  1540             AAbs ((name, ho_type_from_typ format type_enc true 0 T),
  1541                   aux Elsewhere tm)
  1542           | IApp _ => raise Fail "impossible \"IApp\""
  1543         val T = ityp_of u
  1544       in
  1545         t |> (if should_tag_with_type ctxt nonmono_Ts type_enc site u T then
  1546                 tag_with_type ctxt format nonmono_Ts type_enc pos T
  1547               else
  1548                 I)
  1549       end
  1550   in aux end
  1551 and formula_from_iformula ctxt format nonmono_Ts type_enc
  1552                           should_predicate_on_var =
  1553   let
  1554     val do_term = ho_term_from_iterm ctxt format nonmono_Ts type_enc o Top_Level
  1555     val do_bound_type =
  1556       case type_enc of
  1557         Simple_Types (_, level) =>
  1558         homogenized_type ctxt nonmono_Ts level 0
  1559         #> ho_type_from_typ format type_enc false 0 #> SOME
  1560       | _ => K NONE
  1561     fun do_out_of_bound_type pos phi universal (name, T) =
  1562       if should_predicate_on_type ctxt nonmono_Ts type_enc
  1563              (fn () => should_predicate_on_var pos phi universal name) T then
  1564         IVar (name, T)
  1565         |> type_pred_iterm ctxt format type_enc T
  1566         |> do_term pos |> AAtom |> SOME
  1567       else
  1568         NONE
  1569     fun do_formula pos (AQuant (q, xs, phi)) =
  1570         let
  1571           val phi = phi |> do_formula pos
  1572           val universal = Option.map (q = AExists ? not) pos
  1573         in
  1574           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1575                                         | SOME T => do_bound_type T)),
  1576                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1577                       (map_filter
  1578                            (fn (_, NONE) => NONE
  1579                              | (s, SOME T) =>
  1580                                do_out_of_bound_type pos phi universal (s, T))
  1581                            xs)
  1582                       phi)
  1583         end
  1584       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1585       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1586   in do_formula end
  1587 
  1588 fun bound_tvars type_enc Ts =
  1589   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1590                 (type_literals_for_types type_enc add_sorts_on_tvar Ts))
  1591 
  1592 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1593    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1594    the remote provers might care. *)
  1595 fun formula_line_for_fact ctxt format prefix encode freshen pos nonmono_Ts
  1596         type_enc (j, {name, locality, kind, iformula, atomic_types}) =
  1597   (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ encode name, kind,
  1598    iformula
  1599    |> close_iformula_universally
  1600    |> formula_from_iformula ctxt format nonmono_Ts type_enc
  1601                             should_predicate_on_var_in_formula
  1602                             (if pos then SOME true else NONE)
  1603    |> bound_tvars type_enc atomic_types
  1604    |> close_formula_universally,
  1605    NONE,
  1606    case locality of
  1607      Intro => isabelle_info introN
  1608    | Elim => isabelle_info elimN
  1609    | Simp => isabelle_info simpN
  1610    | _ => NONE)
  1611   |> Formula
  1612 
  1613 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1614                                        : class_rel_clause) =
  1615   let val ty_arg = ATerm (`I "T", []) in
  1616     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1617              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1618                                AAtom (ATerm (superclass, [ty_arg]))])
  1619              |> close_formula_universally, isabelle_info introN, NONE)
  1620   end
  1621 
  1622 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1623     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1624   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1625     (false, ATerm (c, [ATerm (sort, [])]))
  1626 
  1627 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1628                                    : arity_clause) =
  1629   Formula (arity_clause_prefix ^ name, Axiom,
  1630            mk_ahorn (map (formula_from_fo_literal o apfst not
  1631                           o fo_literal_from_arity_literal) prem_lits)
  1632                     (formula_from_fo_literal
  1633                          (fo_literal_from_arity_literal concl_lits))
  1634            |> close_formula_universally, isabelle_info introN, NONE)
  1635 
  1636 fun formula_line_for_conjecture ctxt format nonmono_Ts type_enc
