src/HOL/Hyperreal/MacLaurin.thy
author webertj
Wed, 26 Jul 2006 19:23:04 +0200
changeset 20217 25b068a99d2b
parent 19765 dfe940911617
child 20792 add17d26151b
permissions -rw-r--r--
linear arithmetic splits certain operators (e.g. min, max, abs)
     1 (*  ID          : $Id$
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 2001 University of Edinburgh
     4     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
     5 *)
     6 
     7 header{*MacLaurin Series*}
     8 
     9 theory MacLaurin
    10 imports Log
    11 begin
    12 
    13 subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
    14 
    15 text{*This is a very long, messy proof even now that it's been broken down
    16 into lemmas.*}
    17 
    18 lemma Maclaurin_lemma:
    19     "0 < h ==>
    20      \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) +
    21                (B * ((h^n) / real(fact n)))"
    22 apply (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) *
    23                  real(fact n) / (h^n)"
    24        in exI)
    25 apply (simp) 
    26 done
    27 
    28 lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
    29 by arith
    30 
    31 text{*A crude tactic to differentiate by proof.*}
    32 ML
    33 {*
    34 local
    35 val deriv_rulesI =
    36   [thm "DERIV_Id", thm "DERIV_const", thm "DERIV_cos", thm "DERIV_cmult",
    37   thm "DERIV_sin", thm "DERIV_exp", thm "DERIV_inverse", thm "DERIV_pow",
    38   thm "DERIV_add", thm "DERIV_diff", thm "DERIV_mult", thm "DERIV_minus",
    39   thm "DERIV_inverse_fun", thm "DERIV_quotient", thm "DERIV_fun_pow",
    40   thm "DERIV_fun_exp", thm "DERIV_fun_sin", thm "DERIV_fun_cos",
    41   thm "DERIV_Id", thm "DERIV_const", thm "DERIV_cos"];
    42 
    43 val DERIV_chain2 = thm "DERIV_chain2";
    44 
    45 in
    46 
    47 exception DERIV_name;
    48 fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
    49 |   get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
    50 |   get_fun_name _ = raise DERIV_name;
    51 
    52 val deriv_tac =
    53   SUBGOAL (fn (prem,i) =>
    54    (resolve_tac deriv_rulesI i) ORELSE
    55     ((rtac (read_instantiate [("f",get_fun_name prem)]
    56                      DERIV_chain2) i) handle DERIV_name => no_tac));;
    57 
    58 val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i));
    59 
    60 end
    61 *}
    62 
    63 lemma Maclaurin_lemma2:
    64       "[| \<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t;
    65           n = Suc k;
    66         difg =
    67         (\<lambda>m t. diff m t -
    68                ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
    69                 B * (t ^ (n - m) / real (fact (n - m)))))|] ==>
    70         \<forall>m t. m < n & 0 \<le> t & t \<le> h -->
    71                     DERIV (difg m) t :> difg (Suc m) t"
    72 apply clarify
    73 apply (rule DERIV_diff)
    74 apply (simp (no_asm_simp))
    75 apply (tactic DERIV_tac)
    76 apply (tactic DERIV_tac)
    77 apply (rule_tac [2] lemma_DERIV_subst)
    78 apply (rule_tac [2] DERIV_quotient)
    79 apply (rule_tac [3] DERIV_const)
    80 apply (rule_tac [2] DERIV_pow)
    81   prefer 3 apply (simp add: fact_diff_Suc)
    82  prefer 2 apply simp
    83 apply (frule_tac m = m in less_add_one, clarify)
    84 apply (simp del: setsum_op_ivl_Suc)
    85 apply (insert sumr_offset4 [of 1])
    86 apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc)
    87 apply (rule lemma_DERIV_subst)
    88 apply (rule DERIV_add)
    89 apply (rule_tac [2] DERIV_const)
    90 apply (rule DERIV_sumr, clarify)
    91  prefer 2 apply simp
    92 apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc realpow_Suc)
    93 apply (rule DERIV_cmult)
    94 apply (rule lemma_DERIV_subst)
