src/Tools/Code/code_thingol.ML
author haftmann
Wed, 18 Apr 2012 21:47:26 +0200
changeset 48442 1d9faa9f65f9
parent 48420 978bd14ad065
child 48445 6b362107e6d9
permissions -rw-r--r--
tuned name
     1 (*  Title:      Tools/Code/code_thingol.ML
     2     Author:     Florian Haftmann, TU Muenchen
     3 
     4 Intermediate language ("Thin-gol") representing executable code.
     5 Representation and translation.
     6 *)
     7 
     8 infix 8 `%%;
     9 infix 4 `$;
    10 infix 4 `$$;
    11 infixr 3 `|=>;
    12 infixr 3 `|==>;
    13 
    14 signature BASIC_CODE_THINGOL =
    15 sig
    16   type vname = string;
    17   datatype dict =
    18       Dict of string list * plain_dict
    19   and plain_dict = 
    20       Dict_Const of string * dict list list
    21     | Dict_Var of vname * (int * int)
    22   datatype itype =
    23       `%% of string * itype list
    24     | ITyVar of vname;
    25   type const = string * (((itype list * dict list list) * (itype list * itype)) * bool)
    26     (* (f [T1..Tn] {dicts} (_::S1) .. (_::Sm)) :: S =^= (f, ((([T1..Tn], dicts), ([S1..Sm], S)), ambiguous)) *)
    27   datatype iterm =
    28       IConst of const
    29     | IVar of vname option
    30     | `$ of iterm * iterm
    31     | `|=> of (vname option * itype) * iterm
    32     | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
    33         (*((term, type), [(selector pattern, body term )]), primitive term)*)
    34   val `$$ : iterm * iterm list -> iterm;
    35   val `|==> : (vname option * itype) list * iterm -> iterm;
    36   type typscheme = (vname * sort) list * itype;
    37 end;
    38 
    39 signature CODE_THINGOL =
    40 sig
    41   include BASIC_CODE_THINGOL
    42   val fun_tyco: string
    43   val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
    44   val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
    45   val unfold_fun: itype -> itype list * itype
    46   val unfold_fun_n: int -> itype -> itype list * itype
    47   val unfold_app: iterm -> iterm * iterm list
    48   val unfold_abs: iterm -> (vname option * itype) list * iterm
    49   val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
    50   val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
    51   val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
    52   val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
    53   val unfold_const_app: iterm -> (const * iterm list) option
    54   val is_IVar: iterm -> bool
    55   val is_IAbs: iterm -> bool
    56   val eta_expand: int -> const * iterm list -> iterm
    57   val contains_dict_var: iterm -> bool
    58   val add_constnames: iterm -> string list -> string list
    59   val add_tyconames: iterm -> string list -> string list
    60   val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
    61 
    62   type naming
    63   val empty_naming: naming
    64   val lookup_class: naming -> class -> string option
    65   val lookup_classrel: naming -> class * class -> string option
    66   val lookup_tyco: naming -> string -> string option
    67   val lookup_instance: naming -> class * string -> string option
    68   val lookup_const: naming -> string -> string option
    69   val ensure_declared_const: theory -> string -> naming -> string * naming
    70 
    71   datatype stmt =
    72       NoStmt
    73     | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
    74     | Datatype of string * ((vname * sort) list *
    75         ((string * vname list (*type argument wrt. canonical order*)) * itype list) list)
    76     | Datatypecons of string * string
    77     | Class of class * (vname * ((class * string) list * (string * itype) list))
    78     | Classrel of class * class
    79     | Classparam of string * class
    80     | Classinst of (class * (string * (vname * sort) list) (*class and arity*))
    81           * ((class * (string * (string * dict list list))) list (*super instances*)
    82         * (((string * const) * (thm * bool)) list (*class parameter instances*)
    83           * ((string * const) * (thm * bool)) list (*super class parameter instances*)))
    84   type program = stmt Graph.T
    85   val empty_funs: program -> string list
    86   val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
    87   val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
    88   val is_cons: program -> string -> bool
    89   val is_case: stmt -> bool
    90   val labelled_name: theory -> program -> string -> string
    91   val group_stmts: theory -> program
    92     -> ((string * stmt) list * (string * stmt) list
    93       * ((string * stmt) list * (string * stmt) list)) list
    94 
    95   val read_const_exprs: theory -> string list -> string list * string list
    96   val consts_program: theory -> bool -> string list -> string list * (naming * program)
    97   val dynamic_conv: theory -> (naming -> program
    98     -> ((string * sort) list * typscheme) * iterm -> string list -> conv)
    99     -> conv
   100   val dynamic_value: theory -> ((term -> term) -> 'a -> 'a) -> (naming -> program
   101     -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
   102     -> term -> 'a
   103   val static_conv: theory -> string list -> (naming -> program -> string list
   104     -> ((string * sort) list * typscheme) * iterm -> string list -> conv)
   105     -> conv
   106   val static_conv_simple: theory -> string list
   107     -> (program -> (string * sort) list -> term -> conv) -> conv
   108   val static_value: theory -> ((term -> term) -> 'a -> 'a) -> string list ->
   109     (naming -> program -> string list
   110       -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
   111     -> term -> 'a
   112 end;
   113 
   114 structure Code_Thingol: CODE_THINGOL =
   115 struct
   116 
   117 (** auxiliary **)
   118 
   119 fun unfoldl dest x =
   120   case dest x
   121    of NONE => (x, [])
   122     | SOME (x1, x2) =>
   123         let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
   124 
   125 fun unfoldr dest x =
   126   case dest x
   127    of NONE => ([], x)
   128     | SOME (x1, x2) =>
   129         let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
   130 
   131 
   132 (** language core - types, terms **)
   133 
   134 type vname = string;
   135 
   136 datatype dict =
