src/Pure/term.ML
author wenzelm
Wed, 08 Jun 2011 15:56:57 +0200
changeset 44158 1fbdcebb364b
parent 42989 e1209fc7ecdc
child 44206 2b47822868e4
permissions -rw-r--r--
more robust exception pattern General.Subscript;
     1 (*  Title:      Pure/term.ML
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Makarius
     4 
     5 Simply typed lambda-calculus: types, terms, and basic operations.
     6 *)
     7 
     8 infix 9 $;
     9 infixr 5 -->;
    10 infixr --->;
    11 infix aconv;
    12 
    13 signature BASIC_TERM =
    14 sig
    15   type indexname = string * int
    16   type class = string
    17   type sort = class list
    18   type arity = string * sort list * sort
    19   datatype typ =
    20     Type  of string * typ list |
    21     TFree of string * sort |
    22     TVar  of indexname * sort
    23   datatype term =
    24     Const of string * typ |
    25     Free of string * typ |
    26     Var of indexname * typ |
    27     Bound of int |
    28     Abs of string * typ * term |
    29     $ of term * term
    30   exception TYPE of string * typ list * term list
    31   exception TERM of string * term list
    32   val dummyS: sort
    33   val dummyT: typ
    34   val no_dummyT: typ -> typ
    35   val --> : typ * typ -> typ
    36   val ---> : typ list * typ -> typ
    37   val dest_Type: typ -> string * typ list
    38   val dest_TVar: typ -> indexname * sort
    39   val dest_TFree: typ -> string * sort
    40   val is_Bound: term -> bool
    41   val is_Const: term -> bool
    42   val is_Free: term -> bool
    43   val is_Var: term -> bool
    44   val is_TVar: typ -> bool
    45   val dest_Const: term -> string * typ
    46   val dest_Free: term -> string * typ
    47   val dest_Var: term -> indexname * typ
    48   val dest_comb: term -> term * term
    49   val domain_type: typ -> typ
    50   val range_type: typ -> typ
    51   val dest_funT: typ -> typ * typ
    52   val binder_types: typ -> typ list
    53   val body_type: typ -> typ
    54   val strip_type: typ -> typ list * typ
    55   val type_of1: typ list * term -> typ
    56   val type_of: term -> typ
    57   val fastype_of1: typ list * term -> typ
    58   val fastype_of: term -> typ
    59   val list_abs: (string * typ) list * term -> term
    60   val strip_abs: term -> (string * typ) list * term
    61   val strip_abs_body: term -> term
    62   val strip_abs_vars: term -> (string * typ) list
    63   val strip_qnt_body: string -> term -> term
    64   val strip_qnt_vars: string -> term -> (string * typ) list
    65   val list_comb: term * term list -> term
    66   val strip_comb: term -> term * term list
    67   val head_of: term -> term
    68   val size_of_term: term -> int
    69   val size_of_typ: typ -> int
    70   val map_atyps: (typ -> typ) -> typ -> typ
    71   val map_aterms: (term -> term) -> term -> term
    72   val map_type_tvar: (indexname * sort -> typ) -> typ -> typ
    73   val map_type_tfree: (string * sort -> typ) -> typ -> typ
    74   val map_types: (typ -> typ) -> term -> term
    75   val fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a
    76   val fold_atyps_sorts: (typ * sort -> 'a -> 'a) -> typ -> 'a -> 'a
    77   val fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a
    78   val fold_term_types: (term -> typ -> 'a -> 'a) -> term -> 'a -> 'a
    79   val fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a
    80   val burrow_types: (typ list -> typ list) -> term list -> term list
    81   val aconv: term * term -> bool
    82   val propT: typ
    83   val strip_all_body: term -> term
    84   val strip_all_vars: term -> (string * typ) list
    85   val incr_bv: int * int * term -> term
    86   val incr_boundvars: int -> term -> term
    87   val add_loose_bnos: term * int * int list -> int list
    88   val loose_bnos: term -> int list
    89   val loose_bvar: term * int -> bool
    90   val loose_bvar1: term * int -> bool
    91   val subst_bounds: term list * term -> term
    92   val subst_bound: term * term -> term
    93   val betapply: term * term -> term
    94   val betapplys: term * term list -> term
    95   val subst_free: (term * term) list -> term -> term
    96   val abstract_over: term * term -> term
    97   val lambda: term -> term -> term
    98   val absfree: string * typ * term -> term
    99   val absdummy: typ * term -> term
   100   val list_abs_free: (string * typ) list * term -> term
   101   val list_all_free: (string * typ) list * term -> term
   102   val list_all: (string * typ) list * term -> term
   103   val subst_atomic: (term * term) list -> term -> term
   104   val typ_subst_atomic: (typ * typ) list -> typ -> typ
   105   val subst_atomic_types: (typ * typ) list -> term -> term
   106   val typ_subst_TVars: (indexname * typ) list -> typ -> typ
   107   val subst_TVars: (indexname * typ) list -> term -> term
   108   val subst_Vars: (indexname * term) list -> term -> term
   109   val subst_vars: (indexname * typ) list * (indexname * term) list -> term -> term
   110   val is_first_order: string list -> term -> bool