    95 apply (best intro: DERIV_chain2 intro!: DERIV_intros)
    96 apply (subst fact_Suc)
    97 apply (subst real_of_nat_mult)
    98 apply (simp add: mult_ac)
    99 done
   100 
   101 
   102 lemma Maclaurin_lemma3:
   103      "[|\<forall>k t. k < Suc m \<and> 0\<le>t & t\<le>h \<longrightarrow> DERIV (difg k) t :> difg (Suc k) t;
   104         \<forall>k<Suc m. difg k 0 = 0; DERIV (difg n) t :> 0;  n < m; 0 < t;
   105         t < h|]
   106      ==> \<exists>ta. 0 < ta & ta < t & DERIV (difg (Suc n)) ta :> 0"
   107 apply (rule Rolle, assumption, simp)
   108 apply (drule_tac x = n and P="%k. k<Suc m --> difg k 0 = 0" in spec)
   109 apply (rule DERIV_unique)
   110 prefer 2 apply assumption
   111 apply force
   112 apply (subgoal_tac "\<forall>ta. 0 \<le> ta & ta \<le> t --> (difg (Suc n)) differentiable ta")
   113 apply (simp add: differentiable_def)
   114 apply (blast dest!: DERIV_isCont)
   115 apply (simp add: differentiable_def, clarify)
   116 apply (rule_tac x = "difg (Suc (Suc n)) ta" in exI)
   117 apply force
   118 apply (simp add: differentiable_def, clarify)
   119 apply (rule_tac x = "difg (Suc (Suc n)) x" in exI)
   120 apply force
   121 done
   122 
   123 lemma Maclaurin:
   124    "[| 0 < h; 0 < n; diff 0 = f;
   125        \<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
   126     ==> \<exists>t. 0 < t &
   127               t < h &
   128               f h =
   129               setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
   130               (diff n t / real (fact n)) * h ^ n"
   131 apply (case_tac "n = 0", force)
   132 apply (drule not0_implies_Suc)
   133 apply (erule exE)
   134 apply (frule_tac f=f and n=n and j="%m. diff m 0" in Maclaurin_lemma)
   135 apply (erule exE)
   136 apply (subgoal_tac "\<exists>g.
   137      g = (%t. f t - (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n} + (B * (t^n / real(fact n)))))")
   138  prefer 2 apply blast
   139 apply (erule exE)
   140 apply (subgoal_tac "g 0 = 0 & g h =0")
   141  prefer 2
   142  apply (simp del: setsum_op_ivl_Suc)
   143  apply (cut_tac n = m and k = 1 in sumr_offset2)
   144  apply (simp add: eq_diff_eq' del: setsum_op_ivl_Suc)
   145 apply (subgoal_tac "\<exists>difg. difg = (%m t. diff m t - (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m} + (B * ((t ^ (n - m)) / real (fact (n - m))))))")
   146  prefer 2 apply blast
   147 apply (erule exE)
   148 apply (subgoal_tac "difg 0 = g")
   149  prefer 2 apply simp
   150 apply (frule Maclaurin_lemma2, assumption+)
   151 apply (subgoal_tac "\<forall>ma. ma < n --> (\<exists>t. 0 < t & t < h & difg (Suc ma) t = 0) ")
   152  apply (drule_tac x = m and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
   153  apply (erule impE)
   154   apply (simp (no_asm_simp))
   155  apply (erule exE)
   156  apply (rule_tac x = t in exI)
   157  apply (simp del: realpow_Suc fact_Suc)
   158 apply (subgoal_tac "\<forall>m. m < n --> difg m 0 = 0")
   159  prefer 2
   160  apply clarify
   161  apply simp
   162  apply (frule_tac m = ma in less_add_one, clarify)
   163  apply (simp del: setsum_op_ivl_Suc)
   164 apply (insert sumr_offset4 [of 1])
   165 apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc)
   166 apply (subgoal_tac "\<forall>m. m < n --> (\<exists>t. 0 < t & t < h & DERIV (difg m) t :> 0) ")
   167 apply (rule allI, rule impI)
   168 apply (drule_tac x = ma and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
   169 apply (erule impE, assumption)
   170 apply (erule exE)
   171 apply (rule_tac x = t in exI)
   172 (* do some tidying up *)
   173 apply (erule_tac [!] V= "difg = (%m t. diff m t - (setsum (%p. diff (m + p) 0 / real (fact p) * t ^ p) {0..<n-m} + B * (t ^ (n - m) / real (fact (n - m)))))"