  1637         ({name, kind, iformula, atomic_types, ...} : translated_formula) =
  1638   Formula (conjecture_prefix ^ name, kind,
  1639            formula_from_iformula ctxt format nonmono_Ts type_enc
  1640                should_predicate_on_var_in_formula (SOME false)
  1641                (close_iformula_universally iformula)
  1642            |> bound_tvars type_enc atomic_types
  1643            |> close_formula_universally, NONE, NONE)
  1644 
  1645 fun free_type_literals type_enc ({atomic_types, ...} : translated_formula) =
  1646   atomic_types |> type_literals_for_types type_enc add_sorts_on_tfree
  1647                |> map fo_literal_from_type_literal
  1648 
  1649 fun formula_line_for_free_type j lit =
  1650   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1651            formula_from_fo_literal lit, NONE, NONE)
  1652 fun formula_lines_for_free_types type_enc facts =
  1653   let
  1654     val litss = map (free_type_literals type_enc) facts
  1655     val lits = fold (union (op =)) litss []
  1656   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1657 
  1658 (** Symbol declarations **)
  1659 
  1660 fun should_declare_sym type_enc pred_sym s =
  1661   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1662   (case type_enc of
  1663      Simple_Types _ => true
  1664    | Tags (_, _, Lightweight) => true
  1665    | _ => not pred_sym)
  1666 
  1667 fun sym_decl_table_for_facts ctxt format type_enc repaired_sym_tab
  1668                              (conjs, facts) =
  1669   let
  1670     fun add_iterm_syms in_conj tm =
  1671       let val (head, args) = strip_iterm_comb tm in
  1672         (case head of
  1673            IConst ((s, s'), T, T_args) =>
  1674            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1675              if should_declare_sym type_enc pred_sym s then
  1676                Symtab.map_default (s, [])
  1677                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1678                                          in_conj))
  1679              else
  1680                I
  1681            end
  1682          | IAbs (_, tm) => add_iterm_syms in_conj tm
  1683          | _ => I)
  1684         #> fold (add_iterm_syms in_conj) args
  1685       end
  1686     fun add_fact_syms in_conj =
  1687       fact_lift (formula_fold NONE (K (add_iterm_syms in_conj)))
  1688     fun add_formula_var_types (AQuant (_, xs, phi)) =
  1689         fold (fn (_, SOME T) => insert_type ctxt I T | _ => I) xs
  1690         #> add_formula_var_types phi
  1691       | add_formula_var_types (AConn (_, phis)) =
  1692         fold add_formula_var_types phis
  1693       | add_formula_var_types _ = I
  1694     fun var_types () =
  1695       if polymorphism_of_type_enc type_enc = Polymorphic then [tvar_a]
  1696       else fold (fact_lift add_formula_var_types) (conjs @ facts) []
  1697     fun add_undefined_const T =
  1698       let
  1699         val (s, s') =
  1700           `make_fixed_const @{const_name undefined}
  1701           |> mangled_const_name format type_enc [T]
  1702       in
  1703         Symtab.map_default (s, [])
  1704                            (insert_type ctxt #3 (s', [T], T, false, 0, false))
  1705       end
  1706   in
  1707     Symtab.empty
  1708     |> is_type_enc_fairly_sound type_enc
  1709        ? (fold (add_fact_syms true) conjs
  1710           #> fold (add_fact_syms false) facts
  1711           #> (case type_enc of
  1712                 Simple_Types _ => I
  1713               | _ => fold add_undefined_const (var_types ())))
  1714   end
  1715 
  1716 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1717    out with monotonicity" paper presented at CADE 2011. *)
  1718 fun add_iterm_nonmonotonic_types _ _ _ _ (SOME false) _ = I
  1719   | add_iterm_nonmonotonic_types ctxt level sound locality _
  1720         (IApp (IApp (IConst ((s, _), Type (_, [T, _]), _), tm1), tm2)) =
  1721     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1722      (case level of
  1723         Noninf_Nonmono_Types =>
  1724         not (is_locality_global locality) orelse
  1725         not (is_type_surely_infinite ctxt sound T)
  1726       | Fin_Nonmono_Types => is_type_surely_finite ctxt false T
  1727       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1728   | add_iterm_nonmonotonic_types _ _ _ _ _ _ = I
  1729 fun add_fact_nonmonotonic_types ctxt level sound
  1730         ({kind, locality, iformula, ...} : translated_formula) =
  1731   formula_fold (SOME (kind <> Conjecture))
  1732                (add_iterm_nonmonotonic_types ctxt level sound locality)
  1733                iformula
  1734 fun nonmonotonic_types_for_facts ctxt type_enc sound facts =