   111   val maxidx_of_typ: typ -> int
   112   val maxidx_of_typs: typ list -> int
   113   val maxidx_of_term: term -> int
   114   val exists_subtype: (typ -> bool) -> typ -> bool
   115   val exists_type: (typ -> bool) -> term -> bool
   116   val exists_subterm: (term -> bool) -> term -> bool
   117   val exists_Const: (string * typ -> bool) -> term -> bool
   118 end;
   119 
   120 signature TERM =
   121 sig
   122   include BASIC_TERM
   123   val aT: sort -> typ
   124   val itselfT: typ -> typ
   125   val a_itselfT: typ
   126   val all: typ -> term
   127   val argument_type_of: term -> int -> typ
   128   val add_tvar_namesT: typ -> indexname list -> indexname list
   129   val add_tvar_names: term -> indexname list -> indexname list
   130   val add_tvarsT: typ -> (indexname * sort) list -> (indexname * sort) list
   131   val add_tvars: term -> (indexname * sort) list -> (indexname * sort) list
   132   val add_var_names: term -> indexname list -> indexname list
   133   val add_vars: term -> (indexname * typ) list -> (indexname * typ) list
   134   val add_tfree_namesT: typ -> string list -> string list
   135   val add_tfree_names: term -> string list -> string list
   136   val add_tfreesT: typ -> (string * sort) list -> (string * sort) list
   137   val add_tfrees: term -> (string * sort) list -> (string * sort) list
   138   val add_free_names: term -> string list -> string list
   139   val add_frees: term -> (string * typ) list -> (string * typ) list
   140   val add_const_names: term -> string list -> string list
   141   val add_consts: term -> (string * typ) list -> (string * typ) list
   142   val hidden_polymorphism: term -> (indexname * sort) list
   143   val declare_typ_names: typ -> Name.context -> Name.context
   144   val declare_term_names: term -> Name.context -> Name.context
   145   val declare_term_frees: term -> Name.context -> Name.context
   146   val variant_frees: term -> (string * 'a) list -> (string * 'a) list
   147   val rename_wrt_term: term -> (string * 'a) list -> (string * 'a) list
   148   val eq_ix: indexname * indexname -> bool
   149   val eq_tvar: (indexname * sort) * (indexname * sort) -> bool
   150   val eq_var: (indexname * typ) * (indexname * typ) -> bool
   151   val aconv_untyped: term * term -> bool
   152   val could_unify: term * term -> bool
   153   val strip_abs_eta: int -> term -> (string * typ) list * term
   154   val match_bvars: (term * term) * (string * string) list -> (string * string) list
   155   val map_abs_vars: (string -> string) -> term -> term
   156   val rename_abs: term -> term -> term -> term option
   157   val is_open: term -> bool
   158   val is_dependent: term -> bool
   159   val lambda_name: string * term -> term -> term
   160   val close_schematic_term: term -> term
   161   val maxidx_typ: typ -> int -> int
   162   val maxidx_typs: typ list -> int -> int
   163   val maxidx_term: term -> int -> int
   164   val has_abs: term -> bool
   165   val dest_abs: string * typ * term -> string * term
   166   val dummy_patternN: string
   167   val dummy_pattern: typ -> term
   168   val is_dummy_pattern: term -> bool
   169   val free_dummy_patterns: term -> Name.context -> term * Name.context
   170   val no_dummy_patterns: term -> term
   171   val replace_dummy_patterns: term -> int -> term * int
   172   val is_replaced_dummy_pattern: indexname -> bool
   173   val show_dummy_patterns: term -> term
   174   val string_of_vname: indexname -> string
   175   val string_of_vname': indexname -> string
   176 end;
   177 
   178 structure Term: TERM =
   179 struct
   180 
   181 (*Indexnames can be quickly renamed by adding an offset to the integer part,
   182   for resolution.*)
   183 type indexname = string * int;
   184 
   185 (* Types are classified by sorts. *)
   186 type class = string;
   187 type sort  = class list;
   188 type arity = string * sort list * sort;
   189 
   190 (* The sorts attached to TFrees and TVars specify the sort of that variable *)
   191 datatype typ = Type  of string * typ list
   192              | TFree of string * sort
   193              | TVar  of indexname * sort;
   194 
   195 (*Terms.  Bound variables are indicated by depth number.
   196   Free variables, (scheme) variables and constants have names.
   197   An term is "closed" if every bound variable of level "lev"
   198   is enclosed by at least "lev" abstractions.
   199 
   200   It is possible to create meaningless terms containing loose bound vars
   201   or type mismatches.  But such terms are not allowed in rules. *)
   202 
   203 datatype term =
   204     Const of string * typ
   205   | Free  of string * typ
   206   | Var   of indexname * typ
   207   | Bound of int
   208   | Abs   of string*typ*term
   209   | op $  of term*term;
   210 
   211 (*Errors involving type mismatches*)
   212 exception TYPE of string * typ list * term list;
   213 
   214 (*Errors errors involving terms*)
   215 exception TERM of string * term list;
   216 
   217 (*Note variable naming conventions!