   174        in thin_rl)
   175 apply (erule_tac [!] V="g = (%t. f t - (setsum (%m. diff m 0 / real (fact m) * t ^ m) {0..<n} + B * (t ^ n / real (fact n))))"
   176        in thin_rl)
   177 apply (erule_tac [!] V="f h = setsum (%m. diff m 0 / real (fact m) * h ^ m) {0..<n} + B * (h ^ n / real (fact n))"
   178        in thin_rl)
   179 (* back to business *)
   180 apply (simp (no_asm_simp))
   181 apply (rule DERIV_unique)
   182 prefer 2 apply blast
   183 apply force
   184 apply (rule allI, induct_tac "ma")
   185 apply (rule impI, rule Rolle, assumption, simp, simp)
   186 apply (subgoal_tac "\<forall>t. 0 \<le> t & t \<le> h --> g differentiable t")
   187 apply (simp add: differentiable_def)
   188 apply (blast dest: DERIV_isCont)
   189 apply (simp add: differentiable_def, clarify)
   190 apply (rule_tac x = "difg (Suc 0) t" in exI)
   191 apply force
   192 apply (simp add: differentiable_def, clarify)
   193 apply (rule_tac x = "difg (Suc 0) x" in exI)
   194 apply force
   195 apply safe
   196 apply force
   197 apply (frule Maclaurin_lemma3, assumption+, safe)
   198 apply (rule_tac x = ta in exI, force)
   199 done
   200 
   201 lemma Maclaurin_objl:
   202      "0 < h & 0 < n & diff 0 = f &
   203        (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
   204     --> (\<exists>t. 0 < t &
   205               t < h &
   206               f h =
   207               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   208               diff n t / real (fact n) * h ^ n)"
   209 by (blast intro: Maclaurin)
   210 
   211 
   212 lemma Maclaurin2:
   213    "[| 0 < h; diff 0 = f;
   214        \<forall>m t.
   215           m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
   216     ==> \<exists>t. 0 < t &
   217               t \<le> h &
   218               f h =
   219               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   220               diff n t / real (fact n) * h ^ n"
   221 apply (case_tac "n", auto)
   222 apply (drule Maclaurin, auto)
   223 done
   224 
   225 lemma Maclaurin2_objl:
   226      "0 < h & diff 0 = f &
   227        (\<forall>m t.
   228           m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
   229     --> (\<exists>t. 0 < t &
   230               t \<le> h &
   231               f h =
   232               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   233               diff n t / real (fact n) * h ^ n)"
   234 by (blast intro: Maclaurin2)
   235 
   236 lemma Maclaurin_minus:
   237    "[| h < 0; 0 < n; diff 0 = f;
   238        \<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |]
   239     ==> \<exists>t. h < t &
   240               t < 0 &
   241               f h =
   242               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   243               diff n t / real (fact n) * h ^ n"
   244 apply (cut_tac f = "%x. f (-x)"
   245         and diff = "%n x. ((- 1) ^ n) * diff n (-x)"
   246         and h = "-h" and n = n in Maclaurin_objl)
   247 apply (simp)
   248 apply safe
   249 apply (subst minus_mult_right)
   250 apply (rule DERIV_cmult)
   251 apply (rule lemma_DERIV_subst)
   252 apply (rule DERIV_chain2 [where g=uminus])
   253 apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_Id)
   254 prefer 2 apply force
   255 apply force
   256 apply (rule_tac x = "-t" in exI, auto)
   257 apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) =
   258                     (\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))")
   259 apply (rule_tac [2] setsum_cong[OF refl])
   260 apply (auto simp add: divide_inverse power_mult_distrib [symmetric])
   261 done
   262 
   263 lemma Maclaurin_minus_objl:
   264      "(h < 0 & 0 < n & diff 0 = f &
   265        (\<forall>m t.
