src/Tools/Code/code_thingol.ML
author bulwahn
Wed, 07 Sep 2011 13:51:35 +0200
changeset 45660 26b19918e670
parent 45659 7ecb4124a3a3
child 45661 fddb09e6f84d
permissions -rw-r--r--
adding minimalistic implementation for printing the type annotations
     1 (*  Title:      Tools/Code/code_thingol.ML
     2     Author:     Florian Haftmann, TU Muenchen
     3 
     4 Intermediate language ("Thin-gol") representing executable code.
     5 Representation and translation.
     6 *)
     7 
     8 infix 8 `%%;
     9 infix 4 `$;
    10 infix 4 `$$;
    11 infixr 3 `|=>;
    12 infixr 3 `|==>;
    13 
    14 signature BASIC_CODE_THINGOL =
    15 sig
    16   type vname = string;
    17   datatype dict =
    18       Dict of string list * plain_dict
    19   and plain_dict = 
    20       Dict_Const of string * dict list list
    21     | Dict_Var of vname * (int * int)
    22   datatype itype =
    23       `%% of string * itype list
    24     | ITyVar of vname;
    25   type const = string * (((itype list * dict list list) * (itype list * itype)) * bool)
    26     (* f [T1..Tn] {dicts} (_::S1) .. (_..Sm) =^= (f, (([T1..Tn], dicts), [S1..Sm]) *)
    27   datatype iterm =
    28       IConst of const
    29     | IVar of vname option
    30     | `$ of iterm * iterm
    31     | `|=> of (vname option * itype) * iterm
    32     | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
    33         (*((term, type), [(selector pattern, body term )]), primitive term)*)
    34   val `$$ : iterm * iterm list -> iterm;
    35   val `|==> : (vname option * itype) list * iterm -> iterm;
    36   type typscheme = (vname * sort) list * itype;
    37 end;
    38 
    39 signature CODE_THINGOL =
    40 sig
    41   include BASIC_CODE_THINGOL
    42   val fun_tyco: string
    43   val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
    44   val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
    45   val unfold_fun: itype -> itype list * itype
    46   val unfold_fun_n: int -> itype -> itype list * itype
    47   val unfold_app: iterm -> iterm * iterm list
    48   val unfold_abs: iterm -> (vname option * itype) list * iterm
    49   val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
    50   val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
    51   val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
    52   val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
    53   val unfold_const_app: iterm -> (const * iterm list) option
    54   val is_IVar: iterm -> bool
    55   val is_IAbs: iterm -> bool
    56   val eta_expand: int -> const * iterm list -> iterm
    57   val contains_dict_var: iterm -> bool
    58   val locally_monomorphic: iterm -> bool
    59   val add_constnames: iterm -> string list -> string list
    60   val add_tyconames: iterm -> string list -> string list
    61   val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
    62 
    63   type naming
    64   val empty_naming: naming
    65   val lookup_class: naming -> class -> string option
    66   val lookup_classrel: naming -> class * class -> string option
    67   val lookup_tyco: naming -> string -> string option
    68   val lookup_instance: naming -> class * string -> string option
    69   val lookup_const: naming -> string -> string option
    70   val ensure_declared_const: theory -> string -> naming -> string * naming
    71 
    72   datatype stmt =
    73       NoStmt
    74     | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
    75     | Datatype of string * ((vname * sort) list *
    76         ((string * vname list (*type argument wrt. canonical order*)) * itype list) list)
    77     | Datatypecons of string * string
    78     | Class of class * (vname * ((class * string) list * (string * itype) list))
    79     | Classrel of class * class
    80     | Classparam of string * class
    81     | Classinst of (class * (string * (vname * sort) list) (*class and arity*))
    82           * ((class * (string * (string * dict list list))) list (*super instances*)
    83         * (((string * const) * (thm * bool)) list (*class parameter instances*)
    84           * ((string * const) * (thm * bool)) list (*super class parameter instances*)))
    85   type program = stmt Graph.T
    86   val empty_funs: program -> string list
    87   val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
    88   val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
    89   val is_cons: program -> string -> bool
    90   val is_case: stmt -> bool
    91   val contr_classparam_typs: program -> string -> itype option list
    92   val labelled_name: theory -> program -> string -> string
    93   val group_stmts: theory -> program
    94     -> ((string * stmt) list * (string * stmt) list
    95       * ((string * stmt) list * (string * stmt) list)) list
    96 
    97   val read_const_exprs: theory -> string list -> string list * string list
    98   val consts_program: theory -> bool -> string list -> string list * (naming * program)
    99   val dynamic_conv: theory -> (naming -> program
   100     -> ((string * sort) list * typscheme) * iterm -> string list -> conv)
   101     -> conv
   102   val dynamic_value: theory -> ((term -> term) -> 'a -> 'a) -> (naming -> program
   103     -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
   104     -> term -> 'a
   105   val static_conv: theory -> string list -> (naming -> program -> string list
   106     -> ((string * sort) list * typscheme) * iterm -> string list -> conv)
   107     -> conv
   108   val static_conv_simple: theory -> string list
   109     -> (program -> (string * sort) list -> term -> conv) -> conv
   110   val static_value: theory -> ((term -> term) -> 'a -> 'a) -> string list ->
   111     (naming -> program -> string list
   112       -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
   113     -> term -> 'a
   114 end;
   115 
   116 structure Code_Thingol: CODE_THINGOL =
   117 struct
   118 
   119 (** auxiliary **)
   120 
   121 fun unfoldl dest x =
   122   case dest x
   123    of NONE => (x, [])
   124     | SOME (x1, x2) =>
   125         let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
   126 
   127 fun unfoldr dest x =
   128   case dest x
   129    of NONE => ([], x)
   130     | SOME (x1, x2) =>
   131         let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
   132 
   133 
   134 (** language core - types, terms **)
   135 
