src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Tue, 31 May 2011 16:38:36 +0200
changeset 43942 1d46d85cd78b
parent 43939 e88e974c4846
child 43943 9a42899ec169
permissions -rw-r--r--
make "prepare_atp_problem" more robust w.r.t. choice of type system
     1 (*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type 'a fo_term = 'a ATP_Problem.fo_term
    12   type format = ATP_Problem.format
    13   type formula_kind = ATP_Problem.formula_kind
    14   type 'a problem = 'a ATP_Problem.problem
    15 
    16   type name = string * string
    17 
    18   datatype type_literal =
    19     TyLitVar of name * name |
    20     TyLitFree of name * name
    21 
    22   datatype arity_literal =
    23     TConsLit of name * name * name list |
    24     TVarLit of name * name
    25 
    26   type arity_clause =
    27     {name: string,
    28      prem_lits: arity_literal list,
    29      concl_lits: arity_literal}
    30 
    31   type class_rel_clause =
    32     {name: string,
    33      subclass: name,
    34      superclass: name}
    35 
    36   datatype combterm =
    37     CombConst of name * typ * typ list |
    38     CombVar of name * typ |
    39     CombApp of combterm * combterm
    40 
    41   datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
    42 
    43   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    44   datatype type_level =
    45     All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
    46   datatype type_heaviness = Heavy | Light
    47 
    48   datatype type_system =
    49     Simple_Types of type_level |
    50     Preds of polymorphism * type_level * type_heaviness |
    51     Tags of polymorphism * type_level * type_heaviness
    52 
    53   type translated_formula
    54 
    55   val type_tag_name : string
    56   val bound_var_prefix : string
    57   val schematic_var_prefix: string
    58   val fixed_var_prefix: string
    59   val tvar_prefix: string
    60   val tfree_prefix: string
    61   val const_prefix: string
    62   val type_const_prefix: string
    63   val class_prefix: string
    64   val skolem_const_prefix : string
    65   val old_skolem_const_prefix : string
    66   val new_skolem_const_prefix : string
    67   val fact_prefix : string
    68   val conjecture_prefix : string
    69   val helper_prefix : string
    70   val typed_helper_suffix : string
    71   val predicator_name : string
    72   val app_op_name : string
    73   val type_pred_name : string
    74   val simple_type_prefix : string
    75   val ascii_of: string -> string
    76   val unascii_of: string -> string
    77   val strip_prefix_and_unascii : string -> string -> string option
    78   val proxify_const : string -> (int * (string * string)) option
    79   val invert_const: string -> string
    80   val unproxify_const: string -> string
    81   val make_bound_var : string -> string
    82   val make_schematic_var : string * int -> string
    83   val make_fixed_var : string -> string
    84   val make_schematic_type_var : string * int -> string
    85   val make_fixed_type_var : string -> string
    86   val make_fixed_const : string -> string
    87   val make_fixed_type_const : string -> string
    88   val make_type_class : string -> string
    89   val new_skolem_var_name_from_const : string -> string
    90   val num_type_args : theory -> string -> int
    91   val make_arity_clauses :
    92     theory -> string list -> class list -> class list * arity_clause list
    93   val make_class_rel_clauses :
    94     theory -> class list -> class list -> class_rel_clause list
    95   val combtyp_of : combterm -> typ
    96   val strip_combterm_comb : combterm -> combterm * combterm list
    97   val atyps_of : typ -> typ list
    98   val combterm_from_term :
    99     theory -> (string * typ) list -> term -> combterm * typ list
   100   val is_locality_global : locality -> bool
   101   val type_sys_from_string : string -> type_system
   102   val polymorphism_of_type_sys : type_system -> polymorphism
   103   val level_of_type_sys : type_system -> type_level
   104   val is_type_sys_virtually_sound : type_system -> bool
   105   val is_type_sys_fairly_sound : type_system -> bool
   106   val choose_format : format list -> type_system -> format * type_system
   107   val raw_type_literals_for_types : typ list -> type_literal list
   108   val unmangled_const : string -> string * string fo_term list
   109   val translate_atp_fact :
   110     Proof.context -> format -> type_system -> bool -> (string * locality) * thm
   111     -> translated_formula option * ((string * locality) * thm)
   112   val helper_table : (string * (bool * thm list)) list
   113   val tfree_classes_of_terms : term list -> string list
   114   val tvar_classes_of_terms : term list -> string list