  1735   let val level = level_of_type_enc type_enc in
  1736     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1737       [] |> fold (add_fact_nonmonotonic_types ctxt level sound) facts
  1738          (* We must add "bool" in case the helper "True_or_False" is added
  1739             later. In addition, several places in the code rely on the list of
  1740             nonmonotonic types not being empty. *)
  1741          |> insert_type ctxt I @{typ bool}
  1742     else
  1743       []
  1744   end
  1745 
  1746 fun decl_line_for_sym ctxt format nonmono_Ts type_enc s
  1747                       (s', T_args, T, pred_sym, ary, _) =
  1748   let
  1749     val (T_arg_Ts, level) =
  1750       case type_enc of
  1751         Simple_Types (_, level) => ([], level)
  1752       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1753   in
  1754     Decl (sym_decl_prefix ^ s, (s, s'),
  1755           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1756           |> ho_type_from_typ format type_enc pred_sym (length T_arg_Ts + ary))
  1757   end
  1758 
  1759 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1760         poly_nonmono_Ts type_enc n s j (s', T_args, T, _, ary, in_conj) =
  1761   let
  1762     val (kind, maybe_negate) =
  1763       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1764       else (Axiom, I)
  1765     val (arg_Ts, res_T) = chop_fun ary T
  1766     val num_args = length arg_Ts
  1767     val bound_names =
  1768       1 upto num_args |> map (`I o make_bound_var o string_of_int)
  1769     val bounds =
  1770       bound_names ~~ arg_Ts |> map (fn (name, T) => IConst (name, T, []))
  1771     val sym_needs_arg_types = exists (curry (op =) dummyT) T_args
  1772     fun should_keep_arg_type T =
  1773       sym_needs_arg_types orelse
  1774       not (should_predicate_on_type ctxt nonmono_Ts type_enc (K false) T)
  1775     val bound_Ts =
  1776       arg_Ts |> map (fn T => if should_keep_arg_type T then SOME T else NONE)
  1777   in
  1778     Formula (preds_sym_formula_prefix ^ s ^
  1779              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1780              IConst ((s, s'), T, T_args)
  1781              |> fold (curry (IApp o swap)) bounds
  1782              |> type_pred_iterm ctxt format type_enc res_T
  1783              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1784              |> formula_from_iformula ctxt format poly_nonmono_Ts type_enc
  1785                                       (K (K (K (K true)))) (SOME true)
  1786              |> n > 1 ? bound_tvars type_enc (atyps_of T)
  1787              |> close_formula_universally
  1788              |> maybe_negate,
  1789              isabelle_info introN, NONE)
  1790   end
  1791 
  1792 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1793         poly_nonmono_Ts type_enc n s
  1794         (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1795   let
  1796     val ident_base =
  1797       lightweight_tags_sym_formula_prefix ^ s ^
  1798       (if n > 1 then "_" ^ string_of_int j else "")
  1799     val (kind, maybe_negate) =
  1800       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1801       else (Axiom, I)
  1802     val (arg_Ts, res_T) = chop_fun ary T
  1803     val bound_names =
  1804       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1805     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1806     val cst = mk_aterm format type_enc (s, s') T_args
  1807     val atomic_Ts = atyps_of T
  1808     fun eq tms =
  1809       (if pred_sym then AConn (AIff, map AAtom tms)
  1810        else AAtom (ATerm (`I tptp_equal, tms)))
  1811       |> bound_tvars type_enc atomic_Ts
  1812       |> close_formula_universally
  1813       |> maybe_negate
  1814     (* See also "should_tag_with_type". *)
  1815     fun should_encode T =
  1816       should_encode_type ctxt poly_nonmono_Ts All_Types T orelse
  1817       (case type_enc of
  1818          Tags (Polymorphic, level, Lightweight) =>
  1819          level <> All_Types andalso Monomorph.typ_has_tvars T
  1820        | _ => false)
  1821     val tag_with = tag_with_type ctxt format poly_nonmono_Ts type_enc NONE
  1822     val add_formula_for_res =
  1823       if should_encode res_T then
  1824         cons (Formula (ident_base ^ "_res", kind,
  1825                        eq [tag_with res_T (cst bounds), cst bounds],
  1826                        isabelle_info simpN, NONE))
  1827       else
  1828         I
  1829     fun add_formula_for_arg k =
  1830       let val arg_T = nth arg_Ts k in
  1831         if should_encode arg_T then
  1832           case chop k bounds of
  1833             (bounds1, bound :: bounds2) =>