   137     Dict of string list * plain_dict
   138 and plain_dict = 
   139     Dict_Const of string * dict list list
   140   | Dict_Var of vname * (int * int)
   141 
   142 datatype itype =
   143     `%% of string * itype list
   144   | ITyVar of vname;
   145 
   146 type const = string * (((itype list * dict list list) *
   147   (itype list (*types of arguments*) * itype (*result type*))) * bool (*requires type annotation*))
   148 
   149 datatype iterm =
   150     IConst of const
   151   | IVar of vname option
   152   | `$ of iterm * iterm
   153   | `|=> of (vname option * itype) * iterm
   154   | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
   155     (*see also signature*)
   156 
   157 fun is_IVar (IVar _) = true
   158   | is_IVar _ = false;
   159 
   160 fun is_IAbs (_ `|=> _) = true
   161   | is_IAbs _ = false;
   162 
   163 val op `$$ = Library.foldl (op `$);
   164 val op `|==> = Library.foldr (op `|=>);
   165 
   166 val unfold_app = unfoldl
   167   (fn op `$ t => SOME t
   168     | _ => NONE);
   169 
   170 val unfold_abs = unfoldr
   171   (fn op `|=> t => SOME t
   172     | _ => NONE);
   173 
   174 val split_let = 
   175   (fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t)
   176     | _ => NONE);
   177 
   178 val unfold_let = unfoldr split_let;
   179 
   180 fun unfold_const_app t =
   181  case unfold_app t
   182   of (IConst c, ts) => SOME (c, ts)
   183    | _ => NONE;
   184 
   185 fun fold_constexprs f =
   186   let
   187     fun fold' (IConst c) = f c
   188       | fold' (IVar _) = I
   189       | fold' (t1 `$ t2) = fold' t1 #> fold' t2
   190       | fold' (_ `|=> t) = fold' t
   191       | fold' (ICase (((t, _), ds), _)) = fold' t
   192           #> fold (fn (pat, body) => fold' pat #> fold' body) ds
   193   in fold' end;
   194 
   195 val add_constnames = fold_constexprs (fn (c, _) => insert (op =) c);
   196 
   197 fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
   198   | add_tycos (ITyVar _) = I;
   199 
   200 val add_tyconames = fold_constexprs (fn (_, (((tys, _), _), _)) => fold add_tycos tys);
   201 
   202 fun fold_varnames f =
   203   let
   204     fun fold_aux add f =
   205       let
   206         fun fold_term _ (IConst _) = I
   207           | fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
   208           | fold_term _ (IVar NONE) = I
   209           | fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
   210           | fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
   211           | fold_term vs ((NONE, _) `|=> t) = fold_term vs t
   212           | fold_term vs (ICase (((t, _), ds), _)) = fold_term vs t #> fold (fold_case vs) ds
   213         and fold_case vs (p, t) = fold_term (add p vs) t;
   214       in fold_term [] end;
   215     fun add t = fold_aux add (insert (op =)) t;
   216   in fold_aux add f end;
   217 
   218 fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
   219 
   220 fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
   221   | split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
   222      of ICase (((IVar (SOME w), _), [(p, t')]), _) =>
   223           if v = w andalso (exists_var p v orelse not (exists_var t' v))
   224           then ((p, ty), t')
   225           else ((IVar (SOME v), ty), t)
   226       | _ => ((IVar (SOME v), ty), t))
   227   | split_pat_abs _ = NONE;
   228 
   229 val unfold_pat_abs = unfoldr split_pat_abs;
   230 
   231 fun unfold_abs_eta [] t = ([], t)
   232   | unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
   233       let
   234         val (vs_tys, t') = unfold_abs_eta tys t;
   235       in (v_ty :: vs_tys, t') end
   236   | unfold_abs_eta tys t =
   237       let
   238         val ctxt = fold_varnames Name.declare t Name.context;
   239         val vs_tys = (map o apfst) SOME (Name.invent_names ctxt "a" tys);
   240       in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
   241 
   242 fun eta_expand k (c as (name, ((_, (tys, _)), _)), ts) =
   243   let
   244     val j = length ts;
   245     val l = k - j;
   246     val _ = if l > length tys
   247       then error ("Impossible eta-expansion for constant " ^ quote name) else ();
   248     val ctxt = (fold o fold_varnames) Name.declare ts Name.context;
   249     val vs_tys = (map o apfst) SOME
   250       (Name.invent_names ctxt "a" ((take l o drop j) tys));
   251   in vs_tys `|==> IConst c `$$ ts @ map (IVar o fst) vs_tys end;
   252 
   253 fun contains_dict_var t =
   254   let
   255     fun cont_dict (Dict (_, d)) = cont_plain_dict d
   256     and cont_plain_dict (Dict_Const (_, dss)) = (exists o exists) cont_dict dss
   257       | cont_plain_dict (Dict_Var _) = true;
   258     fun cont_term (IConst (_, (((_, dss), _), _))) = (exists o exists) cont_dict dss
   259       | cont_term (IVar _) = false
   260       | cont_term (t1 `$ t2) = cont_term t1 orelse cont_term t2
   261       | cont_term (_ `|=> t) = cont_term t
   262       | cont_term (ICase (_, t)) = cont_term t;
   263   in cont_term t end;
   264 
   265 
   266 (** namings **)
   267 
   268 (* policies *)
   269 
   270 local
   271   fun thyname_of_type thy = #theory_name o Name_Space.the_entry (Sign.type_space thy);
   272   fun thyname_of_class thy = #theory_name o Name_Space.the_entry (Sign.class_space thy);
   273   fun thyname_of_const' thy = #theory_name o Name_Space.the_entry (Sign.const_space thy);
   274   fun thyname_of_instance thy inst = case AxClass.thynames_of_arity thy inst
   275    of [] => error ("No such instance: " ^ quote (snd inst ^ " :: " ^ fst inst))
   276     | thyname :: _ => thyname;
   277   fun thyname_of_const thy c = case AxClass.class_of_param thy c
   278    of SOME class => thyname_of_class thy class
   279     | NONE => (case Code.get_type_of_constr_or_abstr thy c
   280        of SOME (tyco, _) => thyname_of_type thy tyco
   281         | NONE => thyname_of_const' thy c);
   282   fun purify_base "==>" = "follows"
   283     | purify_base "==" = "meta_eq"
   284     | purify_base s = Name.desymbolize false s;
   285   fun namify thy get_basename get_thyname name =
   286     let
   287       val prefix = get_thyname thy name;
   288       val base = (purify_base o get_basename) name;
   289     in Long_Name.append prefix base end;
   290 in