   115   val type_consts_of_terms : theory -> term list -> string list
   116   val prepare_atp_problem :
   117     Proof.context -> format -> formula_kind -> formula_kind -> type_system
   118     -> bool option -> bool -> bool -> term list -> term
   119     -> (translated_formula option * ((string * 'a) * thm)) list
   120     -> string problem * string Symtab.table * int * int
   121        * (string * 'a) list vector * int list * int Symtab.table
   122   val atp_problem_weights : string problem -> (string * real) list
   123 end;
   124 
   125 structure ATP_Translate : ATP_TRANSLATE =
   126 struct
   127 
   128 open ATP_Util
   129 open ATP_Problem
   130 
   131 type name = string * string
   132 
   133 (* FIXME: avoid *)
   134 fun union_all xss = fold (union (op =)) xss []
   135 
   136 (* experimental *)
   137 val generate_useful_info = false
   138 
   139 fun useful_isabelle_info s =
   140   if generate_useful_info then
   141     SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   142   else
   143     NONE
   144 
   145 val intro_info = useful_isabelle_info "intro"
   146 val elim_info = useful_isabelle_info "elim"
   147 val simp_info = useful_isabelle_info "simp"
   148 
   149 val type_tag_name = "ti"
   150 
   151 val bound_var_prefix = "B_"
   152 val schematic_var_prefix = "V_"
   153 val fixed_var_prefix = "v_"
   154 
   155 val tvar_prefix = "T_"
   156 val tfree_prefix = "t_"
   157 
   158 val const_prefix = "c_"
   159 val type_const_prefix = "tc_"
   160 val class_prefix = "cl_"
   161 
   162 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
   163 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   164 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   165 
   166 val type_decl_prefix = "ty_"
   167 val sym_decl_prefix = "sy_"
   168 val sym_formula_prefix = "sym_"
   169 val fact_prefix = "fact_"
   170 val conjecture_prefix = "conj_"
   171 val helper_prefix = "help_"
   172 val class_rel_clause_prefix = "crel_"
   173 val arity_clause_prefix = "arity_"
   174 val tfree_clause_prefix = "tfree_"
   175 
   176 val typed_helper_suffix = "_T"
   177 val untyped_helper_suffix = "_U"
   178 
   179 val predicator_name = "hBOOL"
   180 val app_op_name = "hAPP"
   181 val type_pred_name = "is"
   182 val simple_type_prefix = "ty_"
   183 
   184 (* Freshness almost guaranteed! *)
   185 val sledgehammer_weak_prefix = "Sledgehammer:"
   186 
   187 (*Escaping of special characters.
   188   Alphanumeric characters are left unchanged.
   189   The character _ goes to __
   190   Characters in the range ASCII space to / go to _A to _P, respectively.
   191   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   192 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   193 
   194 fun stringN_of_int 0 _ = ""
   195   | stringN_of_int k n =
   196     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   197 
   198 fun ascii_of_char c =
   199   if Char.isAlphaNum c then
   200     String.str c
   201   else if c = #"_" then
   202     "__"
   203   else if #" " <= c andalso c <= #"/" then
   204     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   205   else
   206     (* fixed width, in case more digits follow *)
   207     "_" ^ stringN_of_int 3 (Char.ord c)
   208 
   209 val ascii_of = String.translate ascii_of_char
   210 
   211 (** Remove ASCII armoring from names in proof files **)
   212 
   213 (* We don't raise error exceptions because this code can run inside a worker
   214    thread. Also, the errors are impossible. *)
   215 val unascii_of =
   216   let
   217     fun un rcs [] = String.implode(rev rcs)
   218       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   219         (* Three types of _ escapes: __, _A to _P, _nnn *)
   220       | un rcs (#"_" :: #"_" :: cs) = un (#"_"::rcs) cs
   221       | un rcs (#"_" :: c :: cs) =
   222         if #"A" <= c andalso c<= #"P" then
   223           (* translation of #" " to #"/" *)
   224           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   225         else
   226           let val digits = List.take (c::cs, 3) handle Subscript => [] in
   227             case Int.fromString (String.implode digits) of
   228               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   229             | NONE => un (c:: #"_"::rcs) cs (* ERROR *)
   230           end
   231       | un rcs (c :: cs) = un (c :: rcs) cs
   232   in un [] o String.explode end
   233 
   234 (* If string s has the prefix s1, return the result of deleting it,
   235    un-ASCII'd. *)
   236 fun strip_prefix_and_unascii s1 s =
   237   if String.isPrefix s1 s then
   238     SOME (unascii_of (String.extract (s, size s1, NONE)))
   239   else
   240     NONE
   241 
   242 val proxies =
