src/Tools/isac/Knowledge/Root.ML
author Walther Neuper <neuper@ist.tugraz.at>
Wed, 25 Aug 2010 16:20:07 +0200
branchisac-update-Isa09-2
changeset 37947 22235e4dbe5f
parent 37938 src/Tools/isac/IsacKnowledge/Root.ML@f6164be9280d
permissions -rw-r--r--
renamed isac's directories and Build_Isac.thy

Scripts --> ProgLang
ME --> Interpret
IsacKnowledge --> Knowledge
     1 (* collecting all knowledge for Root
     2    created by: 
     3          date: 
     4    changed by: rlang
     5    last change by: rlang
     6              date: 02.10.24
     7 *)
     8 
     9 (* use"../knowledge/Root.ML";
    10    use"Knowledge/Root.ML";
    11    use"Root.ML";
    12 
    13    remove_thy"Root";
    14    use_thy"Knowledge/Isac";
    15 
    16    use"ROOT.ML";
    17    cd"knowledge";
    18  *)
    19 "******* Root.ML begin *******";
    20 theory' := overwritel (!theory', [("Root.thy",Root.thy)]);                      
    21 (*-------------------------functions---------------------*)
    22 (*evaluation square-root over the integers*)
    23 fun eval_sqrt (thmid:string) (op_:string) (t as 
    24 	       (Const(op0,t0) $ arg)) thy = 
    25     (case arg of 
    26 	Free (n1,t1) =>
    27 	(case int_of_str n1 of
    28 	     SOME ni => 
    29 	     if ni < 0 then NONE
    30 	     else
    31 		 let val fact = squfact ni;
    32 		 in if fact*fact = ni 
    33 		    then SOME ("#sqrt #"^(string_of_int ni)^" = #"
    34 			       ^(string_of_int (if ni = 0 then 0
    35 						else ni div fact)),
    36 			       Trueprop $ mk_equality (t, term_of_num t1 fact))
    37 		    else if fact = 1 then NONE
    38 		    else SOME ("#sqrt #"^(string_of_int ni)^" = sqrt (#"
    39 			       ^(string_of_int fact)^" * #"
    40 			       ^(string_of_int fact)^" * #"
    41 			       ^(string_of_int (ni div (fact*fact))^")"),
    42 			       Trueprop $ 
    43 					(mk_equality 
    44 					     (t, 
    45 					      (mk_factroot op0 t1 fact 
    46 							   (ni div (fact*fact))))))
    47 	     end
    48 	   | NONE => NONE)
    49       | _ => NONE)
    50 
    51   | eval_sqrt _ _ _ _ = NONE;
    52 (*val (thmid, op_, t as Const(op0,t0) $ arg) = ("","", str2term "sqrt 0");
    53 > eval_sqrt thmid op_ t thy;
    54 > val Free (n1,t1) = arg; 
    55 > val SOME ni = int_of_str n1;
    56 *)
    57 
    58 calclist':= overwritel (!calclist', 
    59    [("SQRT"    ,("Root.sqrt"   ,eval_sqrt "#sqrt_"))
    60     (*different types for 'sqrt 4' --- 'Calculate sqrt_'*)
    61     ]);
    62 
    63 
    64 local (* Vers. 7.10.99.A *)
    65 
    66 open Term;  (* for type order = EQUAL | LESS | GREATER *)
    67 
    68 fun pr_ord EQUAL = "EQUAL"
    69   | pr_ord LESS  = "LESS"
    70   | pr_ord GREATER = "GREATER";
    71 
    72 fun dest_hd' (Const (a, T)) =                          (* ~ term.ML *)
    73   (case a of "Root.sqrt"  => ((("|||", 0), T), 0)      (*WN greatest *)
    74 	   | _ => (((a, 0), T), 0))
    75   | dest_hd' (Free (a, T)) = (((a, 0), T), 1)
    76   | dest_hd' (Var v) = (v, 2)
    77   | dest_hd' (Bound i) = ((("", i), dummyT), 3)
    78   | dest_hd' (Abs (_, T, _)) = ((("", 0), T), 4);
    79 fun size_of_term' (Const(str,_) $ t) =
    80     (case str of "Root.sqrt"  => (1000 + size_of_term' t)
    81                | _ => 1 + size_of_term' t)
    82   | size_of_term' (Abs (_,_,body)) = 1 + size_of_term' body
    83   | size_of_term' (f $ t) = size_of_term' f  +  size_of_term' t
    84   | size_of_term' _ = 1;
    85 fun term_ord' pr thy (Abs (_, T, t), Abs(_, U, u)) =       (* ~ term.ML *)