   218     a,b,c: string
   219     f,g,h: functions (including terms of function type)
   220     i,j,m,n: int
   221     t,u: term
   222     v,w: indexnames
   223     x,y: any
   224     A,B,C: term (denoting formulae)
   225     T,U: typ
   226 *)
   227 
   228 
   229 (** Types **)
   230 
   231 (*dummies for type-inference etc.*)
   232 val dummyS = [""];
   233 val dummyT = Type ("dummy", []);
   234 
   235 fun no_dummyT typ =
   236   let
   237     fun check (T as Type ("dummy", _)) =
   238           raise TYPE ("Illegal occurrence of '_' dummy type", [T], [])
   239       | check (Type (_, Ts)) = List.app check Ts
   240       | check _ = ();
   241   in check typ; typ end;
   242 
   243 fun S --> T = Type("fun",[S,T]);
   244 
   245 (*handy for multiple args: [T1,...,Tn]--->T  gives  T1-->(T2--> ... -->T)*)
   246 val op ---> = Library.foldr (op -->);
   247 
   248 fun dest_Type (Type x) = x
   249   | dest_Type T = raise TYPE ("dest_Type", [T], []);
   250 fun dest_TVar (TVar x) = x
   251   | dest_TVar T = raise TYPE ("dest_TVar", [T], []);
   252 fun dest_TFree (TFree x) = x
   253   | dest_TFree T = raise TYPE ("dest_TFree", [T], []);
   254 
   255 
   256 (** Discriminators **)
   257 
   258 fun is_Bound (Bound _) = true
   259   | is_Bound _         = false;
   260 
   261 fun is_Const (Const _) = true
   262   | is_Const _ = false;
   263 
   264 fun is_Free (Free _) = true
   265   | is_Free _ = false;
   266 
   267 fun is_Var (Var _) = true
   268   | is_Var _ = false;
   269 
   270 fun is_TVar (TVar _) = true
   271   | is_TVar _ = false;
   272 
   273 
   274 (** Destructors **)
   275 
   276 fun dest_Const (Const x) =  x
   277   | dest_Const t = raise TERM("dest_Const", [t]);
   278 
   279 fun dest_Free (Free x) =  x
   280   | dest_Free t = raise TERM("dest_Free", [t]);
   281 
   282 fun dest_Var (Var x) =  x
   283   | dest_Var t = raise TERM("dest_Var", [t]);
   284 
   285 fun dest_comb (t1 $ t2) = (t1, t2)
   286   | dest_comb t = raise TERM("dest_comb", [t]);
   287 
   288 
   289 fun domain_type (Type ("fun", [T, _])) = T;
   290 
   291 fun range_type (Type ("fun", [_, U])) = U;
   292 
   293 fun dest_funT (Type ("fun", [T, U])) = (T, U)
   294   | dest_funT T = raise TYPE ("dest_funT", [T], []);
   295 
   296 
   297 (* maps  [T1,...,Tn]--->T  to the list  [T1,T2,...,Tn]*)
   298 fun binder_types (Type ("fun", [T, U])) = T :: binder_types U
   299   | binder_types _ = [];
   300 
   301 (* maps  [T1,...,Tn]--->T  to T*)
   302 fun body_type (Type ("fun", [_, U])) = body_type U
   303   | body_type T = T;
   304 
   305 (* maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T)  *)
   306 fun strip_type T = (binder_types T, body_type T);
   307 
   308 
   309 (*Compute the type of the term, checking that combinations are well-typed
   310   Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*)
   311 fun type_of1 (Ts, Const (_,T)) = T
   312   | type_of1 (Ts, Free  (_,T)) = T
   313   | type_of1 (Ts, Bound i) = (nth Ts i
   314         handle General.Subscript => raise TYPE("type_of: bound variable", [], [Bound i]))
   315   | type_of1 (Ts, Var (_,T)) = T
   316   | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body)
   317   | type_of1 (Ts, f$u) =
   318       let val U = type_of1(Ts,u)
   319           and T = type_of1(Ts,f)
   320       in case T of
   321             Type("fun",[T1,T2]) =>
   322               if T1=U then T2  else raise TYPE
   323                     ("type_of: type mismatch in application", [T1,U], [f$u])
   324           | _ => raise TYPE
   325                     ("type_of: function type is expected in application",
   326                      [T,U], [f$u])
   327       end;
   328 
   329 fun type_of t : typ = type_of1 ([],t);
   330 
   331 (*Determines the type of a term, with minimal checking*)
   332 fun fastype_of1 (Ts, f$u) =
   333     (case fastype_of1 (Ts,f) of
   334         Type("fun",[_,T]) => T
   335         | _ => raise TERM("fastype_of: expected function type", [f$u]))
   336   | fastype_of1 (_, Const (_,T)) = T
   337   | fastype_of1 (_, Free (_,T)) = T
   338   | fastype_of1 (Ts, Bound i) = (nth Ts i
   339          handle General.Subscript => raise TERM("fastype_of: Bound", [Bound i]))
   340   | fastype_of1 (_, Var (_,T)) = T
   341   | fastype_of1 (Ts, Abs (_,T,u)) = T --> fastype_of1 (T::Ts, u);
   342 
   343 fun fastype_of t : typ = fastype_of1 ([],t);
   344 
   345 (*Determine the argument type of a function*)
   346 fun argument_type_of tm k =
   347   let
   348     fun argT i (Type ("fun", [T, U])) = if i = 0 then T else argT (i - 1) U
   349       | argT _ T = raise TYPE ("argument_type_of", [T], []);
   350 
   351     fun arg 0 _ (Abs (_, T, _)) = T
   352       | arg i Ts (Abs (_, T, t)) = arg (i - 1) (T :: Ts) t
   353       | arg i Ts (t $ _) = arg (i + 1) Ts t
   354       | arg i Ts a = argT i (fastype_of1 (Ts, a));
   355   in arg k [] tm end;
   356 
   357 
   358 val list_abs = uncurry (fold_rev (fn (x, T) => fn t => Abs (x, T, t)));
   359 
   360 fun strip_abs (Abs (a, T, t)) =
   361       let val (a', t') = strip_abs t
   362       in ((a, T) :: a', t') end
   363   | strip_abs t = ([], t);
   364 
   365 (* maps  (x1,...,xn)t   to   t  *)
   366 fun strip_abs_body (Abs(_,_,t))  =  strip_abs_body t
   367   | strip_abs_body u  =  u;
   368 
   369 (* maps  (x1,...,xn)t   to   [x1, ..., xn]  *)
   370 fun strip_abs_vars (Abs(a,T,t))  =  (a,T) :: strip_abs_vars t
   371   | strip_abs_vars u  =  [] : (string*typ) list;
   372 
   373 
   374 fun strip_qnt_body qnt =
   375 let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm
   376       | strip t = t
   377 in strip end;
   378 
   379 fun strip_qnt_vars qnt =