   243   [("c_False",
   244     (@{const_name False}, (0, ("fFalse", @{const_name ATP.fFalse})))),
   245    ("c_True", (@{const_name True}, (0, ("fTrue", @{const_name ATP.fTrue})))),
   246    ("c_Not", (@{const_name Not}, (1, ("fNot", @{const_name ATP.fNot})))),
   247    ("c_conj", (@{const_name conj}, (2, ("fconj", @{const_name ATP.fconj})))),
   248    ("c_disj", (@{const_name disj}, (2, ("fdisj", @{const_name ATP.fdisj})))),
   249    ("c_implies",
   250     (@{const_name implies}, (2, ("fimplies", @{const_name ATP.fimplies})))),
   251    ("equal",
   252     (@{const_name HOL.eq}, (2, ("fequal", @{const_name ATP.fequal}))))]
   253 
   254 val proxify_const = AList.lookup (op =) proxies #> Option.map snd
   255 
   256 (* Readable names for the more common symbolic functions. Do not mess with the
   257    table unless you know what you are doing. *)
   258 val const_trans_table =
   259   [(@{type_name Product_Type.prod}, "prod"),
   260    (@{type_name Sum_Type.sum}, "sum"),
   261    (@{const_name False}, "False"),
   262    (@{const_name True}, "True"),
   263    (@{const_name Not}, "Not"),
   264    (@{const_name conj}, "conj"),
   265    (@{const_name disj}, "disj"),
   266    (@{const_name implies}, "implies"),
   267    (@{const_name HOL.eq}, "equal"),
   268    (@{const_name If}, "If"),
   269    (@{const_name Set.member}, "member"),
   270    (@{const_name Meson.COMBI}, "COMBI"),
   271    (@{const_name Meson.COMBK}, "COMBK"),
   272    (@{const_name Meson.COMBB}, "COMBB"),
   273    (@{const_name Meson.COMBC}, "COMBC"),
   274    (@{const_name Meson.COMBS}, "COMBS")]
   275   |> Symtab.make
   276   |> fold (Symtab.update o swap o snd o snd o snd) proxies
   277 
   278 (* Invert the table of translations between Isabelle and ATPs. *)
   279 val const_trans_table_inv =
   280   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   281 val const_trans_table_unprox =
   282   Symtab.empty
   283   |> fold (fn (_, (isa, (_, (_, metis)))) => Symtab.update (metis, isa)) proxies
   284 
   285 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   286 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   287 
   288 fun lookup_const c =
   289   case Symtab.lookup const_trans_table c of
   290     SOME c' => c'
   291   | NONE => ascii_of c
   292 
   293 (*Remove the initial ' character from a type variable, if it is present*)
   294 fun trim_type_var s =
   295   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
   296   else raise Fail ("trim_type: Malformed type variable encountered: " ^ s)
   297 
   298 fun ascii_of_indexname (v,0) = ascii_of v
   299   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ string_of_int i
   300 
   301 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   302 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   303 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   304 
   305 fun make_schematic_type_var (x,i) =
   306       tvar_prefix ^ (ascii_of_indexname (trim_type_var x, i))
   307 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x))
   308 
   309 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
   310 fun make_fixed_const @{const_name HOL.eq} = "equal"
   311   | make_fixed_const c = const_prefix ^ lookup_const c
   312 
   313 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   314 
   315 fun make_type_class clas = class_prefix ^ ascii_of clas
   316 
   317 fun new_skolem_var_name_from_const s =
   318   let val ss = s |> space_explode Long_Name.separator in
   319     nth ss (length ss - 2)
   320   end
   321 
   322 (* The number of type arguments of a constant, zero if it's monomorphic. For
   323    (instances of) Skolem pseudoconstants, this information is encoded in the
   324    constant name. *)
   325 fun num_type_args thy s =
   326   if String.isPrefix skolem_const_prefix s then
   327     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   328   else
   329     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   330 
   331 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   332 
   333 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   334 datatype type_literal =
   335   TyLitVar of name * name |
   336   TyLitFree of name * name
   337 
   338 
   339 (** Isabelle arities **)
   340 
   341 datatype arity_literal =
   342   TConsLit of name * name * name list |
   343   TVarLit of name * name
   344 
   345 fun gen_TVars 0 = []
   346   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   347 
   348 fun pack_sort (_,[])  = []
   349   | pack_sort (tvar, "HOL.type" :: srt) =
   350     pack_sort (tvar, srt) (* IGNORE sort "type" *)
   351   | pack_sort (tvar, cls :: srt) =
   352     (`make_type_class cls, `I tvar) :: pack_sort (tvar, srt)
   353 
   354 type arity_clause =
   355   {name: string,