  1834             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1835                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1836                                cst bounds],
  1837                            isabelle_info simpN, NONE))
  1838           | _ => raise Fail "expected nonempty tail"
  1839         else
  1840           I
  1841       end
  1842   in
  1843     [] |> not pred_sym ? add_formula_for_res
  1844        |> fold add_formula_for_arg (ary - 1 downto 0)
  1845   end
  1846 
  1847 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1848 
  1849 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts
  1850                                 poly_nonmono_Ts type_enc (s, decls) =
  1851   case type_enc of
  1852     Simple_Types _ =>
  1853     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_enc s)
  1854   | Preds _ =>
  1855     let
  1856       val decls =
  1857         case decls of
  1858           decl :: (decls' as _ :: _) =>
  1859           let val T = result_type_of_decl decl in
  1860             if forall (curry (type_instance ctxt o swap) T
  1861                        o result_type_of_decl) decls' then
  1862               [decl]
  1863             else
  1864               decls
  1865           end
  1866         | _ => decls
  1867       val n = length decls
  1868       val decls =
  1869         decls |> filter (should_predicate_on_type ctxt poly_nonmono_Ts type_enc
  1870                                                   (K true)
  1871                          o result_type_of_decl)
  1872     in
  1873       (0 upto length decls - 1, decls)
  1874       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1875                    nonmono_Ts poly_nonmono_Ts type_enc n s)
  1876     end
  1877   | Tags (_, _, heaviness) =>
  1878     (case heaviness of
  1879        Heavyweight => []
  1880      | Lightweight =>
  1881        let val n = length decls in
  1882          (0 upto n - 1 ~~ decls)
  1883          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1884                       conj_sym_kind poly_nonmono_Ts type_enc n s)
  1885        end)
  1886 
  1887 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1888                                      poly_nonmono_Ts type_enc sym_decl_tab =
  1889   sym_decl_tab
  1890   |> Symtab.dest
  1891   |> sort_wrt fst
  1892   |> rpair []
  1893   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1894                              nonmono_Ts poly_nonmono_Ts type_enc)
  1895 
  1896 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1897     poly <> Mangled_Monomorphic andalso
  1898     ((level = All_Types andalso heaviness = Lightweight) orelse
  1899      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1900   | needs_type_tag_idempotence _ = false
  1901 
  1902 fun offset_of_heading_in_problem _ [] j = j
  1903   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1904     if heading = needle then j
  1905     else offset_of_heading_in_problem needle problem (j + length lines)
  1906 
  1907 val implicit_declsN = "Should-be-implicit typings"
  1908 val explicit_declsN = "Explicit typings"
  1909 val factsN = "Relevant facts"
  1910 val class_relsN = "Class relationships"
  1911 val aritiesN = "Arities"
  1912 val helpersN = "Helper facts"
  1913 val conjsN = "Conjectures"
  1914 val free_typesN = "Type variables"
  1915 
  1916 val explicit_apply = NONE (* for experiments *)
  1917 
  1918 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_enc sound
  1919         exporter trans_lambdas readable_names preproc hyp_ts concl_t facts =
  1920   let
  1921     val (format, type_enc) = choose_format [format] type_enc
  1922     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1923       translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1924                          hyp_ts concl_t facts
  1925     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1926     val nonmono_Ts =
  1927       conjs @ facts |> nonmonotonic_types_for_facts ctxt type_enc sound
  1928     val repair = repair_fact ctxt format type_enc sym_tab
  1929     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1930     val repaired_sym_tab =
  1931       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1932     val helpers =
  1933       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_enc
  1934                        |> map repair
  1935     val poly_nonmono_Ts =
  1936       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1937          polymorphism_of_type_enc type_enc <> Polymorphic then
  1938         nonmono_Ts
  1939       else
  1940         [tvar_a]
  1941     val sym_decl_lines =
  1942       (conjs, helpers @ facts)
  1943       |> sym_decl_table_for_facts ctxt format type_enc repaired_sym_tab