    86       (case term_ord' pr thy (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
    87   | term_ord' pr thy (t, u) =
    88       (if pr then 
    89 	 let
    90 	   val (f, ts) = strip_comb t and (g, us) = strip_comb u;
    91 	   val _=writeln("t= f@ts= \""^
    92 	      ((Syntax.string_of_term (thy2ctxt thy)) f)^"\" @ \"["^
    93 	      (commas(map(Syntax.string_of_term (thy2ctxt thy)) ts))^"]\"");
    94 	   val _=writeln("u= g@us= \""^
    95 	      ((Syntax.string_of_term (thy2ctxt thy)) g)^"\" @ \"["^
    96 	      (commas(map(Syntax.string_of_term (thy2ctxt thy)) us))^"]\"");
    97 	   val _=writeln("size_of_term(t,u)= ("^
    98 	      (string_of_int(size_of_term' t))^", "^
    99 	      (string_of_int(size_of_term' u))^")");
   100 	   val _=writeln("hd_ord(f,g)      = "^((pr_ord o hd_ord)(f,g)));
   101 	   val _=writeln("terms_ord(ts,us) = "^
   102 			   ((pr_ord o terms_ord str false)(ts,us)));
   103 	   val _=writeln("-------");
   104 	 in () end
   105        else ();
   106 	 case int_ord (size_of_term' t, size_of_term' u) of
   107 	   EQUAL =>
   108 	     let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
   109 	       (case hd_ord (f, g) of EQUAL => (terms_ord str pr) (ts, us) 
   110 	     | ord => ord)
   111 	     end
   112 	 | ord => ord)
   113 and hd_ord (f, g) =                                        (* ~ term.ML *)
   114   prod_ord (prod_ord indexname_ord typ_ord) int_ord (dest_hd' f, dest_hd' g)
   115 and terms_ord str pr (ts, us) = 
   116     list_ord (term_ord' pr (assoc_thy "Isac.thy"))(ts, us);
   117 
   118 in
   119 (* associates a+(b+c) => (a+b)+c = a+b+c ... avoiding parentheses 
   120   by (1) size_of_term: less(!) to right, size_of 'sqrt (...)' = 1 
   121      (2) hd_ord: greater to right, 'sqrt' < numerals < variables
   122      (3) terms_ord: recurs. on args, greater to right
   123 *)
   124 
   125 (*args
   126    pr: print trace, WN0509 'sqrt_right true' not used anymore
   127    thy:
   128    subst: no bound variables, only Root.sqrt
   129    tu: the terms to compare (t1, t2) ... *)
   130 fun sqrt_right (pr:bool) thy (_:subst) tu = 
   131     (term_ord' pr thy(***) tu = LESS );
   132 end;
   133 
   134 rew_ord' := overwritel (!rew_ord',
   135 [("termlessI", termlessI),
   136  ("sqrt_right", sqrt_right false (theory "Pure"))
   137  ]);
   138 
   139 (*-------------------------rulse-------------------------*)
   140 val Root_crls = 
   141       append_rls "Root_crls" Atools_erls 
   142        [Thm  ("real_unari_minus",num_str real_unari_minus),
   143         Calc ("Root.sqrt" ,eval_sqrt "#sqrt_"),
   144         Calc ("HOL.divide",eval_cancel "#divide_"),
   145         Calc ("Atools.pow" ,eval_binop "#power_"),
   146         Calc ("op +", eval_binop "#add_"), 
   147         Calc ("op -", eval_binop "#sub_"),
   148         Calc ("op *", eval_binop "#mult_"),
   149         Calc ("op =",eval_equal "#equal_") 
   150         ];
   151 
   152 val Root_erls = 
   153       append_rls "Root_erls" Atools_erls 
   154        [Thm  ("real_unari_minus",num_str real_unari_minus),
   155         Calc ("Root.sqrt" ,eval_sqrt "#sqrt_"),
   156         Calc ("HOL.divide",eval_cancel "#divide_"),
   157         Calc ("Atools.pow" ,eval_binop "#power_"),
   158         Calc ("op +", eval_binop "#add_"), 
   159         Calc ("op -", eval_binop "#sub_"),
   160         Calc ("op *", eval_binop "#mult_"),
   161         Calc ("op =",eval_equal "#equal_") 
   162         ];
   163 
   164 ruleset' := overwritelthy thy (!ruleset',
   165 			[("Root_erls",Root_erls) (*FIXXXME:del with rls.rls'*) 