   136 type vname = string;
   137 
   138 datatype dict =
   139     Dict of string list * plain_dict
   140 and plain_dict = 
   141     Dict_Const of string * dict list list
   142   | Dict_Var of vname * (int * int)
   143 
   144 datatype itype =
   145     `%% of string * itype list
   146   | ITyVar of vname;
   147 
   148 type const = string * (((itype list * dict list list) *
   149   (itype list (*types of arguments*) * itype (*body type*))) * bool (*requires type annotation*))
   150 
   151 datatype iterm =
   152     IConst of const
   153   | IVar of vname option
   154   | `$ of iterm * iterm
   155   | `|=> of (vname option * itype) * iterm
   156   | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
   157     (*see also signature*)
   158 
   159 fun is_IVar (IVar _) = true
   160   | is_IVar _ = false;
   161 
   162 fun is_IAbs (_ `|=> _) = true
   163   | is_IAbs _ = false;
   164 
   165 val op `$$ = Library.foldl (op `$);
   166 val op `|==> = Library.foldr (op `|=>);
   167 
   168 val unfold_app = unfoldl
   169   (fn op `$ t => SOME t
   170     | _ => NONE);
   171 
   172 val unfold_abs = unfoldr
   173   (fn op `|=> t => SOME t
   174     | _ => NONE);
   175 
   176 val split_let = 
   177   (fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t)
   178     | _ => NONE);
   179 
   180 val unfold_let = unfoldr split_let;
   181 
   182 fun unfold_const_app t =
   183  case unfold_app t
   184   of (IConst c, ts) => SOME (c, ts)
   185    | _ => NONE;
   186 
   187 fun fold_constexprs f =
   188   let
   189     fun fold' (IConst c) = f c
   190       | fold' (IVar _) = I
   191       | fold' (t1 `$ t2) = fold' t1 #> fold' t2
   192       | fold' (_ `|=> t) = fold' t
   193       | fold' (ICase (((t, _), ds), _)) = fold' t
   194           #> fold (fn (pat, body) => fold' pat #> fold' body) ds
   195   in fold' end;
   196 
   197 val add_constnames = fold_constexprs (fn (c, _) => insert (op =) c);
   198 
   199 fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
   200   | add_tycos (ITyVar _) = I;
   201 
   202 val add_tyconames = fold_constexprs (fn (_, (((tys, _), _), _)) => fold add_tycos tys);
   203 
   204 fun fold_varnames f =
   205   let
   206     fun fold_aux add f =
   207       let
   208         fun fold_term _ (IConst _) = I
   209           | fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
   210           | fold_term _ (IVar NONE) = I
   211           | fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
   212           | fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
   213           | fold_term vs ((NONE, _) `|=> t) = fold_term vs t
   214           | fold_term vs (ICase (((t, _), ds), _)) = fold_term vs t #> fold (fold_case vs) ds
   215         and fold_case vs (p, t) = fold_term (add p vs) t;
   216       in fold_term [] end;
   217     fun add t = fold_aux add (insert (op =)) t;
   218   in fold_aux add f end;
   219 
   220 fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
   221 
   222 fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
   223   | split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
   224      of ICase (((IVar (SOME w), _), [(p, t')]), _) =>
   225           if v = w andalso (exists_var p v orelse not (exists_var t' v))
   226           then ((p, ty), t')
   227           else ((IVar (SOME v), ty), t)
   228       | _ => ((IVar (SOME v), ty), t))
   229   | split_pat_abs _ = NONE;
   230 
   231 val unfold_pat_abs = unfoldr split_pat_abs;
   232 
   233 fun unfold_abs_eta [] t = ([], t)
   234   | unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
   235       let
   236         val (vs_tys, t') = unfold_abs_eta tys t;
   237       in (v_ty :: vs_tys, t') end
   238   | unfold_abs_eta tys t =
   239       let
   240         val ctxt = fold_varnames Name.declare t Name.context;
   241         val vs_tys = (map o apfst) SOME (Name.invent_names ctxt "a" tys);
   242       in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
   243 
   244 fun eta_expand k (c as (name, ((_, (tys, _)), _)), ts) =
   245   let
   246     val j = length ts;
   247     val l = k - j;
   248     val _ = if l > length tys
   249       then error ("Impossible eta-expansion for constant " ^ quote name) else ();
   250     val ctxt = (fold o fold_varnames) Name.declare ts Name.context;
   251     val vs_tys = (map o apfst) SOME
   252       (Name.invent_names ctxt "a" ((take l o drop j) tys));
   253   in vs_tys `|==> IConst c `$$ ts @ map (IVar o fst) vs_tys end;
   254 
   255 fun contains_dict_var t =
   256   let
   257     fun cont_dict (Dict (_, d)) = cont_plain_dict d
   258     and cont_plain_dict (Dict_Const (_, dss)) = (exists o exists) cont_dict dss
   259       | cont_plain_dict (Dict_Var _) = true;
   260     fun cont_term (IConst (_, (((_, dss), _), _))) = (exists o exists) cont_dict dss
   261       | cont_term (IVar _) = false
   262       | cont_term (t1 `$ t2) = cont_term t1 orelse cont_term t2
   263       | cont_term (_ `|=> t) = cont_term t
   264       | cont_term (ICase (_, t)) = cont_term t;
   265   in cont_term t end;
   266   
   267 fun locally_monomorphic (IConst _) = false
   268   | locally_monomorphic (IVar _) = true
   269   | locally_monomorphic (t `$ _) = locally_monomorphic t
   270   | locally_monomorphic (_ `|=> t) = locally_monomorphic t
   271   | locally_monomorphic (ICase ((_, ds), _)) = exists (locally_monomorphic o snd) ds;
   272 
   273 
   274 (** namings **)
   275 
   276 (* policies *)
   277 
   278 local
   279   fun thyname_of_class thy = #theory_name o Name_Space.the_entry (Sign.class_space thy);
   280   fun thyname_of_instance thy inst = case AxClass.thynames_of_arity thy inst
   281    of [] => error ("No such instance: " ^ quote (snd inst ^ " :: " ^ fst inst))
   282     | thyname :: _ => thyname;
   283   fun thyname_of_const thy c = case AxClass.class_of_param thy c
   284    of SOME class => thyname_of_class thy class
   285     | NONE => (case Code.get_type_of_constr_or_abstr thy c
   286        of SOME (tyco, _) => Codegen.thyname_of_type thy tyco
   287         | NONE => Codegen.thyname_of_const thy c);
   288   fun purify_base "==>" = "follows"
   289     | purify_base "==" = "meta_eq"
   290     | purify_base s = Name.desymbolize false s;
   291   fun namify thy get_basename get_thyname name =
   292     let
   293       val prefix = get_thyname thy name;