   291 
   292 fun namify_class thy = namify thy Long_Name.base_name thyname_of_class;
   293 fun namify_classrel thy = namify thy (fn (sub_class, super_class) => 
   294     Long_Name.base_name super_class ^ "_" ^ Long_Name.base_name sub_class)
   295   (fn thy => thyname_of_class thy o fst);
   296   (*order fits nicely with composed projections*)
   297 fun namify_tyco thy "fun" = "Pure.fun"
   298   | namify_tyco thy tyco = namify thy Long_Name.base_name thyname_of_type tyco;
   299 fun namify_instance thy = namify thy (fn (class, tyco) => 
   300   Long_Name.base_name class ^ "_" ^ Long_Name.base_name tyco) thyname_of_instance;
   301 fun namify_const thy = namify thy Long_Name.base_name thyname_of_const;
   302 
   303 end; (* local *)
   304 
   305 
   306 (* data *)
   307 
   308 datatype naming = Naming of {
   309   class: class Symtab.table * Name.context,
   310   classrel: string Symreltab.table * Name.context,
   311   tyco: string Symtab.table * Name.context,
   312   instance: string Symreltab.table * Name.context,
   313   const: string Symtab.table * Name.context
   314 }
   315 
   316 fun dest_Naming (Naming naming) = naming;
   317 
   318 val empty_naming = Naming {
   319   class = (Symtab.empty, Name.context),
   320   classrel = (Symreltab.empty, Name.context),
   321   tyco = (Symtab.empty, Name.context),
   322   instance = (Symreltab.empty, Name.context),
   323   const = (Symtab.empty, Name.context)
   324 };
   325 
   326 local
   327   fun mk_naming (class, classrel, tyco, instance, const) =
   328     Naming { class = class, classrel = classrel,
   329       tyco = tyco, instance = instance, const = const };
   330   fun map_naming f (Naming { class, classrel, tyco, instance, const }) =
   331     mk_naming (f (class, classrel, tyco, instance, const));
   332 in
   333   fun map_class f = map_naming
   334     (fn (class, classrel, tyco, inst, const) =>
   335       (f class, classrel, tyco, inst, const));
   336   fun map_classrel f = map_naming
   337     (fn (class, classrel, tyco, inst, const) =>
   338       (class, f classrel, tyco, inst, const));
   339   fun map_tyco f = map_naming
   340     (fn (class, classrel, tyco, inst, const) =>
   341       (class, classrel, f tyco, inst, const));
   342   fun map_instance f = map_naming
   343     (fn (class, classrel, tyco, inst, const) =>
   344       (class, classrel, tyco, f inst, const));
   345   fun map_const f = map_naming
   346     (fn (class, classrel, tyco, inst, const) =>
   347       (class, classrel, tyco, inst, f const));
   348 end; (*local*)
   349 
   350 fun add_variant update (thing, name) (tab, used) =
   351   let
   352     val (name', used') = Name.variant name used;
   353     val tab' = update (thing, name') tab;
   354   in (tab', used') end;
   355 
   356 fun declare thy mapp lookup update namify thing =
   357   mapp (add_variant update (thing, namify thy thing))
   358   #> `(fn naming => the (lookup naming thing));
   359 
   360 
   361 (* lookup and declare *)
   362 
   363 local
   364 
   365 val suffix_class = "class";
   366 val suffix_classrel = "classrel"
   367 val suffix_tyco = "tyco";
   368 val suffix_instance = "inst";
   369 val suffix_const = "const";
   370 
   371 fun add_suffix nsp NONE = NONE
   372   | add_suffix nsp (SOME name) = SOME (Long_Name.append name nsp);
   373 
   374 in
   375 
   376 val lookup_class = add_suffix suffix_class
   377   oo Symtab.lookup o fst o #class o dest_Naming;
   378 val lookup_classrel = add_suffix suffix_classrel
   379   oo Symreltab.lookup o fst o #classrel o dest_Naming;
   380 val lookup_tyco = add_suffix suffix_tyco
   381   oo Symtab.lookup o fst o #tyco o dest_Naming;
   382 val lookup_instance = add_suffix suffix_instance
   383   oo Symreltab.lookup o fst o #instance o dest_Naming;
   384 val lookup_const = add_suffix suffix_const
   385   oo Symtab.lookup o fst o #const o dest_Naming;
   386 
   387 fun declare_class thy = declare thy map_class
   388   lookup_class Symtab.update_new namify_class;
   389 fun declare_classrel thy = declare thy map_classrel
   390   lookup_classrel Symreltab.update_new namify_classrel;
   391 fun declare_tyco thy = declare thy map_tyco
   392   lookup_tyco Symtab.update_new namify_tyco;
   393 fun declare_instance thy = declare thy map_instance
   394   lookup_instance Symreltab.update_new namify_instance;
   395 fun declare_const thy = declare thy map_const
   396   lookup_const Symtab.update_new namify_const;
   397 
   398 fun ensure_declared_const thy const naming =
   399   case lookup_const naming const
   400    of SOME const' => (const', naming)
   401     | NONE => declare_const thy const naming;
   402 
   403 val fun_tyco = Long_Name.append (namify_tyco Pure.thy "fun") suffix_tyco
   404   (*depends on add_suffix*);
   405 
   406 val unfold_fun = unfoldr
   407   (fn tyco `%% [ty1, ty2] => if tyco = fun_tyco then SOME (ty1, ty2) else NONE
   408     | _ => NONE);
   409 
   410 fun unfold_fun_n n ty =
   411   let
   412     val (tys1, ty1) = unfold_fun ty;
   413     val (tys3, tys2) = chop n tys1;
   414     val ty3 = Library.foldr (fn (ty1, ty2) => fun_tyco `%% [ty1, ty2]) (tys2, ty1);
   415   in (tys3, ty3) end;
   416 
   417 end; (* local *)
   418 
   419 
   420 (** statements, abstract programs **)
   421 
   422 type typscheme = (vname * sort) list * itype;
   423 datatype stmt =
   424     NoStmt
   425   | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
   426   | Datatype of string * ((vname * sort) list * ((string * vname list) * itype list) list)
   427   | Datatypecons of string * string
   428   | Class of class * (vname * ((class * string) list * (string * itype) list))
   429   | Classrel of class * class
   430   | Classparam of string * class
   431   | Classinst of (class * (string * (vname * sort) list))
   432         * ((class * (string * (string * dict list list))) list
   433       * (((string * const) * (thm * bool)) list
   434         * ((string * const) * (thm * bool)) list))
   435       (*see also signature*);
   436 
   437 type program = stmt Graph.T;
   438 
   439 fun empty_funs program =
   440   Graph.fold (fn (name, (Fun (c, ((_, []), _)), _)) => cons c
   441                | _ => I) program [];
   442 
   443 fun map_terms_bottom_up f (t as IConst _) = f t