   356    prem_lits: arity_literal list,
   357    concl_lits: arity_literal}
   358 
   359 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   360 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   361   let
   362     val tvars = gen_TVars (length args)
   363     val tvars_srts = ListPair.zip (tvars, args)
   364   in
   365     {name = name,
   366      prem_lits = map TVarLit (union_all (map pack_sort tvars_srts)),
   367      concl_lits = TConsLit (`make_type_class cls,
   368                             `make_fixed_type_const tcons,
   369                             tvars ~~ tvars)}
   370   end
   371 
   372 fun arity_clause _ _ (_, []) = []
   373   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
   374       arity_clause seen n (tcons,ars)
   375   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
   376       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
   377           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ string_of_int n, ar) ::
   378           arity_clause seen (n+1) (tcons,ars)
   379       else
   380           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
   381           arity_clause (class::seen) n (tcons,ars)
   382 
   383 fun multi_arity_clause [] = []
   384   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   385       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   386 
   387 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
   388   provided its arguments have the corresponding sorts.*)
   389 fun type_class_pairs thy tycons classes =
   390   let
   391     val alg = Sign.classes_of thy
   392     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   393     fun add_class tycon class =
   394       cons (class, domain_sorts tycon class)
   395       handle Sorts.CLASS_ERROR _ => I
   396     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   397   in map try_classes tycons end
   398 
   399 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   400 fun iter_type_class_pairs _ _ [] = ([], [])
   401   | iter_type_class_pairs thy tycons classes =
   402       let val cpairs = type_class_pairs thy tycons classes
   403           val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
   404             |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
   405           val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   406       in (union (op =) classes' classes, union (op =) cpairs' cpairs) end
   407 
   408 fun make_arity_clauses thy tycons =
   409   iter_type_class_pairs thy tycons ##> multi_arity_clause
   410 
   411 
   412 (** Isabelle class relations **)
   413 
   414 type class_rel_clause =
   415   {name: string,
   416    subclass: name,
   417    superclass: name}
   418 
   419 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
   420 fun class_pairs _ [] _ = []
   421   | class_pairs thy subs supers =
   422       let
   423         val class_less = Sorts.class_less (Sign.classes_of thy)
   424         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   425         fun add_supers sub = fold (add_super sub) supers
   426       in fold add_supers subs [] end
   427 
   428 fun make_class_rel_clause (sub,super) =
   429   {name = sub ^ "_" ^ super,
   430    subclass = `make_type_class sub,
   431    superclass = `make_type_class super}
   432 
   433 fun make_class_rel_clauses thy subs supers =
   434   map make_class_rel_clause (class_pairs thy subs supers)
   435 
   436 datatype combterm =
   437   CombConst of name * typ * typ list |
   438   CombVar of name * typ |
   439   CombApp of combterm * combterm
   440 
   441 fun combtyp_of (CombConst (_, T, _)) = T
   442   | combtyp_of (CombVar (_, T)) = T
   443   | combtyp_of (CombApp (t1, _)) = snd (dest_funT (combtyp_of t1))
   444 
   445 (*gets the head of a combinator application, along with the list of arguments*)
   446 fun strip_combterm_comb u =
   447     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
   448         |   stripc  x =  x
   449     in stripc(u,[]) end
   450 
   451 fun atyps_of T = fold_atyps (insert (op =)) T []
   452 
   453 fun new_skolem_const_name s num_T_args =
   454   [new_skolem_const_prefix, s, string_of_int num_T_args]
   455   |> space_implode Long_Name.separator
   456 
   457 (* Converts a term (with combinators) into a combterm. Also accumulates sort
   458    infomation. *)
   459 fun combterm_from_term thy bs (P $ Q) =
   460     let
   461       val (P', P_atomics_Ts) = combterm_from_term thy bs P
   462       val (Q', Q_atomics_Ts) = combterm_from_term thy bs Q
   463     in (CombApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   464   | combterm_from_term thy _ (Const (c, T)) =
   465     let
   466       val tvar_list =
   467         (if String.isPrefix old_skolem_const_prefix c then