   380 let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else []
   381       | strip t  =  [] : (string*typ) list
   382 in strip end;
   383 
   384 
   385 (* maps   (f, [t1,...,tn])  to  f(t1,...,tn) *)
   386 val list_comb : term * term list -> term = Library.foldl (op $);
   387 
   388 
   389 (* maps   f(t1,...,tn)  to  (f, [t1,...,tn]) ; naturally tail-recursive*)
   390 fun strip_comb u : term * term list =
   391     let fun stripc (f$t, ts) = stripc (f, t::ts)
   392         |   stripc  x =  x
   393     in  stripc(u,[])  end;
   394 
   395 
   396 (* maps   f(t1,...,tn)  to  f , which is never a combination *)
   397 fun head_of (f$t) = head_of f
   398   | head_of u = u;
   399 
   400 (*number of atoms and abstractions in a term*)
   401 fun size_of_term tm =
   402   let
   403     fun add_size (t $ u) n = add_size t (add_size u n)
   404       | add_size (Abs (_ ,_, t)) n = add_size t (n + 1)
   405       | add_size _ n = n + 1;
   406   in add_size tm 0 end;
   407 
   408 (*number of atoms and constructors in a type*)
   409 fun size_of_typ ty =
   410   let
   411     fun add_size (Type (_, tys)) n = fold add_size tys (n + 1)
   412       | add_size _ n = n + 1;
   413   in add_size ty 0 end;
   414 
   415 fun map_atyps f (Type (a, Ts)) = Type (a, map (map_atyps f) Ts)
   416   | map_atyps f T = f T;
   417 
   418 fun map_aterms f (t $ u) = map_aterms f t $ map_aterms f u
   419   | map_aterms f (Abs (a, T, t)) = Abs (a, T, map_aterms f t)
   420   | map_aterms f t = f t;
   421 
   422 fun map_type_tvar f = map_atyps (fn TVar x => f x | T => T);
   423 fun map_type_tfree f = map_atyps (fn TFree x => f x | T => T);
   424 
   425 fun map_types f =
   426   let
   427     fun map_aux (Const (a, T)) = Const (a, f T)
   428       | map_aux (Free (a, T)) = Free (a, f T)
   429       | map_aux (Var (v, T)) = Var (v, f T)
   430       | map_aux (Bound i) = Bound i
   431       | map_aux (Abs (a, T, t)) = Abs (a, f T, map_aux t)
   432       | map_aux (t $ u) = map_aux t $ map_aux u;
   433   in map_aux end;
   434 
   435 
   436 (* fold types and terms *)
   437 
   438 fun fold_atyps f (Type (_, Ts)) = fold (fold_atyps f) Ts
   439   | fold_atyps f T = f T;
   440 
   441 fun fold_atyps_sorts f =
   442   fold_atyps (fn T as TFree (_, S) => f (T, S) | T as TVar (_, S) => f (T, S));
   443 
   444 fun fold_aterms f (t $ u) = fold_aterms f t #> fold_aterms f u
   445   | fold_aterms f (Abs (_, _, t)) = fold_aterms f t
   446   | fold_aterms f a = f a;
   447 
   448 fun fold_term_types f (t as Const (_, T)) = f t T
   449   | fold_term_types f (t as Free (_, T)) = f t T
   450   | fold_term_types f (t as Var (_, T)) = f t T
   451   | fold_term_types f (Bound _) = I
   452   | fold_term_types f (t as Abs (_, T, b)) = f t T #> fold_term_types f b
   453   | fold_term_types f (t $ u) = fold_term_types f t #> fold_term_types f u;
   454 
   455 fun fold_types f = fold_term_types (K f);
   456 
   457 fun replace_types (Const (c, _)) (T :: Ts) = (Const (c, T), Ts)
   458   | replace_types (Free (x, _)) (T :: Ts) = (Free (x, T), Ts)
   459   | replace_types (Var (xi, _)) (T :: Ts) = (Var (xi, T), Ts)
   460   | replace_types (Bound i) Ts = (Bound i, Ts)
   461   | replace_types (Abs (x, _, b)) (T :: Ts) =
   462       let val (b', Ts') = replace_types b Ts
   463       in (Abs (x, T, b'), Ts') end
   464   | replace_types (t $ u) Ts =
   465       let
   466         val (t', Ts') = replace_types t Ts;
   467         val (u', Ts'') = replace_types u Ts';
   468       in (t' $ u', Ts'') end;
   469 
   470 fun burrow_types f ts =
   471   let
   472     val Ts = rev (fold (fold_types cons) ts []);
   473     val Ts' = f Ts;
   474     val (ts', []) = fold_map replace_types ts Ts';
   475   in ts' end;
   476 
   477 (*collect variables*)
   478 val add_tvar_namesT = fold_atyps (fn TVar (xi, _) => insert (op =) xi | _ => I);
   479 val add_tvar_names = fold_types add_tvar_namesT;
   480 val add_tvarsT = fold_atyps (fn TVar v => insert (op =) v | _ => I);
   481 val add_tvars = fold_types add_tvarsT;
   482 val add_var_names = fold_aterms (fn Var (xi, _) => insert (op =) xi | _ => I);
   483 val add_vars = fold_aterms (fn Var v => insert (op =) v | _ => I);
   484 val add_tfree_namesT = fold_atyps (fn TFree (a, _) => insert (op =) a | _ => I);
   485 val add_tfree_names = fold_types add_tfree_namesT;
   486 val add_tfreesT = fold_atyps (fn TFree v => insert (op =) v | _ => I);
   487 val add_tfrees = fold_types add_tfreesT;
   488 val add_free_names = fold_aterms (fn Free (x, _) => insert (op =) x | _ => I);
   489 val add_frees = fold_aterms (fn Free v => insert (op =) v | _ => I);
   490 val add_const_names = fold_aterms (fn Const (c, _) => insert (op =) c | _ => I);
   491 val add_consts = fold_aterms (fn Const c => insert (op =) c | _ => I);
   492 
   493 (*extra type variables in a term, not covered by its type*)
   494 fun hidden_polymorphism t =
   495   let
   496     val T = fastype_of t;
   497     val tvarsT = add_tvarsT T [];
   498     val extra_tvars = fold_types (fold_atyps
   499       (fn TVar v => if member (op =) tvarsT v then I else insert (op =) v | _ => I)) t [];
   500   in extra_tvars end;
   501 
   502 
   503 (* renaming variables *)
   504 
   505 val declare_typ_names = fold_atyps (fn TFree (a, _) => Name.declare a | _ => I);
   506 
   507 fun declare_term_names tm =
   508   fold_aterms
   509     (fn Const (a, _) => Name.declare (Long_Name.base_name a)
   510       | Free (a, _) => Name.declare a
   511       | _ => I) tm #>
   512   fold_types declare_typ_names tm;
   513 
   514 val declare_term_frees = fold_aterms (fn Free (x, _) => Name.declare x | _ => I);
   515 
   516 fun variant_frees t frees =
   517   fst (Name.variants (map fst frees) (declare_term_names t Name.context)) ~~ map snd frees;