   266           m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))
   267     --> (\<exists>t. h < t &
   268               t < 0 &
   269               f h =
   270               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   271               diff n t / real (fact n) * h ^ n)"
   272 by (blast intro: Maclaurin_minus)
   273 
   274 
   275 subsection{*More Convenient "Bidirectional" Version.*}
   276 
   277 (* not good for PVS sin_approx, cos_approx *)
   278 
   279 lemma Maclaurin_bi_le_lemma [rule_format]:
   280      "0 < n \<longrightarrow>
   281        diff 0 0 =
   282        (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
   283        diff n 0 * 0 ^ n / real (fact n)"
   284 by (induct "n", auto)
   285 
   286 lemma Maclaurin_bi_le:
   287    "[| diff 0 = f;
   288        \<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |]
   289     ==> \<exists>t. abs t \<le> abs x &
   290               f x =
   291               (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) +
   292               diff n t / real (fact n) * x ^ n"
   293 apply (case_tac "n = 0", force)
   294 apply (case_tac "x = 0")
   295 apply (rule_tac x = 0 in exI)
   296 apply (force simp add: Maclaurin_bi_le_lemma)
   297 apply (cut_tac x = x and y = 0 in linorder_less_linear, auto)
   298 txt{*Case 1, where @{term "x < 0"}*}
   299 apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe)
   300 apply (simp add: abs_if)
   301 apply (rule_tac x = t in exI)
   302 apply (simp add: abs_if)
   303 txt{*Case 2, where @{term "0 < x"}*}
   304 apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe)
   305 apply (simp add: abs_if)
   306 apply (rule_tac x = t in exI)
   307 apply (simp add: abs_if)
   308 done
   309 
   310 lemma Maclaurin_all_lt:
   311      "[| diff 0 = f;
   312          \<forall>m x. DERIV (diff m) x :> diff(Suc m) x;
   313         x ~= 0; 0 < n
   314       |] ==> \<exists>t. 0 < abs t & abs t < abs x &
   315                f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   316                      (diff n t / real (fact n)) * x ^ n"
   317 apply (rule_tac x = x and y = 0 in linorder_cases)
   318 prefer 2 apply blast
   319 apply (drule_tac [2] diff=diff in Maclaurin)
   320 apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe)
   321 apply (rule_tac [!] x = t in exI, auto)
   322 done
   323 
   324 lemma Maclaurin_all_lt_objl:
   325      "diff 0 = f &
   326       (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &
   327       x ~= 0 & 0 < n
   328       --> (\<exists>t. 0 < abs t & abs t < abs x &
   329                f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   330                      (diff n t / real (fact n)) * x ^ n)"
   331 by (blast intro: Maclaurin_all_lt)
   332 
   333 lemma Maclaurin_zero [rule_format]:
   334      "x = (0::real)
   335       ==> 0 < n -->
   336           (\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) =
   337           diff 0 0"
   338 by (induct n, auto)
   339 
   340 lemma Maclaurin_all_le: "[| diff 0 = f;
   341         \<forall>m x. DERIV (diff m) x :> diff (Suc m) x
   342       |] ==> \<exists>t. abs t \<le> abs x &
   343               f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   344                     (diff n t / real (fact n)) * x ^ n"
   345 apply (insert linorder_le_less_linear [of n 0])
   346 apply (erule disjE, force)
   347 apply (case_tac "x = 0")
   348 apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption)
   349 apply (drule gr_implies_not0 [THEN not0_implies_Suc])
   350 apply (rule_tac x = 0 in exI, force)
   351 apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto)
   352 apply (rule_tac x = t in exI, auto)
   353 done
   354 
   355 lemma Maclaurin_all_le_objl: "diff 0 = f &
   356       (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
   357       --> (\<exists>t. abs t \<le> abs x &
   358               f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   359                     (diff n t / real (fact n)) * x ^ n)"
   360 by (blast intro: Maclaurin_all_le)
   361 
   362 
   363 subsection{*Version for Exponential Function*}
   364 
   365 lemma Maclaurin_exp_lt: "[| x ~= 0; 0 < n |]
   366       ==> (\<exists>t. 0 < abs t &
   367                 abs t < abs x &
   368                 exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +
   369                         (exp t / real (fact n)) * x ^ n)"
   370 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)
   371 
   372 
   373 lemma Maclaurin_exp_le:
   374      "\<exists>t. abs t \<le> abs x &
   375             exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +
   376                        (exp t / real (fact n)) * x ^ n"
   377 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)
   378 
   379 
   380 subsection{*Version for Sine Function*}
   381 
   382 lemma MVT2:
   383      "[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
   384       ==> \<exists>z. a < z & z < b & (f b - f a = (b - a) * f'(z))"
   385 apply (drule MVT)
   386 apply (blast intro: DERIV_isCont)
   387 apply (force dest: order_less_imp_le simp add: differentiable_def)
   388 apply (blast dest: DERIV_unique order_less_imp_le)
   389 done
   390 
   391 lemma mod_exhaust_less_4:
   392      "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)"
   393 by auto
   394 
   395 lemma Suc_Suc_mult_two_diff_two [rule_format, simp]:
   396      "0 < n --> Suc (Suc (2 * n - 2)) = 2*n"
   397 by (induct "n", auto)
   398 
   399 lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]:
   400      "0 < n --> Suc (Suc (4*n - 2)) = 4*n"
   401 by (induct "n", auto)
   402 
   403 lemma Suc_mult_two_diff_one [rule_format, simp]:
   404       "0 < n --> Suc (2 * n - 1) = 2*n"
   405 by (induct "n", auto)
   406 
   407 
   408 text{*It is unclear why so many variant results are needed.*}
   409 
   410 lemma Maclaurin_sin_expansion2:
   411      "\<exists>t. abs t \<le> abs x &
   412        sin x =
   413        (\<Sum>m=0..<n. (if even m then 0
   414                        else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
   415                        x ^ m)
   416       + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   417 apply (cut_tac f = sin and n = n and x = x
   418         and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)
   419 apply safe
   420 apply (simp (no_asm))
   421 apply (simp (no_asm))
   422 apply (case_tac "n", clarify, simp, simp)
   423 apply (rule ccontr, simp)
   424 apply (drule_tac x = x in spec, simp)
   425 apply (erule ssubst)
   426 apply (rule_tac x = t in exI, simp)
   427 apply (rule setsum_cong[OF refl])
   428 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
   429 done
   430 
   431 lemma Maclaurin_sin_expansion:
   432      "\<exists>t. sin x =
   433        (\<Sum>m=0..<n. (if even m then 0
   434                        else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
   435                        x ^ m)
   436       + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   437 apply (insert Maclaurin_sin_expansion2 [of x n]) 
   438 apply (blast intro: elim:); 
   439 done
   440 
   441 
   442 
   443 lemma Maclaurin_sin_expansion3:
   444      "[| 0 < n; 0 < x |] ==>
   445        \<exists>t. 0 < t & t < x &
   446        sin x =
   447        (\<Sum>m=0..<n. (if even m then 0
   448                        else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
   449                        x ^ m)
   450       + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"
   451 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)
   452 apply safe
   453 apply simp
   454 apply (simp (no_asm))
   455 apply (erule ssubst)
   456 apply (rule_tac x = t in exI, simp)
   457 apply (rule setsum_cong[OF refl])
   458 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
   459 done
   460 
   461 lemma Maclaurin_sin_expansion4:
   462      "0 < x ==>
   463        \<exists>t. 0 < t & t \<le> x &
   464        sin x =
   465        (\<Sum>m=0..<n. (if even m then 0
   466                        else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
   467                        x ^ m)
   468       + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   469 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)
   470 apply safe
   471 apply simp
   472 apply (simp (no_asm))
   473 apply (erule ssubst)
   474 apply (rule_tac x = t in exI, simp)
   475 apply (rule setsum_cong[OF refl])
   476 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
   477 done
   478 
   479 
   480 subsection{*Maclaurin Expansion for Cosine Function*}
   481 
   482 lemma sumr_cos_zero_one [simp]:
   483  "(\<Sum>m=0..<(Suc n).