   294       val base = (purify_base o get_basename) name;
   295     in Long_Name.append prefix base end;
   296 in
   297 
   298 fun namify_class thy = namify thy Long_Name.base_name thyname_of_class;
   299 fun namify_classrel thy = namify thy (fn (sub_class, super_class) => 
   300     Long_Name.base_name super_class ^ "_" ^ Long_Name.base_name sub_class)
   301   (fn thy => thyname_of_class thy o fst);
   302   (*order fits nicely with composed projections*)
   303 fun namify_tyco thy "fun" = "Pure.fun"
   304   | namify_tyco thy tyco = namify thy Long_Name.base_name Codegen.thyname_of_type tyco;
   305 fun namify_instance thy = namify thy (fn (class, tyco) => 
   306   Long_Name.base_name class ^ "_" ^ Long_Name.base_name tyco) thyname_of_instance;
   307 fun namify_const thy = namify thy Long_Name.base_name thyname_of_const;
   308 
   309 end; (* local *)
   310 
   311 
   312 (* data *)
   313 
   314 datatype naming = Naming of {
   315   class: class Symtab.table * Name.context,
   316   classrel: string Symreltab.table * Name.context,
   317   tyco: string Symtab.table * Name.context,
   318   instance: string Symreltab.table * Name.context,
   319   const: string Symtab.table * Name.context
   320 }
   321 
   322 fun dest_Naming (Naming naming) = naming;
   323 
   324 val empty_naming = Naming {
   325   class = (Symtab.empty, Name.context),
   326   classrel = (Symreltab.empty, Name.context),
   327   tyco = (Symtab.empty, Name.context),
   328   instance = (Symreltab.empty, Name.context),
   329   const = (Symtab.empty, Name.context)
   330 };
   331 
   332 local
   333   fun mk_naming (class, classrel, tyco, instance, const) =
   334     Naming { class = class, classrel = classrel,
   335       tyco = tyco, instance = instance, const = const };
   336   fun map_naming f (Naming { class, classrel, tyco, instance, const }) =
   337     mk_naming (f (class, classrel, tyco, instance, const));
   338 in
   339   fun map_class f = map_naming
   340     (fn (class, classrel, tyco, inst, const) =>
   341       (f class, classrel, tyco, inst, const));
   342   fun map_classrel f = map_naming
   343     (fn (class, classrel, tyco, inst, const) =>
   344       (class, f classrel, tyco, inst, const));
   345   fun map_tyco f = map_naming
   346     (fn (class, classrel, tyco, inst, const) =>
   347       (class, classrel, f tyco, inst, const));
   348   fun map_instance f = map_naming
   349     (fn (class, classrel, tyco, inst, const) =>
   350       (class, classrel, tyco, f inst, const));
   351   fun map_const f = map_naming
   352     (fn (class, classrel, tyco, inst, const) =>
   353       (class, classrel, tyco, inst, f const));
   354 end; (*local*)
   355 
   356 fun add_variant update (thing, name) (tab, used) =
   357   let
   358     val (name', used') = Name.variant name used;
   359     val tab' = update (thing, name') tab;
   360   in (tab', used') end;
   361 
   362 fun declare thy mapp lookup update namify thing =
   363   mapp (add_variant update (thing, namify thy thing))
   364   #> `(fn naming => the (lookup naming thing));
   365 
   366 
   367 (* lookup and declare *)
   368 
   369 local
   370 
   371 val suffix_class = "class";
   372 val suffix_classrel = "classrel"
   373 val suffix_tyco = "tyco";
   374 val suffix_instance = "inst";
   375 val suffix_const = "const";
   376 
   377 fun add_suffix nsp NONE = NONE
   378   | add_suffix nsp (SOME name) = SOME (Long_Name.append name nsp);
   379 
   380 in
   381 
   382 val lookup_class = add_suffix suffix_class
   383   oo Symtab.lookup o fst o #class o dest_Naming;
   384 val lookup_classrel = add_suffix suffix_classrel
   385   oo Symreltab.lookup o fst o #classrel o dest_Naming;
   386 val lookup_tyco = add_suffix suffix_tyco
   387   oo Symtab.lookup o fst o #tyco o dest_Naming;
   388 val lookup_instance = add_suffix suffix_instance
   389   oo Symreltab.lookup o fst o #instance o dest_Naming;
   390 val lookup_const = add_suffix suffix_const
   391   oo Symtab.lookup o fst o #const o dest_Naming;
   392 
   393 fun declare_class thy = declare thy map_class
   394   lookup_class Symtab.update_new namify_class;
   395 fun declare_classrel thy = declare thy map_classrel
   396   lookup_classrel Symreltab.update_new namify_classrel;
   397 fun declare_tyco thy = declare thy map_tyco
   398   lookup_tyco Symtab.update_new namify_tyco;
   399 fun declare_instance thy = declare thy map_instance
   400   lookup_instance Symreltab.update_new namify_instance;
   401 fun declare_const thy = declare thy map_const
   402   lookup_const Symtab.update_new namify_const;
   403 
   404 fun ensure_declared_const thy const naming =
   405   case lookup_const naming const
   406    of SOME const' => (const', naming)
   407     | NONE => declare_const thy const naming;
   408 
   409 val fun_tyco = Long_Name.append (namify_tyco Pure.thy "fun") suffix_tyco
   410   (*depends on add_suffix*);
   411 
   412 val unfold_fun = unfoldr
   413   (fn tyco `%% [ty1, ty2] => if tyco = fun_tyco then SOME (ty1, ty2) else NONE
   414     | _ => NONE);
   415 
   416 fun unfold_fun_n n ty =
   417   let
   418     val (tys1, ty1) = unfold_fun ty;
   419     val (tys3, tys2) = chop n tys1;
   420     val ty3 = Library.foldr (fn (ty1, ty2) => fun_tyco `%% [ty1, ty2]) (tys2, ty1);
   421   in (tys3, ty3) end;
   422 
   423 end; (* local *)
   424 
   425 
   426 (** statements, abstract programs **)
   427 
   428 type typscheme = (vname * sort) list * itype;
   429 datatype stmt =
   430     NoStmt
   431   | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
   432   | Datatype of string * ((vname * sort) list * ((string * vname list) * itype list) list)
   433   | Datatypecons of string * string
   434   | Class of class * (vname * ((class * string) list * (string * itype) list))
   435   | Classrel of class * class
   436   | Classparam of string * class
   437   | Classinst of (class * (string * (vname * sort) list))
   438         * ((class * (string * (string * dict list list))) list
   439       * (((string * const) * (thm * bool)) list
   440         * ((string * const) * (thm * bool)) list))
   441       (*see also signature*);
   442 
   443 type program = stmt Graph.T;
   444 
   445 fun empty_funs program =
   446   Graph.fold (fn (name, (Fun (c, ((_, []), _)), _)) => cons c
   447                | _ => I) program [];
   448 
   449 fun map_terms_bottom_up f (t as IConst _) = f t