   518 
   519 fun rename_wrt_term t frees = rev (variant_frees t frees);  (*reversed result!*)
   520 
   521 
   522 
   523 (** Comparing terms **)
   524 
   525 (* variables *)
   526 
   527 fun eq_ix ((x, i): indexname, (y, j)) = i = j andalso x = y;
   528 
   529 fun eq_tvar ((xi, S: sort), (xi', S')) = eq_ix (xi, xi') andalso S = S';
   530 fun eq_var ((xi, T: typ), (xi', T')) = eq_ix (xi, xi') andalso T = T';
   531 
   532 
   533 (* alpha equivalence *)
   534 
   535 fun tm1 aconv tm2 =
   536   pointer_eq (tm1, tm2) orelse
   537     (case (tm1, tm2) of
   538       (t1 $ u1, t2 $ u2) => t1 aconv t2 andalso u1 aconv u2
   539     | (Abs (_, T1, t1), Abs (_, T2, t2)) => t1 aconv t2 andalso T1 = T2
   540     | (a1, a2) => a1 = a2);
   541 
   542 fun aconv_untyped (tm1, tm2) =
   543   pointer_eq (tm1, tm2) orelse
   544     (case (tm1, tm2) of
   545       (t1 $ u1, t2 $ u2) => aconv_untyped (t1, t2) andalso aconv_untyped (u1, u2)
   546     | (Abs (_, _, t1), Abs (_, _, t2)) => aconv_untyped (t1, t2)
   547     | (Const (a, _), Const (b, _)) => a = b
   548     | (Free (x, _), Free (y, _)) => x = y
   549     | (Var (xi, _), Var (yj, _)) => xi = yj
   550     | (Bound i, Bound j) => i = j
   551     | _ => false);
   552 
   553 
   554 (*A fast unification filter: true unless the two terms cannot be unified.
   555   Terms must be NORMAL.  Treats all Vars as distinct. *)
   556 fun could_unify (t, u) =
   557   let
   558     fun matchrands (f $ t) (g $ u) = could_unify (t, u) andalso matchrands f g
   559       | matchrands _ _ = true;
   560   in
   561     case (head_of t, head_of u) of
   562       (_, Var _) => true
   563     | (Var _, _) => true
   564     | (Const (a, _), Const (b, _)) => a = b andalso matchrands t u
   565     | (Free (a, _), Free (b, _)) => a = b andalso matchrands t u
   566     | (Bound i, Bound j) => i = j andalso matchrands t u
   567     | (Abs _, _) => true   (*because of possible eta equality*)
   568     | (_, Abs _) => true
   569     | _ => false
   570   end;
   571 
   572 
   573 
   574 (** Connectives of higher order logic **)
   575 
   576 fun aT S = TFree (Name.aT, S);
   577 
   578 fun itselfT ty = Type ("itself", [ty]);
   579 val a_itselfT = itselfT (TFree (Name.aT, []));
   580 
   581 val propT : typ = Type("prop",[]);
   582 
   583 fun all T = Const("all", (T-->propT)-->propT);
   584 
   585 (* maps  !!x1...xn. t   to   t  *)
   586 fun strip_all_body (Const("all",_)$Abs(_,_,t))  =  strip_all_body t
   587   | strip_all_body t  =  t;
   588 
   589 (* maps  !!x1...xn. t   to   [x1, ..., xn]  *)
   590 fun strip_all_vars (Const("all",_)$Abs(a,T,t))  =
   591                 (a,T) :: strip_all_vars t
   592   | strip_all_vars t  =  [] : (string*typ) list;
   593 
   594 (*increments a term's non-local bound variables
   595   required when moving a term within abstractions
   596      inc is  increment for bound variables
   597      lev is  level at which a bound variable is considered 'loose'*)
   598 fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u
   599   | incr_bv (inc, lev, Abs(a,T,body)) =
   600         Abs(a, T, incr_bv(inc,lev+1,body))
   601   | incr_bv (inc, lev, f$t) =
   602       incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
   603   | incr_bv (inc, lev, u) = u;
   604 
   605 fun incr_boundvars  0  t = t
   606   | incr_boundvars inc t = incr_bv(inc,0,t);
   607 
   608 (*Scan a pair of terms; while they are similar,
   609   accumulate corresponding bound vars in "al"*)
   610 fun match_bvs(Abs(x,_,s),Abs(y,_,t), al) =
   611       match_bvs(s, t, if x="" orelse y="" then al
   612                                           else (x,y)::al)
   613   | match_bvs(f$s, g$t, al) = match_bvs(f,g,match_bvs(s,t,al))
   614   | match_bvs(_,_,al) = al;
   615 
   616 (* strip abstractions created by parameters *)
   617 fun match_bvars((s,t),al) = match_bvs(strip_abs_body s, strip_abs_body t, al);
   618 
   619 fun map_abs_vars f (t $ u) = map_abs_vars f t $ map_abs_vars f u
   620   | map_abs_vars f (Abs (a, T, t)) = Abs (f a, T, map_abs_vars f t)
   621   | map_abs_vars f t = t;
   622 
   623 fun rename_abs pat obj t =
   624   let
   625     val ren = match_bvs (pat, obj, []);
   626     fun ren_abs (Abs (x, T, b)) =
   627           Abs (the_default x (AList.lookup (op =) ren x), T, ren_abs b)
   628       | ren_abs (f $ t) = ren_abs f $ ren_abs t
   629       | ren_abs t = t
   630   in if null ren then NONE else SOME (ren_abs t) end;
   631 
   632 (*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
   633    (Bound 0) is loose at level 0 *)
   634 fun add_loose_bnos (Bound i, lev, js) =
   635         if i<lev then js else insert (op =) (i - lev) js
   636   | add_loose_bnos (Abs (_,_,t), lev, js) = add_loose_bnos (t, lev+1, js)
   637   | add_loose_bnos (f$t, lev, js) =
   638         add_loose_bnos (f, lev, add_loose_bnos (t, lev, js))
   639   | add_loose_bnos (_, _, js) = js;
   640 
   641 fun loose_bnos t = add_loose_bnos (t, 0, []);
   642 
   643 (* loose_bvar(t,k) iff t contains a 'loose' bound variable referring to
   644    level k or beyond. *)
   645 fun loose_bvar(Bound i,k) = i >= k
   646   | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k)
   647   | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1)
   648   | loose_bvar _ = false;
   649 
   650 fun loose_bvar1(Bound i,k) = i = k
   651   | loose_bvar1(f$t, k) = loose_bvar1(f,k) orelse loose_bvar1(t,k)
   652   | loose_bvar1(Abs(_,_,t),k) = loose_bvar1(t,k+1)
   653   | loose_bvar1 _ = false;
   654 
   655 fun is_open t = loose_bvar (t, 0);
   656 fun is_dependent t = loose_bvar1 (t, 0);
   657 
   658 (*Substitute arguments for loose bound variables.
