doc-isac/jrocnik/calulations.tex
author wneuper <Walther.Neuper@jku.at>
Sun, 31 Dec 2023 09:42:27 +0100
changeset 60787 26037efefd61
parent 52107 f8845fc8f38d
permissions -rwxr-xr-x
Doc/Specify_Phase 2: copy finished
     1 %\documentclass[a4paper]{scrartcl}
     2 %\usepackage[top=2cm, bottom=2.5cm, left=3cm, right=2cm, footskip=1cm]{geometry}
     3 %\usepackage[german]{babel}
     4 %\usepackage[T1]{fontenc}
     5 %\usepackage[latin1]{inputenc}
     6 %\usepackage{endnotes}
     7 %\usepackage{trfsigns}
     8 %\usepackage{setspace}
     9 %
    10 %\setlength{\parindent}{0ex}
    11 %\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
    12 %\def\sisac{{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}}
    13 %
    14 %\begin{document}
    15 %\title{Interactive Course Material for Signal Processing based on Isabelle/\isac}
    16 %\subtitle{Problemsolutions (Calculations)}
    17 %\author{Walther Neuper, Jan Rocnik}
    18 %\maketitle
    19 
    20 
    21 %------------------------------------------------------------------------------
    22 %FOURIER
    23 
    24 \subsection{Fourier Transformation}
    25 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
    26 \textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    27 
    28 \begin{center}
    29 $x(t)= \left\{
    30      \begin{array}{lr}
    31        1 & -1\leq t\geq1\\
    32        0 & else
    33      \end{array}
    34    \right.$
    35 \end{center}
    36 
    37 \textbf{\noindent (b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
    38 
    39 \begin{center}
    40 $x(t)= \left\{
    41      \begin{array}{lr}
    42        1 & -1\leq t\leq1\\
    43        0 & else
    44      \end{array}
    45    \right.$
    46 \end{center}
    47 
    48 \subsubsection{Solution}
    49 \textbf{(a)} \textsf{Subproblem 1}
    50 \onehalfspace{
    51 \begin{tabbing}
    52 000\=\kill
    53 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    54 \`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\
    55 \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    56       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    57 \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
    58        \` pbl: integration in $\cal C$\\
    59 \texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1\right)$\\
    60       \` $f\;t\;|_a^b = f\;b-f\;a$\\
    61 \texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1}$\\
    62 \texttt{\footnotesize{06}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega} -  \frac{1}{-j\cdot\omega}\cdot e^{j\cdot\omega}$\\
    63 \` Lift $\frac{1}{j\omega}$\\
    64 \texttt{\footnotesize{07}} \> $\frac{1}{j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
    65       \` trick~!\\
    66 \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
    67       \` table\\
    68 \texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$
    69 \end{tabbing}
    70 }
    71 
    72 \noindent\textbf{(b)} \textsf{Subproblem 1}
    73 \onehalfspace{
    74 \begin{tabbing}
    75 000\=\kill
    76 \texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    77 \`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\
    78 \texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    79       \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    80 \texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\
    81        \` pbl: integration in $\cal C$\\
    82 \texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{1}^3\right)$\\
    83       \` $f\;t\;|_a^b = f\;b-f\;a$\\
    84 \texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 3} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1}$\\
    85 \`Lift $\frac{1}{-j\omega}$\\
    86 \texttt{\footnotesize{06}} \> $\frac{1}{j\cdot\omega}\cdot(e^{-j\cdot\omega} - e^{-j\cdot\omega3})$\\
    87       \`Lift $e^{j\omega2}$ (trick)\\
    88 \texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\
    89 \`Simplification (trick)\\
    90 \texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\
    91       \` table\\
    92 \texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\
    93 \noindent\textbf{(b)} \textsf{Subproblem 2}\\
    94 \`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\
    95 \`$|X(j\omega)|$ is called \emph{Magnitude}\\
    96 \`$arg(X(j\omega))$ is called \emph{Phase}\\
    97 \texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\
    98 \texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\
    99 \end{tabbing}
   100 }
   101 %------------------------------------------------------------------------------
   102 %CONVOLUTION
   103 
   104 \subsection{Convolution}
   105 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   106 Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
   107 
   108 \begin{center}
   109 $h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
   110 $h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
   111 \end{center}
   112 
   113 The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
   114 \subsubsection*{Solution}
   115 
   116 \doublespace{
   117 \begin{tabbing}
   118 000\=\kill
   119 \texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\
   120 \texttt{\footnotesize{02}} \> $h_c[n]=\left(\left(\frac{3}{5}\right)^n\cdot u[n]\right)*\left(\left(-\frac{2}{3}\right)^n\cdot u[n]\right)$\\