   166 			 ]);
   167 
   168 val make_rooteq = prep_rls(
   169   Rls{id = "make_rooteq", preconds = []:term list, 
   170       rew_ord = ("sqrt_right", sqrt_right false Root.thy),
   171       erls = Atools_erls, srls = Erls,
   172       calc = [],
   173       (*asm_thm = [],*)
   174       rules = [Thm ("real_diff_minus",num_str real_diff_minus),			
   175 	       (*"a - b = a + (-1) * b"*)
   176 
   177 	       Thm ("real_add_mult_distrib" ,num_str real_add_mult_distrib),	
   178 	       (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
   179 	       Thm ("real_add_mult_distrib2",num_str real_add_mult_distrib2),	
   180 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
   181 	       Thm ("real_diff_mult_distrib" ,num_str real_diff_mult_distrib),	
   182 	       (*"(z1.0 - z2.0) * w = z1.0 * w - z2.0 * w"*)
   183 	       Thm ("real_diff_mult_distrib2",num_str real_diff_mult_distrib2),	
   184 	       (*"w * (z1.0 - z2.0) = w * z1.0 - w * z2.0"*)
   185 
   186 	       Thm ("real_mult_1",num_str real_mult_1),                         
   187 	       (*"1 * z = z"*)
   188 	       Thm ("real_mult_0",num_str real_mult_0),                         
   189 	       (*"0 * z = 0"*)
   190 	       Thm ("real_add_zero_left",num_str real_add_zero_left),		
   191 	       (*"0 + z = z"*)
   192  
   193 	       Thm ("real_mult_commute",num_str real_mult_commute),		(*AC-rewriting*)
   194 	       Thm ("real_mult_left_commute",num_str real_mult_left_commute),	(**)
   195 	       Thm ("real_mult_assoc",num_str real_mult_assoc),			(**)
   196 	       Thm ("real_add_commute",num_str real_add_commute),		(**)
   197 	       Thm ("real_add_left_commute",num_str real_add_left_commute),	(**)
   198 	       Thm ("real_add_assoc",num_str real_add_assoc),	                (**)
   199 
   200 	       Thm ("sym_realpow_twoI",num_str (realpow_twoI RS sym)),		
   201 	       (*"r1 * r1 = r1 ^^^ 2"*)
   202 	       Thm ("realpow_plus_1",num_str realpow_plus_1),			
   203 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
   204 	       Thm ("sym_real_mult_2",num_str (real_mult_2 RS sym)),		
   205 	       (*"z1 + z1 = 2 * z1"*)
   206 	       Thm ("real_mult_2_assoc",num_str real_mult_2_assoc),		
   207 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
   208 
   209 	       Thm ("real_num_collect",num_str real_num_collect), 
   210 	       (*"[| l is_const; m is_const |] ==> l * n + m * n = (l + m) * n"*)
   211 	       Thm ("real_num_collect_assoc",num_str real_num_collect_assoc),	
   212 	       (*"[| l is_const; m is_const |] ==>  l * n + (m * n + k) =  (l + m) * n + k"*)
   213 	       Thm ("real_one_collect",num_str real_one_collect),		
   214 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
   215 	       Thm ("real_one_collect_assoc",num_str real_one_collect_assoc), 
   216 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
   217 
   218 	       Calc ("op +", eval_binop "#add_"), 
   219 	       Calc ("op *", eval_binop "#mult_"),
   220 	       Calc ("Atools.pow", eval_binop "#power_")
   221 	       ],
   222       scr = Script ((term_of o the o (parse thy)) "empty_script")
   223       }:rls);      
   224 ruleset' := overwritelthy thy (!ruleset',
   225 			[("make_rooteq", make_rooteq)
   226 			 ]);
   227 
   228 val expand_rootbinoms = prep_rls(
   229   Rls{id = "expand_rootbinoms", preconds = [], 
   230       rew_ord = ("termlessI",termlessI),
   231       erls = Atools_erls, srls = Erls,
   232       calc = [],
   233       (*asm_thm = [],*)
   234       rules = [Thm ("real_plus_binom_pow2"  ,num_str real_plus_binom_pow2),     