   659   Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
   660   Note that for ((%x y. c) a b), the bound vars in c are x=1 and y=0
   661         and the appropriate call is  subst_bounds([b,a], c) .
   662   Loose bound variables >=n are reduced by "n" to
   663      compensate for the disappearance of lambdas.
   664 *)
   665 fun subst_bounds (args: term list, t) : term =
   666   let
   667     val n = length args;
   668     fun subst (t as Bound i, lev) =
   669          (if i < lev then raise Same.SAME   (*var is locally bound*)
   670           else incr_boundvars lev (nth args (i - lev))
   671             handle General.Subscript => Bound (i - n))  (*loose: change it*)
   672       | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
   673       | subst (f $ t, lev) =
   674           (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t)
   675             handle Same.SAME => f $ subst (t, lev))
   676       | subst _ = raise Same.SAME;
   677   in case args of [] => t | _ => (subst (t, 0) handle Same.SAME => t) end;
   678 
   679 (*Special case: one argument*)
   680 fun subst_bound (arg, t) : term =
   681   let
   682     fun subst (Bound i, lev) =
   683           if i < lev then raise Same.SAME   (*var is locally bound*)
   684           else if i = lev then incr_boundvars lev arg
   685           else Bound (i - 1)   (*loose: change it*)
   686       | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
   687       | subst (f $ t, lev) =
   688           (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t)
   689             handle Same.SAME => f $ subst (t, lev))
   690       | subst _ = raise Same.SAME;
   691   in subst (t, 0) handle Same.SAME => t end;
   692 
   693 (*beta-reduce if possible, else form application*)
   694 fun betapply (Abs(_,_,t), u) = subst_bound (u,t)
   695   | betapply (f,u) = f$u;
   696 
   697 val betapplys = Library.foldl betapply;
   698 
   699 
   700 (*unfolding abstractions with substitution
   701   of bound variables and implicit eta-expansion*)
   702 fun strip_abs_eta k t =
   703   let
   704     val used = fold_aterms declare_term_frees t Name.context;
   705     fun strip_abs t (0, used) = (([], t), (0, used))
   706       | strip_abs (Abs (v, T, t)) (k, used) =
   707           let
   708             val ([v'], used') = Name.variants [v] used;
   709             val t' = subst_bound (Free (v', T), t);
   710             val ((vs, t''), (k', used'')) = strip_abs t' (k - 1, used');
   711           in (((v', T) :: vs, t''), (k', used'')) end
   712       | strip_abs t (k, used) = (([], t), (k, used));
   713     fun expand_eta [] t _ = ([], t)
   714       | expand_eta (T::Ts) t used =
   715           let
   716             val ([v], used') = Name.variants [""] used;
   717             val (vs, t') = expand_eta Ts (t $ Free (v, T)) used';
   718           in ((v, T) :: vs, t') end;
   719     val ((vs1, t'), (k', used')) = strip_abs t (k, used);
   720     val Ts = fst (chop k' (binder_types (fastype_of t')));
   721     val (vs2, t'') = expand_eta Ts t' used';
   722   in (vs1 @ vs2, t'') end;
   723 
   724 
   725 (*Substitute new for free occurrences of old in a term*)
   726 fun subst_free [] = I
   727   | subst_free pairs =
   728       let fun substf u =
   729             case AList.lookup (op aconv) pairs u of
   730                 SOME u' => u'
   731               | NONE => (case u of Abs(a,T,t) => Abs(a, T, substf t)
   732                                  | t$u' => substf t $ substf u'
   733                                  | _ => u)
   734       in  substf  end;
   735 
   736 (*Abstraction of the term "body" over its occurrences of v,
   737     which must contain no loose bound variables.