   450   | map_terms_bottom_up f (t as IVar _) = f t
   451   | map_terms_bottom_up f (t1 `$ t2) = f
   452       (map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
   453   | map_terms_bottom_up f ((v, ty) `|=> t) = f
   454       ((v, ty) `|=> map_terms_bottom_up f t)
   455   | map_terms_bottom_up f (ICase (((t, ty), ps), t0)) = f
   456       (ICase (((map_terms_bottom_up f t, ty), (map o pairself)
   457         (map_terms_bottom_up f) ps), map_terms_bottom_up f t0));
   458 
   459 fun map_classparam_instances_as_term f =
   460   (map o apfst o apsnd) (fn const => case f (IConst const) of IConst const' => const')
   461 
   462 fun map_terms_stmt f NoStmt = NoStmt
   463   | map_terms_stmt f (Fun (c, ((tysm, eqs), case_cong))) = Fun (c, ((tysm, (map o apfst)
   464       (fn (ts, t) => (map f ts, f t)) eqs), case_cong))
   465   | map_terms_stmt f (stmt as Datatype _) = stmt
   466   | map_terms_stmt f (stmt as Datatypecons _) = stmt
   467   | map_terms_stmt f (stmt as Class _) = stmt
   468   | map_terms_stmt f (stmt as Classrel _) = stmt
   469   | map_terms_stmt f (stmt as Classparam _) = stmt
   470   | map_terms_stmt f (Classinst (arity, (super_instances, classparam_instances))) =
   471       Classinst (arity, (super_instances, (pairself o map_classparam_instances_as_term) f classparam_instances));
   472 
   473 fun is_cons program name = case Graph.get_node program name
   474  of Datatypecons _ => true
   475   | _ => false;
   476 
   477 fun is_case (Fun (_, (_, SOME _))) = true
   478   | is_case _ = false;
   479 
   480 fun lookup_classparam_instance program name = program |> Graph.get_first
   481   (fn (_, (Classinst ((class, _), (_, (param_insts, _))), _)) =>
   482     Option.map (fn ((const, _), _) => (class, const))
   483       (find_first (fn ((_, (inst_const, _)), _) => inst_const = name) param_insts) | _ => NONE)
   484 
   485 fun contr_classparam_typs program name = 
   486   let
   487     fun contr_classparam_typs' (class, name) =
   488       let
   489         val Class (_, (_, (_, params))) = Graph.get_node program class;
   490         val SOME ty = AList.lookup (op =) params name;
   491         val (tys, res_ty) = unfold_fun ty;
   492         fun no_tyvar (_ `%% tys) = forall no_tyvar tys
   493           | no_tyvar (ITyVar _) = false;
   494       in if no_tyvar res_ty
   495         then map (fn ty => if no_tyvar ty then NONE else SOME ty) tys
   496         else []
   497       end
   498  in 
   499    case Graph.get_node program name
   500    of Classparam (_, class) => contr_classparam_typs' (class, name)
   501     | Fun (c, _) => (case lookup_classparam_instance program name
   502       of NONE => []
   503        | SOME (class, name) => the_default [] (try contr_classparam_typs' (class, name)))
   504     | _ => []
   505   end;
   506   
   507 fun labelled_name thy program name =
   508   let val ctxt = Proof_Context.init_global thy in
   509     case Graph.get_node program name of
   510       Fun (c, _) => quote (Code.string_of_const thy c)
   511     | Datatype (tyco, _) => "type " ^ quote (Proof_Context.extern_type ctxt tyco)
   512     | Datatypecons (c, _) => quote (Code.string_of_const thy c)
   513     | Class (class, _) => "class " ^ quote (Proof_Context.extern_class ctxt class)
   514     | Classrel (sub, super) =>
   515         let
   516           val Class (sub, _) = Graph.get_node program sub;
   517           val Class (super, _) = Graph.get_node program super;
   518         in
   519           quote (Proof_Context.extern_class ctxt sub ^ " < " ^ Proof_Context.extern_class ctxt super)
   520         end
   521     | Classparam (c, _) => quote (Code.string_of_const thy c)
   522     | Classinst ((class, (tyco, _)), _) =>
   523         let
   524           val Class (class, _) = Graph.get_node program class;
   525           val Datatype (tyco, _) = Graph.get_node program tyco;
   526         in
   527           quote (Proof_Context.extern_type ctxt tyco ^ " :: " ^ Proof_Context.extern_class ctxt class)
   528         end
   529   end;
   530 
   531 fun linear_stmts program =
   532   rev (Graph.strong_conn program)
   533   |> map (AList.make (Graph.get_node program));
   534 
   535 fun group_stmts thy program =
   536   let
   537     fun is_fun (_, Fun _) = true | is_fun _ = false;
   538     fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
   539     fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
   540     fun is_class (_, Class _) = true | is_class _ = false;
   541     fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
   542     fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
   543     fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
   544     fun group stmts =
   545       if forall (is_datatypecons orf is_datatype) stmts
   546       then (filter is_datatype stmts, [], ([], []))
   547       else if forall (is_class orf is_classrel orf is_classparam) stmts
   548       then ([], filter is_class stmts, ([], []))
   549       else if forall (is_fun orf is_classinst) stmts
   550       then ([], [], List.partition is_fun stmts)
   551       else error ("Illegal mutual dependencies: " ^
   552         (commas o map (labelled_name thy program o fst)) stmts)
   553   in
   554     linear_stmts program
   555     |> map group
   556   end;
   557 
   558 
   559 (** translation kernel **)
   560 
   561 (* generic mechanisms *)
   562 
   563 fun ensure_stmt lookup declare generate thing (dep, (naming, program)) =
   564   let
   565     fun add_dep name = case dep of NONE => I
   566       | SOME dep => Graph.add_edge (dep, name);
   567     val (name, naming') = case lookup naming thing
   568      of SOME name => (name, naming)
   569       | NONE => declare thing naming;
   570   in case try (Graph.get_node program) name
   571    of SOME stmt => program
   572         |> add_dep name
   573         |> pair naming'
   574         |> pair dep
   575         |> pair name
   576     | NONE => program
   577         |> Graph.default_node (name, NoStmt)
   578         |> add_dep name
   579         |> pair naming'
   580         |> curry generate (SOME name)
   581         ||> snd
   582         |-> (fn stmt => (apsnd o Graph.map_node name) (K stmt))
   583         |> pair dep
   584         |> pair name
   585   end;
   586 
   587 exception PERMISSIVE of unit;
   588 
   589 fun translation_error thy permissive some_thm msg sub_msg =