   444   | map_terms_bottom_up f (t as IVar _) = f t
   445   | map_terms_bottom_up f (t1 `$ t2) = f
   446       (map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
   447   | map_terms_bottom_up f ((v, ty) `|=> t) = f
   448       ((v, ty) `|=> map_terms_bottom_up f t)
   449   | map_terms_bottom_up f (ICase (((t, ty), ps), t0)) = f
   450       (ICase (((map_terms_bottom_up f t, ty), (map o pairself)
   451         (map_terms_bottom_up f) ps), map_terms_bottom_up f t0));
   452 
   453 fun map_classparam_instances_as_term f =
   454   (map o apfst o apsnd) (fn const => case f (IConst const) of IConst const' => const')
   455 
   456 fun map_terms_stmt f NoStmt = NoStmt
   457   | map_terms_stmt f (Fun (c, ((tysm, eqs), case_cong))) = Fun (c, ((tysm, (map o apfst)
   458       (fn (ts, t) => (map f ts, f t)) eqs), case_cong))
   459   | map_terms_stmt f (stmt as Datatype _) = stmt
   460   | map_terms_stmt f (stmt as Datatypecons _) = stmt
   461   | map_terms_stmt f (stmt as Class _) = stmt
   462   | map_terms_stmt f (stmt as Classrel _) = stmt
   463   | map_terms_stmt f (stmt as Classparam _) = stmt
   464   | map_terms_stmt f (Classinst (arity, (super_instances, classparam_instances))) =
   465       Classinst (arity, (super_instances, (pairself o map_classparam_instances_as_term) f classparam_instances));
   466 
   467 fun is_cons program name = case Graph.get_node program name
   468  of Datatypecons _ => true
   469   | _ => false;
   470 
   471 fun is_case (Fun (_, (_, SOME _))) = true
   472   | is_case _ = false;
   473 
   474 fun lookup_classparam_instance program name = program |> Graph.get_first
   475   (fn (_, (Classinst ((class, _), (_, (param_insts, _))), _)) =>
   476     Option.map (fn ((const, _), _) => (class, const))
   477       (find_first (fn ((_, (inst_const, _)), _) => inst_const = name) param_insts) | _ => NONE)
   478   
   479 fun labelled_name thy program name =
   480   let val ctxt = Proof_Context.init_global thy in
   481     case Graph.get_node program name of
   482       Fun (c, _) => quote (Code.string_of_const thy c)
   483     | Datatype (tyco, _) => "type " ^ quote (Proof_Context.extern_type ctxt tyco)
   484     | Datatypecons (c, _) => quote (Code.string_of_const thy c)
   485     | Class (class, _) => "class " ^ quote (Proof_Context.extern_class ctxt class)
   486     | Classrel (sub, super) =>
   487         let
   488           val Class (sub, _) = Graph.get_node program sub;
   489           val Class (super, _) = Graph.get_node program super;
   490         in
   491           quote (Proof_Context.extern_class ctxt sub ^ " < " ^ Proof_Context.extern_class ctxt super)
   492         end
   493     | Classparam (c, _) => quote (Code.string_of_const thy c)
   494     | Classinst ((class, (tyco, _)), _) =>
   495         let
   496           val Class (class, _) = Graph.get_node program class;
   497           val Datatype (tyco, _) = Graph.get_node program tyco;
   498         in
   499           quote (Proof_Context.extern_type ctxt tyco ^ " :: " ^ Proof_Context.extern_class ctxt class)
   500         end
   501   end;
   502 
   503 fun linear_stmts program =
   504   rev (Graph.strong_conn program)
   505   |> map (AList.make (Graph.get_node program));
   506 
   507 fun group_stmts thy program =
   508   let
   509     fun is_fun (_, Fun _) = true | is_fun _ = false;
   510     fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
   511     fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
   512     fun is_class (_, Class _) = true | is_class _ = false;
   513     fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
   514     fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
   515     fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
   516     fun group stmts =
   517       if forall (is_datatypecons orf is_datatype) stmts
   518       then (filter is_datatype stmts, [], ([], []))
   519       else if forall (is_class orf is_classrel orf is_classparam) stmts
   520       then ([], filter is_class stmts, ([], []))
   521       else if forall (is_fun orf is_classinst) stmts
   522       then ([], [], List.partition is_fun stmts)
   523       else error ("Illegal mutual dependencies: " ^
   524         (commas o map (labelled_name thy program o fst)) stmts)
   525   in
   526     linear_stmts program
   527     |> map group
   528   end;
   529 
   530 
   531 (** translation kernel **)
   532 
   533 (* generic mechanisms *)
   534 
   535 fun ensure_stmt lookup declare generate thing (dep, (naming, program)) =
   536   let
   537     fun add_dep name = case dep of NONE => I
   538       | SOME dep => Graph.add_edge (dep, name);
   539     val (name, naming') = case lookup naming thing
   540      of SOME name => (name, naming)
   541       | NONE => declare thing naming;
   542   in case try (Graph.get_node program) name
   543    of SOME stmt => program
   544         |> add_dep name
   545         |> pair naming'
   546         |> pair dep
   547         |> pair name
   548     | NONE => program
   549         |> Graph.default_node (name, NoStmt)
   550         |> add_dep name
   551         |> pair naming'
   552         |> curry generate (SOME name)
   553         ||> snd
   554         |-> (fn stmt => (apsnd o Graph.map_node name) (K stmt))
   555         |> pair dep
   556         |> pair name
   557   end;
   558 
   559 exception PERMISSIVE of unit;
   560 
   561 fun translation_error thy permissive some_thm msg sub_msg =
   562   if permissive
   563   then raise PERMISSIVE ()
   564   else
   565     let
   566       val err_thm =
   567         (case some_thm of
   568           SOME thm => "\n(in code equation " ^ Display.string_of_thm_global thy thm ^ ")"
   569         | NONE => "");
   570     in error (msg ^ err_thm ^ ":\n" ^ sub_msg) end;
   571 
   572 fun not_wellsorted thy permissive some_thm ty sort e =
   573   let
   574     val err_class = Sorts.class_error (Context.pretty_global thy) e;
   575     val err_typ =
   576       "Type " ^ Syntax.string_of_typ_global thy ty ^ " not of sort " ^
   577         Syntax.string_of_sort_global thy sort;
   578   in
   579     translation_error thy permissive some_thm "Wellsortedness error"
   580       (err_typ ^ "\n" ^ err_class)
   581   end;
   582 
   583 