   738   The resulting term is ready to become the body of an Abs.*)
   739 fun abstract_over (v, body) =
   740   let
   741     fun abs lev tm =
   742       if v aconv tm then Bound lev
   743       else
   744         (case tm of
   745           Abs (a, T, t) => Abs (a, T, abs (lev + 1) t)
   746         | t $ u =>
   747             (abs lev t $ (abs lev u handle Same.SAME => u)
   748               handle Same.SAME => t $ abs lev u)
   749         | _ => raise Same.SAME);
   750   in abs 0 body handle Same.SAME => body end;
   751 
   752 fun term_name (Const (x, _)) = Long_Name.base_name x
   753   | term_name (Free (x, _)) = x
   754   | term_name (Var ((x, _), _)) = x
   755   | term_name _ = Name.uu;
   756 
   757 fun lambda_name (x, v) t =
   758   Abs (if x = "" then term_name v else x, fastype_of v, abstract_over (v, t));
   759 
   760 fun lambda v t = lambda_name ("", v) t;
   761 
   762 (*Form an abstraction over a free variable.*)
   763 fun absfree (a,T,body) = Abs (a, T, abstract_over (Free (a, T), body));
   764 fun absdummy (T, body) = Abs (Name.internal Name.uu, T, body);
   765 
   766 (*Abstraction over a list of free variables*)
   767 fun list_abs_free ([ ] ,     t) = t
   768   | list_abs_free ((a,T)::vars, t) =
   769       absfree(a, T, list_abs_free(vars,t));
   770 
   771 (*Quantification over a list of free variables*)
   772 fun list_all_free ([], t: term) = t
   773   | list_all_free ((a,T)::vars, t) =
   774         (all T) $ (absfree(a, T, list_all_free(vars,t)));
   775 
   776 (*Quantification over a list of variables (already bound in body) *)
   777 fun list_all ([], t) = t
   778   | list_all ((a,T)::vars, t) =
   779         (all T) $ (Abs(a, T, list_all(vars,t)));
   780 
   781 (*Replace the ATOMIC term ti by ui;    inst = [(t1,u1), ..., (tn,un)].
   782   A simultaneous substitution:  [ (a,b), (b,a) ] swaps a and b.  *)
   783 fun subst_atomic [] tm = tm
   784   | subst_atomic inst tm =
   785       let
   786         fun subst (Abs (a, T, body)) = Abs (a, T, subst body)
   787           | subst (t $ u) = subst t $ subst u
   788           | subst t = the_default t (AList.lookup (op aconv) inst t);
   789       in subst tm end;
   790 
   791 (*Replace the ATOMIC type Ti by Ui;    inst = [(T1,U1), ..., (Tn,Un)].*)
   792 fun typ_subst_atomic [] ty = ty
   793   | typ_subst_atomic inst ty =
   794       let
   795         fun subst (Type (a, Ts)) = Type (a, map subst Ts)
   796           | subst T = the_default T (AList.lookup (op = : typ * typ -> bool) inst T);
   797       in subst ty end;
   798 
   799 fun subst_atomic_types [] tm = tm
   800   | subst_atomic_types inst tm = map_types (typ_subst_atomic inst) tm;
   801 
   802 fun typ_subst_TVars [] ty = ty
   803   | typ_subst_TVars inst ty =
   804       let
   805         fun subst (Type (a, Ts)) = Type (a, map subst Ts)
   806           | subst (T as TVar (xi, _)) = the_default T (AList.lookup (op =) inst xi)
   807           | subst T = T;
   808       in subst ty end;
   809 
   810 fun subst_TVars [] tm = tm
   811   | subst_TVars inst tm = map_types (typ_subst_TVars inst) tm;
   812 
   813 fun subst_Vars [] tm = tm
   814   | subst_Vars inst tm =
   815       let
   816         fun subst (t as Var (xi, _)) = the_default t (AList.lookup (op =) inst xi)
   817           | subst (Abs (a, T, t)) = Abs (a, T, subst t)
   818           | subst (t $ u) = subst t $ subst u
   819           | subst t = t;
   820       in subst tm end;
   821 
   822 fun subst_vars ([], []) tm = tm
   823   | subst_vars ([], inst) tm = subst_Vars inst tm
   824   | subst_vars (instT, inst) tm =
   825       let
   826         fun subst (Const (a, T)) = Const (a, typ_subst_TVars instT T)
   827           | subst (Free (a, T)) = Free (a, typ_subst_TVars instT T)
   828           | subst (Var (xi, T)) =
   829               (case AList.lookup (op =) inst xi of
   830                 NONE => Var (xi, typ_subst_TVars instT T)
   831               | SOME t => t)
   832           | subst (t as Bound _) = t
   833           | subst (Abs (a, T, t)) = Abs (a, typ_subst_TVars instT T, subst t)
   834           | subst (t $ u) = subst t $ subst u;
   835       in subst tm end;
   836 
   837 fun close_schematic_term t =
   838   let
   839     val extra_types = map (fn v => Const ("TYPE", itselfT (TVar v))) (hidden_polymorphism t);
   840     val extra_terms = map Var (add_vars t []);
   841   in fold lambda (extra_terms @ extra_types) t end;
   842 
   843 
   844 
   845 (** Identifying first-order terms **)
   846 
   847 (*Differs from proofterm/is_fun in its treatment of TVar*)
   848 fun is_funtype (Type ("fun", [_, _])) = true
   849   | is_funtype _ = false;
   850 
   851 (*Argument Ts is a reverse list of binder types, needed if term t contains Bound vars*)
   852 fun has_not_funtype Ts t = not (is_funtype (fastype_of1 (Ts, t)));
   853 
   854 (*First order means in all terms of the form f(t1,...,tn) no argument has a
   855   function type. The supplied quantifiers are excluded: their argument always
   856   has a function type through a recursive call into its body.*)
   857 fun is_first_order quants =
   858   let fun first_order1 Ts (Abs (_,T,body)) = first_order1 (T::Ts) body
   859         | first_order1 Ts (Const(q,_) $ Abs(a,T,body)) =
   860             member (op =) quants q  andalso   (*it is a known quantifier*)
   861             not (is_funtype T)   andalso first_order1 (T::Ts) body
   862         | first_order1 Ts t =
   863             case strip_comb t of
   864                  (Var _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