   484      (if even m then (- 1) ^ (m div 2)/(real  (fact m)) else 0) * 0 ^ m) = 1"
   485 by (induct "n", auto)
   486 
   487 lemma Maclaurin_cos_expansion:
   488      "\<exists>t. abs t \<le> abs x &
   489        cos x =
   490        (\<Sum>m=0..<n. (if even m
   491                        then (- 1) ^ (m div 2)/(real (fact m))
   492                        else 0) *
   493                        x ^ m)
   494       + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   495 apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
   496 apply safe
   497 apply (simp (no_asm))
   498 apply (simp (no_asm))
   499 apply (case_tac "n", simp)
   500 apply (simp del: setsum_op_ivl_Suc)
   501 apply (rule ccontr, simp)
   502 apply (drule_tac x = x in spec, simp)
   503 apply (erule ssubst)
   504 apply (rule_tac x = t in exI, simp)
   505 apply (rule setsum_cong[OF refl])
   506 apply (auto simp add: cos_zero_iff even_mult_two_ex)
   507 done
   508 
   509 lemma Maclaurin_cos_expansion2:
   510      "[| 0 < x; 0 < n |] ==>
   511        \<exists>t. 0 < t & t < x &
   512        cos x =
   513        (\<Sum>m=0..<n. (if even m
   514                        then (- 1) ^ (m div 2)/(real (fact m))
   515                        else 0) *
   516                        x ^ m)
   517       + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   518 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)
   519 apply safe
   520 apply simp
   521 apply (simp (no_asm))
   522 apply (erule ssubst)
   523 apply (rule_tac x = t in exI, simp)
   524 apply (rule setsum_cong[OF refl])
   525 apply (auto simp add: cos_zero_iff even_mult_two_ex)
   526 done
   527 
   528 lemma Maclaurin_minus_cos_expansion:
   529      "[| x < 0; 0 < n |] ==>
   530        \<exists>t. x < t & t < 0 &
   531        cos x =
   532        (\<Sum>m=0..<n. (if even m
   533                        then (- 1) ^ (m div 2)/(real (fact m))
   534                        else 0) *
   535                        x ^ m)
   536       + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   537 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)
   538 apply safe
   539 apply simp
   540 apply (simp (no_asm))
   541 apply (erule ssubst)
   542 apply (rule_tac x = t in exI, simp)
   543 apply (rule setsum_cong[OF refl])
   544 apply (auto simp add: cos_zero_iff even_mult_two_ex)
   545 done
   546 
   547 (* ------------------------------------------------------------------------- *)
   548 (* Version for ln(1 +/- x). Where is it??                                    *)
   549 (* ------------------------------------------------------------------------- *)
   550 
   551 lemma sin_bound_lemma:
   552     "[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v"
   553 by auto
   554 
   555 lemma Maclaurin_sin_bound:
   556   "abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
   557   x ^ m))  \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n"
   558 proof -
   559   have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"
   560     by (rule_tac mult_right_mono,simp_all)
   561   note est = this[simplified]
   562   show ?thesis
   563     apply (cut_tac f=sin and n=n and x=x and
   564       diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
   565       in Maclaurin_all_le_objl)
   566     apply safe
   567     apply simp
   568     apply (subst (1 2 3) mod_Suc_eq_Suc_mod)
   569     apply (cut_tac m=m in mod_exhaust_less_4, safe, simp+)
   570     apply (rule DERIV_minus, simp+)
   571     apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
   572     apply (erule ssubst)
   573     apply (rule sin_bound_lemma)
   574     apply (rule setsum_cong[OF refl])
   575     apply (rule_tac f = "%u. u * (x^xa)" in arg_cong)
   576     apply (subst even_even_mod_4_iff)
   577     apply (cut_tac m=xa in mod_exhaust_less_4, simp, safe)
   578     apply (simp_all add:even_num_iff)
   579     apply (drule lemma_even_mod_4_div_2[simplified])
   580     apply(simp add: numeral_2_eq_2 divide_inverse)
   581     apply (drule lemma_odd_mod_4_div_2)
   582     apply (simp add: numeral_2_eq_2 divide_inverse)
   583     apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
   584                    simp add: est mult_nonneg_nonneg mult_ac divide_inverse
   585                           power_abs [symmetric] abs_mult)
   586     done
   587 qed
   588 
   589 end