   590   if permissive
   591   then raise PERMISSIVE ()
   592   else
   593     let
   594       val err_thm =
   595         (case some_thm of
   596           SOME thm => "\n(in code equation " ^ Display.string_of_thm_global thy thm ^ ")"
   597         | NONE => "");
   598     in error (msg ^ err_thm ^ ":\n" ^ sub_msg) end;
   599 
   600 fun not_wellsorted thy permissive some_thm ty sort e =
   601   let
   602     val ctxt = Syntax.init_pretty_global thy;
   603     val err_class = Sorts.class_error ctxt e;
   604     val err_typ =
   605       "Type " ^ Syntax.string_of_typ ctxt ty ^ " not of sort " ^
   606         Syntax.string_of_sort_global thy sort;
   607   in
   608     translation_error thy permissive some_thm "Wellsortedness error"
   609       (err_typ ^ "\n" ^ err_class)
   610   end;
   611 
   612 (* inference of type annotations for disambiguation with type classes *)
   613 
   614 fun annotate_term (Const (c', T'), Const (c, T)) tvar_names =
   615     let
   616       val tvar_names' = Term.add_tvar_namesT T' tvar_names
   617     in
   618       (Const (c, if eq_set (op =) (tvar_names, tvar_names') then T else Type("", [T])), tvar_names')
   619     end
   620   | annotate_term (t1 $ u1, t $ u) tvar_names =
   621     let
   622       val (u', tvar_names') = annotate_term (u1, u) tvar_names
   623       val (t', tvar_names'') = annotate_term (t1, t) tvar_names'    
   624     in
   625       (t' $ u', tvar_names'')
   626     end
   627   | annotate_term (Abs (_, _, t1) , Abs (x, T, t)) tvar_names =
   628     apfst (fn t => Abs (x, T, t)) (annotate_term (t1, t) tvar_names)
   629   | annotate_term (_, t) tvar_names = (t, tvar_names)
   630 
   631 fun annotate_eqns thy eqns = 
   632   let
   633     val ctxt = ProofContext.init_global thy
   634     val erase = map_types (fn _ => Type_Infer.anyT [])
   635     val reinfer = singleton (Type_Infer_Context.infer_types ctxt)
   636     fun add_annotations ((args, (rhs, some_abs)), (SOME th, proper)) =
   637       let
   638         val (lhs, drhs) = Logic.dest_equals (prop_of (Thm.unvarify_global th))
   639         val drhs' = snd (Logic.dest_equals (reinfer (Logic.mk_equals (lhs, erase drhs))))
   640         val (rhs', _) = annotate_term (drhs', rhs) []
   641      in
   642         ((args, (rhs', some_abs)), (SOME th, proper))
   643      end
   644      | add_annotations eqn = eqn
   645   in
   646     map add_annotations eqns
   647   end;
   648 
   649 (* translation *)
   650 
   651 fun ensure_tyco thy algbr eqngr permissive tyco =
   652   let
   653     val ((vs, cos), _) = Code.get_type thy tyco;
   654     val stmt_datatype =
   655       fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   656       ##>> fold_map (fn (c, (vs, tys)) =>
   657         ensure_const thy algbr eqngr permissive c
   658         ##>> pair (map (unprefix "'" o fst) vs)
   659         ##>> fold_map (translate_typ thy algbr eqngr permissive) tys) cos
   660       #>> (fn info => Datatype (tyco, info));
   661   in ensure_stmt lookup_tyco (declare_tyco thy) stmt_datatype tyco end
   662 and ensure_const thy algbr eqngr permissive c =
   663   let
   664     fun stmt_datatypecons tyco =
   665       ensure_tyco thy algbr eqngr permissive tyco
   666       #>> (fn tyco => Datatypecons (c, tyco));
   667     fun stmt_classparam class =
   668       ensure_class thy algbr eqngr permissive class
   669       #>> (fn class => Classparam (c, class));
   670     fun stmt_fun cert =
   671       let
   672         val ((vs, ty), eqns) = Code.equations_of_cert thy cert;
   673         val eqns' = annotate_eqns thy eqns
   674         val some_case_cong = Code.get_case_cong thy c;
   675       in
   676         fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   677         ##>> translate_typ thy algbr eqngr permissive ty
   678         ##>> translate_eqns thy algbr eqngr permissive eqns'
   679         #>> (fn info => Fun (c, (info, some_case_cong)))
   680       end;
   681     val stmt_const = case Code.get_type_of_constr_or_abstr thy c
   682      of SOME (tyco, _) => stmt_datatypecons tyco
   683       | NONE => (case AxClass.class_of_param thy c
   684          of SOME class => stmt_classparam class
   685           | NONE => stmt_fun (Code_Preproc.cert eqngr c))
   686   in ensure_stmt lookup_const (declare_const thy) stmt_const c end
   687 and ensure_class thy (algbr as (_, algebra)) eqngr permissive class =
   688   let
   689     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   690     val cs = #params (AxClass.get_info thy class);
   691     val stmt_class =
   692       fold_map (fn super_class => ensure_class thy algbr eqngr permissive super_class
   693         ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)) super_classes
   694       ##>> fold_map (fn (c, ty) => ensure_const thy algbr eqngr permissive c
   695         ##>> translate_typ thy algbr eqngr permissive ty) cs
   696       #>> (fn info => Class (class, (unprefix "'" Name.aT, info)))
   697   in ensure_stmt lookup_class (declare_class thy) stmt_class class end
   698 and ensure_classrel thy algbr eqngr permissive (sub_class, super_class) =
   699   let
   700     val stmt_classrel =
   701       ensure_class thy algbr eqngr permissive sub_class
   702       ##>> ensure_class thy algbr eqngr permissive super_class
   703       #>> Classrel;
   704   in ensure_stmt lookup_classrel (declare_classrel thy) stmt_classrel (sub_class, super_class) end
   705 and ensure_inst thy (algbr as (_, algebra)) eqngr permissive (class, tyco) =
   706   let
   707     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   708     val these_classparams = these o try (#params o AxClass.get_info thy);
   709     val classparams = these_classparams class;
   710     val further_classparams = maps these_classparams
   711       ((Sorts.complete_sort algebra o Sorts.super_classes algebra) class);
   712     val vs = Name.invent_names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
   713     val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
   714     val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
   715       Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
   716     val arity_typ = Type (tyco, map TFree vs);
   717     val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
   718     fun translate_super_instance super_class =