   121 \`Definition: $a^n\cdot u[n]\,*\,b^n\cdot u[n]=\sum\limits_{k=-\infty}^{\infty}{a^k\cdot u[k]\cdot b^{n-k}\cdot u[n-k]}$\\
   122 \texttt{\footnotesize{03}} \> $h_c[n]=\sum\limits_{k=-\infty}^{\infty}{\left(\frac{3}{5}\right)^k\cdot u[n]\,\cdot \,\left(-\frac{2}{3}\right)^{n-k}\cdot u[n-k]}$\\
   123 \`$u[n]= \left\{
   124      \begin{array}{lr}
   125        1 & for\ n>=0\\
   126        0 & else
   127      \end{array}
   128    \right.$\\
   129 \`We can leave the unitstep through simplification.\\
   130 \`So the lower limit is 0, the upper limit is n.\\
   131 \texttt{\footnotesize{04}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n-k}}$\\
   132 \`Expand\\
   133 \texttt{\footnotesize{05}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n}\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
   134 \`Lift\\
   135 \texttt{\footnotesize{06}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
   136 \texttt{\footnotesize{07}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{3}{2}\right)^{k}}$\\
   137 \texttt{\footnotesize{08}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(-\frac{9}{10}\right)^{k}}$\\
   138 \`Geometric Series: $\sum\limits_{k=0}^{n}{q^k}=\frac{1-q^{n+1}}{1-q}$\\
   139 \`Now we have to consider the limits again.\\
   140 \`It is neccesarry to put the unitstep in again.\\
   141 \texttt{\footnotesize{09}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n+1}}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
   142 \texttt{\footnotesize{10}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
   143 \texttt{\footnotesize{11}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{\left(\frac{19}{10}\right)}\cdot u[n]$\\
   144 \texttt{\footnotesize{12}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot \left(1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)\right)\cdot\left(\frac{10}{19}\right)\cdot u[n]$\\
   145 \`Lift $u[n]$\\
   146 \texttt{\footnotesize{13}} \> $\left(\frac{10}{19}\cdot\left(-\frac{2}{3}\right)^n+\frac{9}{19}\cdot\left(\frac{3}{5}\right)^n\right)\cdot u[n]$\\
   147 \end{tabbing}
   148 }
   149 
   150 %------------------------------------------------------------------------------
   151 %Z-Transformation
   152 
   153 \subsection{Z-Transformation\label{sec:calc:ztrans}}
   154 \subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   155 Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   156 
   157 \begin{center}
   158 $X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   159 \end{center}
   160 
   161 \subsubsection*{Solution}
   162 \onehalfspace{
   163 \begin{tabbing}
   164 000\=\kill
   165 \textsf{Main Problem}\\
   166 \texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\
   167 \`Divide through z, neccesary for z-transformation\\
   168 \texttt{\footnotesize{02}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}$ \\
   169 \`Start with partial fraction expansion\\
   170 \texttt{\footnotesize{03}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}=\frac{A}{z-z_1}+\frac{B}{z-z_2}$ \\
   171 \`Eliminate Fractions\\
   172 \texttt{\footnotesize{04}} \> $3=A(z-z_2)+B(z-z_1)$ \\
   173 \textsf{Subproblem 1}\\
   174 \`Setup a linear equation system by inserting the zeros $z_1$ and $z_2$ for $z$\\
   175 \texttt{\footnotesize{05}} \> $3=A(z_1-z_2)$ \& $3=B(z_2-z_1)$\\
   176 \texttt{\footnotesize{06}} \> $\frac{3}{z_1-z_2}=A$ \& $\frac{3}{z_2-z_1}=B$\\
   177 \textsf{Subproblem 2}\\
   178 \`Determine $z_1$ and $z_2$\\
   179 \texttt{\footnotesize{07}} \> $z_1=\frac{1}{8}+\sqrt{\frac{1}{64}+\frac{1}{8}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{1}{64}+\frac{1}{8}}$\\
   180 \texttt{\footnotesize{08}} \> $z_1=\frac{1}{8}+\sqrt{\frac{9}{64}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{9}{64}}$\\
   181 \texttt{\footnotesize{09}} \> $z_1=\frac{1}{8}+\frac{3}{8}$ \& $z_2=\frac{1}{8}-\frac{3}{8}$\\
   182 \texttt{\footnotesize{10}} \> $z_1=\frac{1}{2}$ \& $z_2=-\frac{1}{4}$\\
   183 \textsf{Continiue with Subproblem 1}\\
   184 \`Get the coeffizients $A$ and $B$\\
   185 \texttt{\footnotesize{11}} \> $\frac{3}{\frac{1}{2}-(-\frac{1}{4})}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
   186 \texttt{\footnotesize{12}} \> $\frac{3}{\frac{1}{2}+\frac{1}{4}}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
   187 \texttt{\footnotesize{13}} \> $\frac{3}{\frac{3}{4}}=A$ \& $\frac{3}{-\frac{3}{4}}=B$\\
   188 \texttt{\footnotesize{14}} \> $\frac{12}{3}=A$ \& $-\frac{12}{3}=B$\\
   189 \texttt{\footnotesize{15}} \> $4=A$ \& $-4=B$\\
   190 \textsf{Continiue with Main Problem}\\
   191 \texttt{\footnotesize{16}} \> $\frac{A}{z-z_1}+\frac{B}{z-z_2}$\\
   192 \texttt{\footnotesize{17}} \> $\frac{4}{z-\frac{1}{2}}+\frac{4}{z-\left(-\frac{1}{4}\right)}$ \\
   193 \texttt{\footnotesize{18}} \> $\frac{4}{z-\frac{1}{2}}-\frac{4}{z+\frac{1}{4}}$ \\
   194 \`Multiply with z, neccesary for z-transformation\\
   195 \texttt{\footnotesize{19}} \> $\frac{4z}{z-\frac{1}{2}}-\frac{4z}{z+\frac{1}{4}}$ \\
   196 \texttt{\footnotesize{20}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}$ \\
   197 \`Transformation\\
   198 \texttt{\footnotesize{21}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}\ \Ztransf\ 4\cdot\left(-\frac{1}{2}\right)^n\cdot u[n]+(-4)\cdot\left(\frac{1}{4}\right)^n\cdot u[n]$\\
   199 \end{tabbing}
   200 }
   201 \theendnotes
   202 %\end{document}