   584 (* inference of type annotations for disambiguation with type classes *)
   585 
   586 fun mk_tagged_type (true, T) = Type ("", [T])
   587   | mk_tagged_type (false, T) = T;
   588 
   589 fun dest_tagged_type (Type ("", [T])) = (true, T)
   590   | dest_tagged_type T = (false, T);
   591 
   592 val untag_term = map_types (snd o dest_tagged_type);
   593 
   594 fun tag_term (proj_sort, _) eqngr =
   595   let
   596     val has_sort_constraints = exists (not o null) o map proj_sort o Code_Preproc.sortargs eqngr;
   597     fun tag (Const (c', T')) (Const (c, T)) =
   598         Const (c,
   599           mk_tagged_type (not (null (Term.add_tvarsT T' [])) andalso has_sort_constraints c, T))
   600       | tag (t1 $ u1) (t $ u) = tag t1 t $ tag u1 u
   601       | tag (Abs (_, _, t1)) (Abs (x, T, t)) = Abs (x, T, tag t1 t)
   602       | tag (Free _) (t as Free _) = t
   603       | tag (Var _) (t as Var _) = t
   604       | tag (Bound _) (t as Bound _) = t;
   605   in
   606     tag
   607   end
   608 
   609 fun annotate thy algbr eqngr (c, ty) args rhs =
   610   let
   611     val ctxt = Proof_Context.init_global thy |> Config.put Type_Infer_Context.const_sorts false
   612     val erase = map_types (fn _ => Type_Infer.anyT [])
   613     val reinfer = singleton (Type_Infer_Context.infer_types ctxt)
   614     val lhs = list_comb (Const (c, ty), map (map_types Type.strip_sorts o fst) args)
   615     val reinferred_rhs = snd (Logic.dest_equals (reinfer (Logic.mk_equals (lhs, erase rhs))))
   616   in
   617     tag_term algbr eqngr reinferred_rhs rhs
   618   end
   619 
   620 fun annotate_eqns thy algbr eqngr (c, ty) eqns = 
   621   map (apfst (fn (args, (rhs, some_abs)) => (args,
   622     (annotate thy algbr eqngr (c, ty) args rhs, some_abs)))) eqns
   623 
   624 
   625 (* translation *)
   626 
   627 fun ensure_tyco thy algbr eqngr permissive tyco =
   628   let
   629     val ((vs, cos), _) = Code.get_type thy tyco;
   630     val stmt_datatype =
   631       fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   632       ##>> fold_map (fn (c, (vs, tys)) =>
   633         ensure_const thy algbr eqngr permissive c
   634         ##>> pair (map (unprefix "'" o fst) vs)
   635         ##>> fold_map (translate_typ thy algbr eqngr permissive) tys) cos
   636       #>> (fn info => Datatype (tyco, info));
   637   in ensure_stmt lookup_tyco (declare_tyco thy) stmt_datatype tyco end
   638 and ensure_const thy algbr eqngr permissive c =
   639   let
   640     fun stmt_datatypecons tyco =
   641       ensure_tyco thy algbr eqngr permissive tyco
   642       #>> (fn tyco => Datatypecons (c, tyco));
   643     fun stmt_classparam class =
   644       ensure_class thy algbr eqngr permissive class
   645       #>> (fn class => Classparam (c, class));
   646     fun stmt_fun cert =
   647       let
   648         val ((vs, ty), eqns) = Code.equations_of_cert thy cert;
   649         val eqns' = annotate_eqns thy algbr eqngr (c, ty) eqns
   650         val some_case_cong = Code.get_case_cong thy c;
   651       in
   652         fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   653         ##>> translate_typ thy algbr eqngr permissive ty
   654         ##>> translate_eqns thy algbr eqngr permissive eqns'
   655         #>> (fn info => Fun (c, (info, some_case_cong)))
   656       end;
   657     val stmt_const = case Code.get_type_of_constr_or_abstr thy c
   658      of SOME (tyco, _) => stmt_datatypecons tyco
   659       | NONE => (case AxClass.class_of_param thy c
   660          of SOME class => stmt_classparam class
   661           | NONE => stmt_fun (Code_Preproc.cert eqngr c))
   662   in ensure_stmt lookup_const (declare_const thy) stmt_const c end
   663 and ensure_class thy (algbr as (_, algebra)) eqngr permissive class =
   664   let
   665     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   666     val cs = #params (AxClass.get_info thy class);
   667     val stmt_class =
   668       fold_map (fn super_class => ensure_class thy algbr eqngr permissive super_class
   669         ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)) super_classes
   670       ##>> fold_map (fn (c, ty) => ensure_const thy algbr eqngr permissive c
   671         ##>> translate_typ thy algbr eqngr permissive ty) cs
   672       #>> (fn info => Class (class, (unprefix "'" Name.aT, info)))
   673   in ensure_stmt lookup_class (declare_class thy) stmt_class class end
   674 and ensure_classrel thy algbr eqngr permissive (sub_class, super_class) =
   675   let
   676     val stmt_classrel =
   677       ensure_class thy algbr eqngr permissive sub_class
   678       ##>> ensure_class thy algbr eqngr permissive super_class
   679       #>> Classrel;
   680   in ensure_stmt lookup_classrel (declare_classrel thy) stmt_classrel (sub_class, super_class) end
   681 and ensure_inst thy (algbr as (_, algebra)) eqngr permissive (class, tyco) =
   682   let
   683     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   684     val these_classparams = these o try (#params o AxClass.get_info thy);
   685     val classparams = these_classparams class;
   686     val further_classparams = maps these_classparams
   687       ((Sorts.complete_sort algebra o Sorts.super_classes algebra) class);
   688     val vs = Name.invent_names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
   689     val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
   690     val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
   691       Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
   692     val arity_typ = Type (tyco, map TFree vs);
   693     val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
   694     fun translate_super_instance super_class =
   695       ensure_class thy algbr eqngr permissive super_class
   696       ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)
   697       ##>> translate_dicts thy algbr eqngr permissive NONE (arity_typ, [super_class])
   698       #>> (fn ((super_class, classrel), [Dict ([], Dict_Const (inst, dss))]) =>
   699             (super_class, (classrel, (inst, dss))));
   700     fun translate_classparam_instance (c, ty) =
   701       let
   702         val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
   703         val thm = AxClass.unoverload_conv thy (Thm.cterm_of thy raw_const);