  1944       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1945                                                poly_nonmono_Ts type_enc
  1946     val helper_lines =
  1947       0 upto length helpers - 1 ~~ helpers
  1948       |> map (formula_line_for_fact ctxt format helper_prefix I false true
  1949                                     poly_nonmono_Ts type_enc)
  1950       |> (if needs_type_tag_idempotence type_enc then
  1951             cons (type_tag_idempotence_fact ())
  1952           else
  1953             I)
  1954     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1955        FLOTTER hack. *)
  1956     val problem =
  1957       [(explicit_declsN, sym_decl_lines),
  1958        (factsN,
  1959         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1960                                    (not exporter) (not exporter) nonmono_Ts
  1961                                    type_enc)
  1962             (0 upto length facts - 1 ~~ facts)),
  1963        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1964        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1965        (helpersN, helper_lines),
  1966        (conjsN,
  1967         map (formula_line_for_conjecture ctxt format nonmono_Ts type_enc)
  1968             conjs),
  1969        (free_typesN, formula_lines_for_free_types type_enc (facts @ conjs))]
  1970     val problem =
  1971       problem
  1972       |> (case format of
  1973             CNF => ensure_cnf_problem
  1974           | CNF_UEQ => filter_cnf_ueq_problem
  1975           | _ => I)
  1976       |> (if is_format_typed format then
  1977             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1978                                                    implicit_declsN
  1979           else
  1980             I)
  1981     val (problem, pool) = problem |> nice_atp_problem readable_names
  1982     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1983     val typed_helpers =
  1984       map_filter (fn (j, {name, ...}) =>
  1985                      if String.isSuffix typed_helper_suffix name then SOME j
  1986                      else NONE)
  1987                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1988                   ~~ helpers)
  1989     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1990       if min_ary > 0 then
  1991         case strip_prefix_and_unascii const_prefix s of
  1992           SOME s => Symtab.insert (op =) (s, min_ary)
  1993         | NONE => I
  1994       else
  1995         I
  1996   in
  1997     (problem,
  1998      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1999      offset_of_heading_in_problem conjsN problem 0,
  2000      offset_of_heading_in_problem factsN problem 0,
  2001      fact_names |> Vector.fromList,
  2002      typed_helpers,
  2003      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  2004   end
  2005 
  2006 (* FUDGE *)
  2007 val conj_weight = 0.0
  2008 val hyp_weight = 0.1
  2009 val fact_min_weight = 0.2
  2010 val fact_max_weight = 1.0
  2011 val type_info_default_weight = 0.8
  2012 
  2013 fun add_term_weights weight (ATerm (s, tms)) =
  2014     is_tptp_user_symbol s ? Symtab.default (s, weight)
  2015     #> fold (add_term_weights weight) tms
  2016   | add_term_weights weight (AAbs (_, tm)) = add_term_weights weight tm
  2017 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  2018     formula_fold NONE (K (add_term_weights weight)) phi
  2019   | add_problem_line_weights _ _ = I
  2020 
  2021 fun add_conjectures_weights [] = I
  2022   | add_conjectures_weights conjs =
  2023     let val (hyps, conj) = split_last conjs in
  2024       add_problem_line_weights conj_weight conj
  2025       #> fold (add_problem_line_weights hyp_weight) hyps
  2026     end
  2027 
  2028 fun add_facts_weights facts =
  2029   let
  2030     val num_facts = length facts
  2031     fun weight_of j =
  2032       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  2033                         / Real.fromInt num_facts
  2034   in
  2035     map weight_of (0 upto num_facts - 1) ~~ facts
  2036     |> fold (uncurry add_problem_line_weights)
  2037   end
  2038 
  2039 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  2040 fun atp_problem_weights problem =
  2041   let val get = these o AList.lookup (op =) problem in
  2042     Symtab.empty
  2043     |> add_conjectures_weights (get free_typesN @ get conjsN)
  2044     |> add_facts_weights (get factsN)
  2045     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  2046             [explicit_declsN, class_relsN, aritiesN]
  2047     |> Symtab.dest
  2048     |> sort (prod_ord Real.compare string_ord o pairself swap)
  2049   end
  2050 
  2051 end;