   719       ensure_class thy algbr eqngr permissive super_class
   720       ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)
   721       ##>> translate_dicts thy algbr eqngr permissive NONE (arity_typ, [super_class])
   722       #>> (fn ((super_class, classrel), [Dict ([], Dict_Const (inst, dss))]) =>
   723             (super_class, (classrel, (inst, dss))));
   724     fun translate_classparam_instance (c, ty) =
   725       let
   726         val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
   727         val thm = AxClass.unoverload_conv thy (Thm.cterm_of thy raw_const);
   728         val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
   729           o Logic.dest_equals o Thm.prop_of) thm;
   730       in
   731         ensure_const thy algbr eqngr permissive c
   732         ##>> translate_const thy algbr eqngr permissive (SOME thm) (const, NONE)
   733         #>> (fn (c, IConst const') => ((c, const'), (thm, true)))
   734       end;
   735     val stmt_inst =
   736       ensure_class thy algbr eqngr permissive class
   737       ##>> ensure_tyco thy algbr eqngr permissive tyco
   738       ##>> fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   739       ##>> fold_map translate_super_instance super_classes
   740       ##>> fold_map translate_classparam_instance classparams
   741       ##>> fold_map translate_classparam_instance further_classparams
   742       #>> (fn (((((class, tyco), arity_args), super_instances),
   743         classparam_instances), further_classparam_instances) =>
   744           Classinst ((class, (tyco, arity_args)), (super_instances,
   745             (classparam_instances, further_classparam_instances))));
   746   in ensure_stmt lookup_instance (declare_instance thy) stmt_inst (class, tyco) end
   747 and translate_typ thy algbr eqngr permissive (TFree (v, _)) =
   748       pair (ITyVar (unprefix "'" v))
   749   | translate_typ thy algbr eqngr permissive (Type (tyco, tys)) =
   750       ensure_tyco thy algbr eqngr permissive tyco
   751       ##>> fold_map (translate_typ thy algbr eqngr permissive) tys
   752       #>> (fn (tyco, tys) => tyco `%% tys)
   753 and translate_term thy algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
   754       translate_app thy algbr eqngr permissive some_thm (((c, ty), []), some_abs)
   755   | translate_term thy algbr eqngr permissive some_thm (Free (v, _), some_abs) =
   756       pair (IVar (SOME v))
   757   | translate_term thy algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
   758       let
   759         val (v', t') = Syntax_Trans.variant_abs (Name.desymbolize false v, ty, t);
   760         val v'' = if member (op =) (Term.add_free_names t' []) v'
   761           then SOME v' else NONE
   762       in
   763         translate_typ thy algbr eqngr permissive ty
   764         ##>> translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   765         #>> (fn (ty, t) => (v'', ty) `|=> t)
   766       end
   767   | translate_term thy algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
   768       case strip_comb t
   769        of (Const (c, ty), ts) =>
   770             translate_app thy algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
   771         | (t', ts) =>
   772             translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   773             ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   774             #>> (fn (t, ts) => t `$$ ts)
   775 and translate_eqn thy algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
   776   fold_map (translate_term thy algbr eqngr permissive some_thm) args
   777   ##>> translate_term thy algbr eqngr permissive some_thm (rhs, some_abs)
   778   #>> rpair (some_thm, proper)
   779 and translate_eqns thy algbr eqngr permissive eqns prgrm =
   780   prgrm |> fold_map (translate_eqn thy algbr eqngr permissive) eqns
   781     handle PERMISSIVE () => ([], prgrm)
   782 and translate_const thy algbr eqngr permissive some_thm ((c, ty), some_abs) =
   783   let
   784     val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
   785         andalso Code.is_abstr thy c
   786         then translation_error thy permissive some_thm
   787           "Abstraction violation" ("constant " ^ Code.string_of_const thy c)
   788       else ()
   789     val (annotate, ty') = (case ty of Type("", [ty']) => (true, ty') | ty' => (false, ty'))
   790     val arg_typs = Sign.const_typargs thy (c, ty');
   791     val sorts = Code_Preproc.sortargs eqngr c;
   792     val (function_typs, body_typ) = Term.strip_type ty';
   793   in
   794     ensure_const thy algbr eqngr permissive c
   795     ##>> fold_map (translate_typ thy algbr eqngr permissive) arg_typs
   796     ##>> fold_map (translate_dicts thy algbr eqngr permissive some_thm) (arg_typs ~~ sorts)
   797     ##>> fold_map (translate_typ thy algbr eqngr permissive) (body_typ :: function_typs)
   798     #>> (fn (((c, arg_typs), dss), body_typ :: function_typs) =>
   799       IConst (c, (((arg_typs, dss), (function_typs, body_typ)), annotate)))
   800   end
   801 and translate_app_const thy algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
   802   translate_const thy algbr eqngr permissive some_thm (c_ty, some_abs)
   803   ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   804   #>> (fn (t, ts) => t `$$ ts)
   805 and translate_case thy algbr eqngr permissive some_thm (num_args, (t_pos, case_pats)) (c_ty, ts) =
   806   let
   807     fun arg_types num_args ty = fst (chop num_args (binder_types ty));
   808     val tys = arg_types num_args (snd c_ty);
   809     val ty = nth tys t_pos;
   810     fun mk_constr c t = let val n = Code.args_number thy c
   811       in ((c, arg_types n (fastype_of t) ---> ty), n) end;
   812     val constrs = if null case_pats then []
   813       else map2 mk_constr case_pats (nth_drop t_pos ts);
   814     fun casify naming constrs ty ts =
   815       let
   816         val undefineds = map_filter (lookup_const naming) (Code.undefineds thy);
   817         fun collapse_clause vs_map ts body =
   818           let
   819           in case body
   820            of IConst (c, _) => if member (op =) undefineds c
   821                 then []
   822                 else [(ts, body)]
   823             | ICase (((IVar (SOME v), _), subclauses), _) =>
   824                 if forall (fn (pat', body') => exists_var pat' v
   825                   orelse not (exists_var body' v)) subclauses