   235 	       (*"(a + b) ^^^ 2 = a ^^^ 2 + 2 * a * b + b ^^^ 2"*)
   236 	       Thm ("real_plus_binom_times" ,num_str real_plus_binom_times),    
   237 	       (*"(a + b)*(a + b) = ...*)
   238 	       Thm ("real_minus_binom_pow2" ,num_str real_minus_binom_pow2),    
   239 		(*"(a - b) ^^^ 2 = a ^^^ 2 - 2 * a * b + b ^^^ 2"*)
   240 	       Thm ("real_minus_binom_times",num_str real_minus_binom_times),   
   241 	       (*"(a - b)*(a - b) = ...*)
   242 	       Thm ("real_plus_minus_binom1",num_str real_plus_minus_binom1),   
   243 		(*"(a + b) * (a - b) = a ^^^ 2 - b ^^^ 2"*)
   244 	       Thm ("real_plus_minus_binom2",num_str real_plus_minus_binom2),   
   245 		(*"(a - b) * (a + b) = a ^^^ 2 - b ^^^ 2"*)
   246 	       (*RL 020915*)
   247 	       Thm ("real_pp_binom_times",num_str real_pp_binom_times), 
   248 		(*(a + b)*(c + d) = a*c + a*d + b*c + b*d*)
   249                Thm ("real_pm_binom_times",num_str real_pm_binom_times), 
   250 		(*(a + b)*(c - d) = a*c - a*d + b*c - b*d*)
   251                Thm ("real_mp_binom_times",num_str real_mp_binom_times), 
   252 		(*(a - b)*(c p d) = a*c + a*d - b*c - b*d*)
   253                Thm ("real_mm_binom_times",num_str real_mm_binom_times), 
   254 		(*(a - b)*(c p d) = a*c - a*d - b*c + b*d*)
   255 	       Thm ("realpow_mul",num_str realpow_mul),                 
   256 		(*(a*b)^^^n = a^^^n * b^^^n*)
   257 
   258 	       Thm ("real_mult_1",num_str real_mult_1),               (*"1 * z = z"*)
   259 	       Thm ("real_mult_0",num_str real_mult_0),               (*"0 * z = 0"*)
   260 	       Thm ("real_add_zero_left",num_str real_add_zero_left), (*"0 + z = z"*)
   261 
   262 	       Calc ("op +", eval_binop "#add_"), 
   263 	       Calc ("op -", eval_binop "#sub_"), 
   264 	       Calc ("op *", eval_binop "#mult_"),
   265 	       Calc ("HOL.divide"  ,eval_cancel "#divide_"),
   266 	       Calc ("Root.sqrt",eval_sqrt "#sqrt_"),
   267 	       Calc ("Atools.pow", eval_binop "#power_"),
   268 
   269 	       Thm ("sym_realpow_twoI",num_str (realpow_twoI RS sym)),		
   270 	       (*"r1 * r1 = r1 ^^^ 2"*)
   271 	       Thm ("realpow_plus_1",num_str realpow_plus_1),			
   272 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
   273 	       Thm ("real_mult_2_assoc",num_str real_mult_2_assoc),		
   274 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
   275 
   276 	       Thm ("real_num_collect",num_str real_num_collect), 
   277 	       (*"[| l is_const; m is_const |] ==> l * n + m * n = (l + m) * n"*)
   278 	       Thm ("real_num_collect_assoc",num_str real_num_collect_assoc),	
   279 	       (*"[| l is_const; m is_const |] ==>  l * n + (m * n + k) =  (l + m) * n + k"*)
   280 	       Thm ("real_one_collect",num_str real_one_collect),		
   281 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
   282 	       Thm ("real_one_collect_assoc",num_str real_one_collect_assoc), 
   283 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
   284 
   285 	       Calc ("op +", eval_binop "#add_"), 
   286 	       Calc ("op -", eval_binop "#sub_"), 
   287 	       Calc ("op *", eval_binop "#mult_"),
   288 	       Calc ("HOL.divide"  ,eval_cancel "#divide_"),
   289 	       Calc ("Root.sqrt",eval_sqrt "#sqrt_"),
   290 	       Calc ("Atools.pow", eval_binop "#power_")
   291 	       ],
   292       scr = Script ((term_of o the o (parse thy)) "empty_script")
   293        }:rls);      
   294 
   295 
   296 ruleset' := overwritelthy thy (!ruleset',
   297 			[("expand_rootbinoms", expand_rootbinoms)
   298 			 ]);
   299 "******* Root.ML end *******";