   704         val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
   705           o Logic.dest_equals o Thm.prop_of) thm;
   706       in
   707         ensure_const thy algbr eqngr permissive c
   708         ##>> translate_const thy algbr eqngr permissive (SOME thm) (const, NONE)
   709         #>> (fn (c, IConst const') => ((c, const'), (thm, true)))
   710       end;
   711     val stmt_inst =
   712       ensure_class thy algbr eqngr permissive class
   713       ##>> ensure_tyco thy algbr eqngr permissive tyco
   714       ##>> fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   715       ##>> fold_map translate_super_instance super_classes
   716       ##>> fold_map translate_classparam_instance classparams
   717       ##>> fold_map translate_classparam_instance further_classparams
   718       #>> (fn (((((class, tyco), arity_args), super_instances),
   719         classparam_instances), further_classparam_instances) =>
   720           Classinst ((class, (tyco, arity_args)), (super_instances,
   721             (classparam_instances, further_classparam_instances))));
   722   in ensure_stmt lookup_instance (declare_instance thy) stmt_inst (class, tyco) end
   723 and translate_typ thy algbr eqngr permissive (TFree (v, _)) =
   724       pair (ITyVar (unprefix "'" v))
   725   | translate_typ thy algbr eqngr permissive (Type (tyco, tys)) =
   726       ensure_tyco thy algbr eqngr permissive tyco
   727       ##>> fold_map (translate_typ thy algbr eqngr permissive) tys
   728       #>> (fn (tyco, tys) => tyco `%% tys)
   729 and translate_term thy algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
   730       translate_app thy algbr eqngr permissive some_thm (((c, ty), []), some_abs)
   731   | translate_term thy algbr eqngr permissive some_thm (Free (v, _), some_abs) =
   732       pair (IVar (SOME v))
   733   | translate_term thy algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
   734       let
   735         val (v', t') = Syntax_Trans.variant_abs (Name.desymbolize false v, ty, t);
   736         val v'' = if member (op =) (Term.add_free_names t' []) v'
   737           then SOME v' else NONE
   738       in
   739         translate_typ thy algbr eqngr permissive ty
   740         ##>> translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   741         #>> (fn (ty, t) => (v'', ty) `|=> t)
   742       end
   743   | translate_term thy algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
   744       case strip_comb t
   745        of (Const (c, ty), ts) =>
   746             translate_app thy algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
   747         | (t', ts) =>
   748             translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   749             ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   750             #>> (fn (t, ts) => t `$$ ts)
   751 and translate_eqn thy algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
   752   fold_map (translate_term thy algbr eqngr permissive some_thm) args
   753   ##>> translate_term thy algbr eqngr permissive some_thm (rhs, some_abs)
   754   #>> rpair (some_thm, proper)
   755 and translate_eqns thy algbr eqngr permissive eqns prgrm =
   756   prgrm |> fold_map (translate_eqn thy algbr eqngr permissive) eqns
   757     handle PERMISSIVE () => ([], prgrm)
   758 and translate_const thy algbr eqngr permissive some_thm ((c, ty), some_abs) =
   759   let
   760     val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
   761         andalso Code.is_abstr thy c
   762         then translation_error thy permissive some_thm
   763           "Abstraction violation" ("constant " ^ Code.string_of_const thy c)
   764       else ()
   765     val (annotate, ty') = dest_tagged_type ty
   766     val arg_typs = Sign.const_typargs thy (c, ty');
   767     val sorts = Code_Preproc.sortargs eqngr c;
   768     val (function_typs, body_typ) = Term.strip_type ty';
   769   in
   770     ensure_const thy algbr eqngr permissive c
   771     ##>> fold_map (translate_typ thy algbr eqngr permissive) arg_typs
   772     ##>> fold_map (translate_dicts thy algbr eqngr permissive some_thm) (arg_typs ~~ sorts)
   773     ##>> fold_map (translate_typ thy algbr eqngr permissive) (body_typ :: function_typs)
   774     #>> (fn (((c, arg_typs), dss), body_typ :: function_typs) =>
   775       IConst (c, (((arg_typs, dss), (function_typs, body_typ)), annotate)))
   776   end
   777 and translate_app_const thy algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
   778   translate_const thy algbr eqngr permissive some_thm (c_ty, some_abs)
   779   ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   780   #>> (fn (t, ts) => t `$$ ts)
   781 and translate_case thy algbr eqngr permissive some_thm (num_args, (t_pos, case_pats)) (c_ty, ts) =
   782   let
   783     fun arg_types num_args ty = fst (chop num_args (binder_types ty));
   784     val tys = arg_types num_args (snd c_ty);
   785     val ty = nth tys t_pos;
   786     fun mk_constr NONE t = NONE
   787       | mk_constr (SOME c) t =
   788           let
   789             val n = Code.args_number thy c;
   790           in SOME ((c, arg_types n (fastype_of (untag_term t)) ---> ty), n) end;
   791     val constrs =
   792       if null case_pats then []
   793       else map_filter I (map2 mk_constr case_pats (nth_drop t_pos ts));
   794     fun casify naming constrs ty ts =
   795       let
   796         val undefineds = map_filter (lookup_const naming) (Code.undefineds thy);
   797         fun collapse_clause vs_map ts body =
   798           let
   799           in case body
   800            of IConst (c, _) => if member (op =) undefineds c
   801                 then []
   802                 else [(ts, body)]
   803             | ICase (((IVar (SOME v), _), subclauses), _) =>
   804                 if forall (fn (pat', body') => exists_var pat' v
   805                   orelse not (exists_var body' v)) subclauses
   806                 then case AList.lookup (op =) vs_map v
   807                  of SOME i => maps (fn (pat', body') =>
   808                       collapse_clause (AList.delete (op =) v vs_map)
   809                         (nth_map i (K pat') ts) body') subclauses
   810                   | NONE => [(ts, body)]
   811                 else [(ts, body)]