   826                 then case AList.lookup (op =) vs_map v
   827                  of SOME i => maps (fn (pat', body') =>
   828                       collapse_clause (AList.delete (op =) v vs_map)
   829                         (nth_map i (K pat') ts) body') subclauses
   830                   | NONE => [(ts, body)]
   831                 else [(ts, body)]
   832             | _ => [(ts, body)]
   833           end;
   834         fun mk_clause mk tys t =
   835           let
   836             val (vs, body) = unfold_abs_eta tys t;
   837             val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
   838             val ts = map (IVar o fst) vs;
   839           in map mk (collapse_clause vs_map ts body) end;
   840         val t = nth ts t_pos;
   841         val ts_clause = nth_drop t_pos ts;
   842         val clauses = if null case_pats
   843           then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
   844           else maps (fn ((constr as IConst (_, ((_, (tys, _)), _)), n), t) =>
   845             mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
   846               (constrs ~~ ts_clause);
   847       in ((t, ty), clauses) end;
   848   in
   849     translate_const thy algbr eqngr permissive some_thm (c_ty, NONE)
   850     ##>> fold_map (fn (constr, n) => translate_const thy algbr eqngr permissive some_thm (constr, NONE)
   851       #>> rpair n) constrs
   852     ##>> translate_typ thy algbr eqngr permissive ty
   853     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   854     #-> (fn (((t, constrs), ty), ts) =>
   855       `(fn (_, (naming, _)) => ICase (casify naming constrs ty ts, t `$$ ts)))
   856   end
   857 and translate_app_case thy algbr eqngr permissive some_thm (case_scheme as (num_args, _)) ((c, ty), ts) =
   858   if length ts < num_args then
   859     let
   860       val k = length ts;
   861       val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
   862       val ctxt = (fold o fold_aterms) Term.declare_term_frees ts Name.context;
   863       val vs = Name.invent_names ctxt "a" tys;
   864     in
   865       fold_map (translate_typ thy algbr eqngr permissive) tys
   866       ##>> translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts @ map Free vs)
   867       #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
   868     end
   869   else if length ts > num_args then
   870     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), take num_args ts)
   871     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
   872     #>> (fn (t, ts) => t `$$ ts)
   873   else
   874     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts)
   875 and translate_app thy algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
   876   case Code.get_case_scheme thy c
   877    of SOME case_scheme => translate_app_case thy algbr eqngr permissive some_thm case_scheme c_ty_ts
   878     | NONE => translate_app_const thy algbr eqngr permissive some_thm (c_ty_ts, some_abs)
   879 and translate_tyvar_sort thy (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
   880   fold_map (ensure_class thy algbr eqngr permissive) (proj_sort sort)
   881   #>> (fn sort => (unprefix "'" v, sort))
   882 and translate_dicts thy (algbr as (proj_sort, algebra)) eqngr permissive some_thm (ty, sort) =
   883   let
   884     datatype typarg_witness =
   885         Weakening of (class * class) list * plain_typarg_witness
   886     and plain_typarg_witness =
   887         Global of (class * string) * typarg_witness list list
   888       | Local of string * (int * sort);
   889     fun class_relation ((Weakening (classrels, x)), sub_class) super_class =
   890       Weakening ((sub_class, super_class) :: classrels, x);
   891     fun type_constructor (tyco, _) dss class =
   892       Weakening ([], Global ((class, tyco), (map o map) fst dss));
   893     fun type_variable (TFree (v, sort)) =
   894       let
   895         val sort' = proj_sort sort;
   896       in map_index (fn (n, class) => (Weakening ([], Local (v, (n, sort'))), class)) sort' end;
   897     val typarg_witnesses = Sorts.of_sort_derivation algebra
   898       {class_relation = K (Sorts.classrel_derivation algebra class_relation),
   899        type_constructor = type_constructor,
   900        type_variable = type_variable} (ty, proj_sort sort)
   901       handle Sorts.CLASS_ERROR e => not_wellsorted thy permissive some_thm ty sort e;
   902     fun mk_dict (Weakening (classrels, x)) =
   903           fold_map (ensure_classrel thy algbr eqngr permissive) classrels
   904           ##>> mk_plain_dict x
   905           #>> Dict 
   906     and mk_plain_dict (Global (inst, dss)) =
   907           ensure_inst thy algbr eqngr permissive inst
   908           ##>> (fold_map o fold_map) mk_dict dss
   909           #>> (fn (inst, dss) => Dict_Const (inst, dss))
   910       | mk_plain_dict (Local (v, (n, sort))) =
   911           pair (Dict_Var (unprefix "'" v, (n, length sort)))
   912   in fold_map mk_dict typarg_witnesses end;
   913 
   914 
   915 (* store *)
   916 
   917 structure Program = Code_Data
   918 (
   919   type T = naming * program;
   920   val empty = (empty_naming, Graph.empty);
   921 );
   922 
   923 fun invoke_generation ignore_cache thy (algebra, eqngr) f name =
   924   Program.change_yield (if ignore_cache then NONE else SOME thy)
   925     (fn naming_program => (NONE, naming_program)
   926       |> f thy algebra eqngr name
   927       |-> (fn name => fn (_, naming_program) => (name, naming_program)));
   928 
   929 
   930 (* program generation *)
   931 
   932 fun consts_program thy permissive consts =
   933   let
   934     fun project_consts consts (naming, program) =
   935       if permissive then (consts, (naming, program))
   936       else (consts, (naming, Graph.subgraph
   937         (member (op =) (Graph.all_succs program consts)) program));
   938     fun generate_consts thy algebra eqngr =
   939       fold_map (ensure_const thy algebra eqngr permissive);
   940   in
   941     invoke_generation permissive thy (Code_Preproc.obtain false thy consts [])
   942       generate_consts consts
   943     |-> project_consts
   944   end;
   945 
   946 
   947 (* value evaluation *)
   948 
   949 fun ensure_value thy algbr eqngr t =
   950   let
   951     val ty = fastype_of t;
   952     val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