   865                | (Free _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
   866                | (Const _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
   867                | (Bound _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
   868                | (Abs _, ts) => false (*not in beta-normal form*)
   869                | _ => error "first_order: unexpected case"
   870     in  first_order1 []  end;
   871 
   872 
   873 (* maximum index of typs and terms *)
   874 
   875 fun maxidx_typ (TVar ((_, j), _)) i = Int.max (i, j)
   876   | maxidx_typ (Type (_, Ts)) i = maxidx_typs Ts i
   877   | maxidx_typ (TFree _) i = i
   878 and maxidx_typs [] i = i
   879   | maxidx_typs (T :: Ts) i = maxidx_typs Ts (maxidx_typ T i);
   880 
   881 fun maxidx_term (Var ((_, j), T)) i = maxidx_typ T (Int.max (i, j))
   882   | maxidx_term (Const (_, T)) i = maxidx_typ T i
   883   | maxidx_term (Free (_, T)) i = maxidx_typ T i
   884   | maxidx_term (Bound _) i = i
   885   | maxidx_term (Abs (_, T, t)) i = maxidx_term t (maxidx_typ T i)
   886   | maxidx_term (t $ u) i = maxidx_term u (maxidx_term t i);
   887 
   888 fun maxidx_of_typ T = maxidx_typ T ~1;
   889 fun maxidx_of_typs Ts = maxidx_typs Ts ~1;
   890 fun maxidx_of_term t = maxidx_term t ~1;
   891 
   892 
   893 
   894 (** misc syntax operations **)
   895 
   896 (* substructure *)
   897 
   898 fun exists_subtype P =
   899   let
   900     fun ex ty = P ty orelse
   901       (case ty of Type (_, Ts) => exists ex Ts | _ => false);
   902   in ex end;
   903 
   904 fun exists_type P =
   905   let
   906     fun ex (Const (_, T)) = P T
   907       | ex (Free (_, T)) = P T
   908       | ex (Var (_, T)) = P T
   909       | ex (Bound _) = false
   910       | ex (Abs (_, T, t)) = P T orelse ex t
   911       | ex (t $ u) = ex t orelse ex u;
   912   in ex end;
   913 
   914 fun exists_subterm P =
   915   let
   916     fun ex tm = P tm orelse
   917       (case tm of
   918         t $ u => ex t orelse ex u
   919       | Abs (_, _, t) => ex t
   920       | _ => false);
   921   in ex end;
   922 
   923 fun exists_Const P = exists_subterm (fn Const c => P c | _ => false);
   924 
   925 fun has_abs (Abs _) = true
   926   | has_abs (t $ u) = has_abs t orelse has_abs u
   927   | has_abs _ = false;
   928 
   929 
   930 (* dest abstraction *)
   931 
   932 fun dest_abs (x, T, body) =
   933   let
   934     fun name_clash (Free (y, _)) = (x = y)
   935       | name_clash (t $ u) = name_clash t orelse name_clash u
   936       | name_clash (Abs (_, _, t)) = name_clash t
   937       | name_clash _ = false;
   938   in
   939     if name_clash body then dest_abs (Name.variant [x] x, T, body)    (*potentially slow*)
   940     else (x, subst_bound (Free (x, T), body))
   941   end;
   942 
   943 
   944 (* dummy patterns *)
   945 
   946 val dummy_patternN = "dummy_pattern";
   947 
   948 fun dummy_pattern T = Const (dummy_patternN, T);
   949 
   950 fun is_dummy_pattern (Const ("dummy_pattern", _)) = true
   951   | is_dummy_pattern _ = false;
   952 
   953 fun no_dummy_patterns tm =
   954   if not (fold_aterms (fn t => fn b => b orelse is_dummy_pattern t) tm false) then tm
   955   else raise TERM ("Illegal occurrence of '_' dummy pattern", [tm]);
   956 
   957 fun free_dummy_patterns (Const ("dummy_pattern", T)) used =
   958       let val [x] = Name.invents used Name.uu 1
   959       in (Free (Name.internal x, T), Name.declare x used) end
   960   | free_dummy_patterns (Abs (x, T, b)) used =
   961       let val (b', used') = free_dummy_patterns b used
   962       in (Abs (x, T, b'), used') end
   963   | free_dummy_patterns (t $ u) used =
   964       let
   965         val (t', used') = free_dummy_patterns t used;
   966         val (u', used'') = free_dummy_patterns u used';
   967       in (t' $ u', used'') end
   968   | free_dummy_patterns a used = (a, used);
   969 
   970 fun replace_dummy Ts (Const ("dummy_pattern", T)) i =
   971       (list_comb (Var (("_dummy_", i), Ts ---> T), map_range Bound (length Ts)), i + 1)
   972   | replace_dummy Ts (Abs (x, T, t)) i =
   973       let val (t', i') = replace_dummy (T :: Ts) t i
   974       in (Abs (x, T, t'), i') end
   975   | replace_dummy Ts (t $ u) i =
   976       let
   977         val (t', i') = replace_dummy Ts t i;
   978         val (u', i'') = replace_dummy Ts u i';
   979       in (t' $ u', i'') end
   980   | replace_dummy _ a i = (a, i);
   981 
   982 val replace_dummy_patterns = replace_dummy [];
   983 
   984 fun is_replaced_dummy_pattern ("_dummy_", _) = true
   985   | is_replaced_dummy_pattern _ = false;
   986 
   987 fun show_dummy_patterns (Var (("_dummy_", _), T)) = Const ("dummy_pattern", T)
   988   | show_dummy_patterns (t $ u) = show_dummy_patterns t $ show_dummy_patterns u
   989   | show_dummy_patterns (Abs (x, T, t)) = Abs (x, T, show_dummy_patterns t)
   990   | show_dummy_patterns a = a;
   991 
   992 
   993 (* display variables *)
   994 
   995 fun string_of_vname (x, i) =
   996   let
   997     val idx = string_of_int i;
   998     val dot =
   999       (case rev (Symbol.explode x) of
  1000         _ :: "\\<^isub>" :: _ => false
  1001       | _ :: "\\<^isup>" :: _ => false
  1002       | c :: _ => Symbol.is_digit c
  1003       | _ => true);
  1004   in
  1005     if dot then "?" ^ x ^ "." ^ idx
  1006     else if i <> 0 then "?" ^ x ^ idx
  1007     else "?" ^ x
  1008   end;
  1009 
  1010 fun string_of_vname' (x, ~1) = x
  1011   | string_of_vname' xi = string_of_vname xi;
  1012 
  1013 end;
  1014 
  1015 structure Basic_Term: BASIC_TERM = Term;
  1016 open Basic_Term;