   812             | _ => [(ts, body)]
   813           end;
   814         fun mk_clause mk tys t =
   815           let
   816             val (vs, body) = unfold_abs_eta tys t;
   817             val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
   818             val ts = map (IVar o fst) vs;
   819           in map mk (collapse_clause vs_map ts body) end;
   820         val t = nth ts t_pos;
   821         val ts_clause = nth_drop t_pos ts;
   822         val clauses = if null case_pats
   823           then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
   824           else maps (fn ((constr as IConst (_, ((_, (tys, _)), _)), n), t) =>
   825             mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
   826               (constrs ~~ (map_filter (fn (NONE, _) => NONE | (SOME _, t) => SOME t)
   827                 (case_pats ~~ ts_clause)));
   828       in ((t, ty), clauses) end;
   829   in
   830     translate_const thy algbr eqngr permissive some_thm (c_ty, NONE)
   831     ##>> fold_map (fn (constr, n) => translate_const thy algbr eqngr permissive some_thm (constr, NONE)
   832       #>> rpair n) constrs
   833     ##>> translate_typ thy algbr eqngr permissive ty
   834     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   835     #-> (fn (((t, constrs), ty), ts) =>
   836       `(fn (_, (naming, _)) => ICase (casify naming constrs ty ts, t `$$ ts)))
   837   end
   838 and translate_app_case thy algbr eqngr permissive some_thm (case_scheme as (num_args, _)) ((c, ty), ts) =
   839   if length ts < num_args then
   840     let
   841       val k = length ts;
   842       val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
   843       val ctxt = (fold o fold_aterms) Term.declare_term_frees ts Name.context;
   844       val vs = Name.invent_names ctxt "a" tys;
   845     in
   846       fold_map (translate_typ thy algbr eqngr permissive) tys
   847       ##>> translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts @ map Free vs)
   848       #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
   849     end
   850   else if length ts > num_args then
   851     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), take num_args ts)
   852     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
   853     #>> (fn (t, ts) => t `$$ ts)
   854   else
   855     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts)
   856 and translate_app thy algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
   857   case Code.get_case_scheme thy c
   858    of SOME case_scheme => translate_app_case thy algbr eqngr permissive some_thm case_scheme c_ty_ts
   859     | NONE => translate_app_const thy algbr eqngr permissive some_thm (c_ty_ts, some_abs)
   860 and translate_tyvar_sort thy (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
   861   fold_map (ensure_class thy algbr eqngr permissive) (proj_sort sort)
   862   #>> (fn sort => (unprefix "'" v, sort))
   863 and translate_dicts thy (algbr as (proj_sort, algebra)) eqngr permissive some_thm (ty, sort) =
   864   let
   865     datatype typarg_witness =
   866         Weakening of (class * class) list * plain_typarg_witness
   867     and plain_typarg_witness =
   868         Global of (class * string) * typarg_witness list list
   869       | Local of string * (int * sort);
   870     fun class_relation ((Weakening (classrels, x)), sub_class) super_class =
   871       Weakening ((sub_class, super_class) :: classrels, x);
   872     fun type_constructor (tyco, _) dss class =
   873       Weakening ([], Global ((class, tyco), (map o map) fst dss));
   874     fun type_variable (TFree (v, sort)) =
   875       let
   876         val sort' = proj_sort sort;
   877       in map_index (fn (n, class) => (Weakening ([], Local (v, (n, sort'))), class)) sort' end;
   878     val typarg_witnesses = Sorts.of_sort_derivation algebra
   879       {class_relation = K (Sorts.classrel_derivation algebra class_relation),
   880        type_constructor = type_constructor,
   881        type_variable = type_variable} (ty, proj_sort sort)
   882       handle Sorts.CLASS_ERROR e => not_wellsorted thy permissive some_thm ty sort e;
   883     fun mk_dict (Weakening (classrels, x)) =
   884           fold_map (ensure_classrel thy algbr eqngr permissive) classrels
   885           ##>> mk_plain_dict x
   886           #>> Dict 
   887     and mk_plain_dict (Global (inst, dss)) =
   888           ensure_inst thy algbr eqngr permissive inst
   889           ##>> (fold_map o fold_map) mk_dict dss
   890           #>> (fn (inst, dss) => Dict_Const (inst, dss))
   891       | mk_plain_dict (Local (v, (n, sort))) =
   892           pair (Dict_Var (unprefix "'" v, (n, length sort)))
   893   in fold_map mk_dict typarg_witnesses end;
   894 
   895 
   896 (* store *)
   897 
   898 structure Program = Code_Data
   899 (
   900   type T = naming * program;
   901   val empty = (empty_naming, Graph.empty);
   902 );
   903 
   904 fun invoke_generation ignore_cache thy (algebra, eqngr) generate thing =
   905   Program.change_yield (if ignore_cache then NONE else SOME thy)
   906     (fn naming_program => (NONE, naming_program)
   907       |> generate thy algebra eqngr thing
   908       |-> (fn thing => fn (_, naming_program) => (thing, naming_program)));
   909 
   910 
   911 (* program generation *)
   912 
   913 fun consts_program thy permissive consts =
   914   let
   915     fun project_consts consts (naming, program) =
   916       if permissive then (consts, (naming, program))
   917       else (consts, (naming, Graph.restrict
   918         (member (op =) (Graph.all_succs program consts)) program));
   919     fun generate_consts thy algebra eqngr =
   920       fold_map (ensure_const thy algebra eqngr permissive);
   921   in
   922     invoke_generation permissive thy (Code_Preproc.obtain false thy consts [])
   923       generate_consts consts
   924     |-> project_consts
   925   end;
   926 
   927 
   928 (* value evaluation *)
   929 
   930 fun ensure_value thy algbr eqngr t =
   931   let
   932     val ty = fastype_of t;
   933     val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
   934       o dest_TFree))) t [];
   935     val t' = annotate thy algbr eqngr (Term.dummy_patternN, ty) [] t;
   936     val stmt_value =