   953       o dest_TFree))) t [];
   954     val stmt_value =
   955       fold_map (translate_tyvar_sort thy algbr eqngr false) vs
   956       ##>> translate_typ thy algbr eqngr false ty
   957       ##>> translate_term thy algbr eqngr false NONE (Code.subst_signatures thy t, NONE)
   958       #>> (fn ((vs, ty), t) => Fun
   959         (Term.dummy_patternN, (((vs, ty), [(([], t), (NONE, true))]), NONE)));
   960     fun term_value (dep, (naming, program1)) =
   961       let
   962         val Fun (_, ((vs_ty, [(([], t), _)]), _)) =
   963           Graph.get_node program1 Term.dummy_patternN;
   964         val deps = Graph.immediate_succs program1 Term.dummy_patternN;
   965         val program2 = Graph.del_nodes [Term.dummy_patternN] program1;
   966         val deps_all = Graph.all_succs program2 deps;
   967         val program3 = Graph.subgraph (member (op =) deps_all) program2;
   968       in (((naming, program3), ((vs_ty, t), deps)), (dep, (naming, program2))) end;
   969   in
   970     ensure_stmt ((K o K) NONE) pair stmt_value Term.dummy_patternN
   971     #> snd
   972     #> term_value
   973   end;
   974 
   975 fun original_sorts vs =
   976   map (fn (v, _) => (v, (the o AList.lookup (op =) vs o prefix "'") v));
   977 
   978 fun dynamic_evaluator thy evaluator algebra eqngr vs t =
   979   let
   980     val (((naming, program), (((vs', ty'), t'), deps)), _) =
   981       invoke_generation false thy (algebra, eqngr) ensure_value t;
   982   in evaluator naming program ((original_sorts vs vs', (vs', ty')), t') deps end;
   983 
   984 fun dynamic_conv thy evaluator =
   985   Code_Preproc.dynamic_conv thy (dynamic_evaluator thy evaluator);
   986 
   987 fun dynamic_value thy postproc evaluator =
   988   Code_Preproc.dynamic_value thy postproc (dynamic_evaluator thy evaluator);
   989 
   990 fun lift_evaluation thy evaluation' algebra eqngr naming program vs t =
   991   let
   992     val (((_, program'), (((vs', ty'), t'), deps)), _) =
   993       ensure_value thy algebra eqngr t (NONE, (naming, program));
   994   in evaluation' ((original_sorts vs vs', (vs', ty')), t') deps end;
   995 
   996 fun lift_evaluator thy evaluator' consts algebra eqngr =
   997   let
   998     fun generate_consts thy algebra eqngr =
   999       fold_map (ensure_const thy algebra eqngr false);
  1000     val (consts', (naming, program)) =
  1001       invoke_generation true thy (algebra, eqngr) generate_consts consts;
  1002     val evaluation' = evaluator' naming program consts';
  1003   in lift_evaluation thy evaluation' algebra eqngr naming program end;
  1004 
  1005 fun lift_evaluator_simple thy evaluator' consts algebra eqngr =
  1006   let
  1007     fun generate_consts thy algebra eqngr =
  1008       fold_map (ensure_const thy algebra eqngr false);
  1009     val (consts', (naming, program)) =
  1010       invoke_generation true thy (algebra, eqngr) generate_consts consts;
  1011   in evaluator' program end;
  1012 
  1013 fun static_conv thy consts conv =
  1014   Code_Preproc.static_conv thy consts (lift_evaluator thy conv consts);
  1015 
  1016 fun static_conv_simple thy consts conv =
  1017   Code_Preproc.static_conv thy consts (lift_evaluator_simple thy conv consts);
  1018 
  1019 fun static_value thy postproc consts evaluator =
  1020   Code_Preproc.static_value thy postproc consts (lift_evaluator thy evaluator consts);
  1021 
  1022 
  1023 (** diagnostic commands **)
  1024 
  1025 fun read_const_exprs thy =
  1026   let
  1027     fun consts_of thy' = Symtab.fold (fn (c, (_, NONE)) => cons c | _ => I)
  1028       ((snd o #constants o Consts.dest o #consts o Sign.rep_sg) thy') [];
  1029     fun belongs_here thy' c = forall
  1030       (fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
  1031     fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
  1032     fun read_const_expr "_" = ([], consts_of thy)
  1033       | read_const_expr s = if String.isSuffix "._" s
  1034           then ([], consts_of_select (Context.this_theory thy (unsuffix "._" s)))
  1035           else ([Code.read_const thy s], []);
  1036   in pairself flat o split_list o map read_const_expr end;
  1037 
  1038 fun code_depgr thy consts =
  1039   let
  1040     val (_, eqngr) = Code_Preproc.obtain true thy consts [];
  1041     val all_consts = Graph.all_succs eqngr consts;
  1042   in Graph.subgraph (member (op =) all_consts) eqngr end;
  1043 
  1044 fun code_thms thy = Pretty.writeln o Code_Preproc.pretty thy o code_depgr thy;
  1045 
  1046 fun code_deps thy consts =
  1047   let
  1048     val eqngr = code_depgr thy consts;
  1049     val constss = Graph.strong_conn eqngr;
  1050     val mapping = Symtab.empty |> fold (fn consts => fold (fn const =>
  1051       Symtab.update (const, consts)) consts) constss;
  1052     fun succs consts = consts
  1053       |> maps (Graph.immediate_succs eqngr)
  1054       |> subtract (op =) consts
  1055       |> map (the o Symtab.lookup mapping)
  1056       |> distinct (op =);
  1057     val conn = [] |> fold (fn consts => cons (consts, succs consts)) constss;
  1058     fun namify consts = map (Code.string_of_const thy) consts
  1059       |> commas;
  1060     val prgr = map (fn (consts, constss) =>
  1061       { name = namify consts, ID = namify consts, dir = "", unfold = true,
  1062         path = "", parents = map namify constss }) conn;
  1063   in Present.display_graph prgr end;
  1064 
  1065 local
  1066 
  1067 fun code_thms_cmd thy = code_thms thy o op @ o read_const_exprs thy;
  1068 fun code_deps_cmd thy = code_deps thy o op @ o read_const_exprs thy;
  1069 
  1070 in
  1071 
  1072 val _ =
  1073   Outer_Syntax.improper_command "code_thms" "print system of code equations for code" Keyword.diag
  1074     (Scan.repeat1 Parse.term_group
  1075       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
  1076         o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of)));
  1077 
  1078 val _ =
  1079   Outer_Syntax.improper_command "code_deps" "visualize dependencies of code equations for code"
  1080     Keyword.diag
  1081     (Scan.repeat1 Parse.term_group
  1082       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
  1083         o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of)));
  1084 
  1085 end;
  1086 
  1087 end; (*struct*)
  1088 
  1089 
  1090 structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;