   937       fold_map (translate_tyvar_sort thy algbr eqngr false) vs
   938       ##>> translate_typ thy algbr eqngr false ty
   939       ##>> translate_term thy algbr eqngr false NONE (t', NONE)
   940       #>> (fn ((vs, ty), t) => Fun
   941         (Term.dummy_patternN, (((vs, ty), [(([], t), (NONE, true))]), NONE)));
   942     fun term_value (dep, (naming, program1)) =
   943       let
   944         val Fun (_, ((vs_ty, [(([], t), _)]), _)) =
   945           Graph.get_node program1 Term.dummy_patternN;
   946         val deps = Graph.immediate_succs program1 Term.dummy_patternN;
   947         val program2 = Graph.del_node Term.dummy_patternN program1;
   948         val deps_all = Graph.all_succs program2 deps;
   949         val program3 = Graph.restrict (member (op =) deps_all) program2;
   950       in (((naming, program3), ((vs_ty, t), deps)), (dep, (naming, program2))) end;
   951   in
   952     ensure_stmt ((K o K) NONE) pair stmt_value Term.dummy_patternN
   953     #> snd
   954     #> term_value
   955   end;
   956 
   957 fun original_sorts vs =
   958   map (fn (v, _) => (v, (the o AList.lookup (op =) vs o prefix "'") v));
   959 
   960 fun dynamic_evaluator thy evaluator algebra eqngr vs t =
   961   let
   962     val (((naming, program), (((vs', ty'), t'), deps)), _) =
   963       invoke_generation false thy (algebra, eqngr) ensure_value t;
   964   in evaluator naming program ((original_sorts vs vs', (vs', ty')), t') deps end;
   965 
   966 fun dynamic_conv thy evaluator =
   967   Code_Preproc.dynamic_conv thy (dynamic_evaluator thy evaluator);
   968 
   969 fun dynamic_value thy postproc evaluator =
   970   Code_Preproc.dynamic_value thy postproc (dynamic_evaluator thy evaluator);
   971 
   972 fun lift_evaluation thy evaluation' algebra eqngr naming program vs t =
   973   let
   974     val (((_, program'), (((vs', ty'), t'), deps)), _) =
   975       ensure_value thy algebra eqngr t (NONE, (naming, program));
   976   in evaluation' ((original_sorts vs vs', (vs', ty')), t') deps end;
   977 
   978 fun lift_evaluator thy evaluator' consts algebra eqngr =
   979   let
   980     fun generate_consts thy algebra eqngr =
   981       fold_map (ensure_const thy algebra eqngr false);
   982     val (consts', (naming, program)) =
   983       invoke_generation true thy (algebra, eqngr) generate_consts consts;
   984     val evaluation' = evaluator' naming program consts';
   985   in lift_evaluation thy evaluation' algebra eqngr naming program end;
   986 
   987 fun lift_evaluator_simple thy evaluator' consts algebra eqngr =
   988   let
   989     fun generate_consts thy algebra eqngr =
   990       fold_map (ensure_const thy algebra eqngr false);
   991     val (consts', (naming, program)) =
   992       invoke_generation true thy (algebra, eqngr) generate_consts consts;
   993   in evaluator' program end;
   994 
   995 fun static_conv thy consts conv =
   996   Code_Preproc.static_conv thy consts (lift_evaluator thy conv consts);
   997 
   998 fun static_conv_simple thy consts conv =
   999   Code_Preproc.static_conv thy consts (lift_evaluator_simple thy conv consts);
  1000 
  1001 fun static_value thy postproc consts evaluator =
  1002   Code_Preproc.static_value thy postproc consts (lift_evaluator thy evaluator consts);
  1003 
  1004 
  1005 (** diagnostic commands **)
  1006 
  1007 fun read_const_exprs thy =
  1008   let
  1009     fun consts_of thy' = Symtab.fold (fn (c, (_, NONE)) => cons c | _ => I)
  1010       ((snd o #constants o Consts.dest o Sign.consts_of) thy') [];
  1011     fun belongs_here thy' c = forall
  1012       (fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
  1013     fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
  1014     fun read_const_expr "_" = ([], consts_of thy)
  1015       | read_const_expr s = if String.isSuffix "._" s
  1016           then ([], consts_of_select (Context.this_theory thy (unsuffix "._" s)))
  1017           else ([Code.read_const thy s], []);
  1018   in pairself flat o split_list o map read_const_expr end;
  1019 
  1020 fun code_depgr thy consts =
  1021   let
  1022     val (_, eqngr) = Code_Preproc.obtain true thy consts [];
  1023     val all_consts = Graph.all_succs eqngr consts;
  1024   in Graph.restrict (member (op =) all_consts) eqngr end;
  1025 
  1026 fun code_thms thy = Pretty.writeln o Code_Preproc.pretty thy o code_depgr thy;
  1027 
  1028 fun code_deps thy consts =
  1029   let
  1030     val eqngr = code_depgr thy consts;
  1031     val constss = Graph.strong_conn eqngr;
  1032     val mapping = Symtab.empty |> fold (fn consts => fold (fn const =>
  1033       Symtab.update (const, consts)) consts) constss;
  1034     fun succs consts = consts
  1035       |> maps (Graph.immediate_succs eqngr)
  1036       |> subtract (op =) consts
  1037       |> map (the o Symtab.lookup mapping)
  1038       |> distinct (op =);
  1039     val conn = [] |> fold (fn consts => cons (consts, succs consts)) constss;
  1040     fun namify consts = map (Code.string_of_const thy) consts
  1041       |> commas;
  1042     val prgr = map (fn (consts, constss) =>
  1043       { name = namify consts, ID = namify consts, dir = "", unfold = true,
  1044         path = "", parents = map namify constss }) conn;
  1045   in Present.display_graph prgr end;
  1046 
  1047 local
  1048 
  1049 fun code_thms_cmd thy = code_thms thy o op @ o read_const_exprs thy;
  1050 fun code_deps_cmd thy = code_deps thy o op @ o read_const_exprs thy;
  1051 
  1052 in
  1053 
  1054 val _ =
  1055   Outer_Syntax.improper_command @{command_spec "code_thms"}
  1056     "print system of code equations for code"
  1057     (Scan.repeat1 Parse.term_group
  1058       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
  1059         o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of)));
  1060 
  1061 val _ =
  1062   Outer_Syntax.improper_command @{command_spec "code_deps"}
  1063     "visualize dependencies of code equations for code"
  1064     (Scan.repeat1 Parse.term_group
  1065       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
  1066         o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of)));
  1067 
  1068 end;
  1069 
  1070 end; (*struct*)
  1071 
  1072 
  1073 structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;