   468            [] |> Term.add_tvarsT T |> map TVar
   469          else
   470            (c, T) |> Sign.const_typargs thy)
   471       val c' = CombConst (`make_fixed_const c, T, tvar_list)
   472     in (c', atyps_of T) end
   473   | combterm_from_term _ _ (Free (v, T)) =
   474     (CombConst (`make_fixed_var v, T, []), atyps_of T)
   475   | combterm_from_term _ _ (Var (v as (s, _), T)) =
   476     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   477        let
   478          val Ts = T |> strip_type |> swap |> op ::
   479          val s' = new_skolem_const_name s (length Ts)
   480        in CombConst (`make_fixed_const s', T, Ts) end
   481      else
   482        CombVar ((make_schematic_var v, s), T), atyps_of T)
   483   | combterm_from_term _ bs (Bound j) =
   484     nth bs j
   485     |> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
   486   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
   487 
   488 datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
   489 
   490 (* (quasi-)underapproximation of the truth *)
   491 fun is_locality_global Local = false
   492   | is_locality_global Assum = false
   493   | is_locality_global Chained = false
   494   | is_locality_global _ = true
   495 
   496 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   497 datatype type_level =
   498   All_Types | Nonmonotonic_Types | Finite_Types | Const_Arg_Types | No_Types
   499 datatype type_heaviness = Heavy | Light
   500 
   501 datatype type_system =
   502   Simple_Types of type_level |
   503   Preds of polymorphism * type_level * type_heaviness |
   504   Tags of polymorphism * type_level * type_heaviness
   505 
   506 fun try_unsuffixes ss s =
   507   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   508 
   509 fun type_sys_from_string s =
   510   (case try (unprefix "poly_") s of
   511      SOME s => (SOME Polymorphic, s)
   512    | NONE =>
   513      case try (unprefix "mono_") s of
   514        SOME s => (SOME Monomorphic, s)
   515      | NONE =>
   516        case try (unprefix "mangled_") s of
   517          SOME s => (SOME Mangled_Monomorphic, s)
   518        | NONE => (NONE, s))
   519   ||> (fn s =>
   520           (* "_query" and "_bang" are for the ASCII-challenged Mirabelle. *)
   521           case try_unsuffixes ["?", "_query"] s of
   522             SOME s => (Nonmonotonic_Types, s)
   523           | NONE =>
   524             case try_unsuffixes ["!", "_bang"] s of
   525               SOME s => (Finite_Types, s)
   526             | NONE => (All_Types, s))
   527   ||> apsnd (fn s =>
   528                 case try (unsuffix "_heavy") s of
   529                   SOME s => (Heavy, s)
   530                 | NONE => (Light, s))
   531   |> (fn (poly, (level, (heaviness, core))) =>
   532          case (core, (poly, level, heaviness)) of
   533            ("simple", (NONE, _, Light)) => Simple_Types level
   534          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   535          | ("tags", (SOME Polymorphic, All_Types, _)) =>
   536            Tags (Polymorphic, All_Types, heaviness)
   537          | ("tags", (SOME Polymorphic, _, _)) =>
   538            (* The actual light encoding is very unsound. *)
   539            Tags (Polymorphic, level, Heavy)
   540          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   541          | ("args", (SOME poly, All_Types (* naja *), Light)) =>
   542            Preds (poly, Const_Arg_Types, Light)
   543          | ("erased", (NONE, All_Types (* naja *), Light)) =>
   544            Preds (Polymorphic, No_Types, Light)
   545          | _ => raise Same.SAME)
   546   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   547 
   548 fun polymorphism_of_type_sys (Simple_Types _) = Mangled_Monomorphic
   549   | polymorphism_of_type_sys (Preds (poly, _, _)) = poly
   550   | polymorphism_of_type_sys (Tags (poly, _, _)) = poly
   551 
   552 fun level_of_type_sys (Simple_Types level) = level
   553   | level_of_type_sys (Preds (_, level, _)) = level
   554   | level_of_type_sys (Tags (_, level, _)) = level
   555 
   556 fun heaviness_of_type_sys (Simple_Types _) = Heavy
   557   | heaviness_of_type_sys (Preds (_, _, heaviness)) = heaviness
   558   | heaviness_of_type_sys (Tags (_, _, heaviness)) = heaviness
   559 
   560 fun is_type_level_virtually_sound level =
   561   level = All_Types orelse level = Nonmonotonic_Types
   562 val is_type_sys_virtually_sound =
   563   is_type_level_virtually_sound o level_of_type_sys
   564 
   565 fun is_type_level_fairly_sound level =
   566   is_type_level_virtually_sound level orelse level = Finite_Types
   567 val is_type_sys_fairly_sound = is_type_level_fairly_sound o level_of_type_sys
   568 
   569 fun is_setting_higher_order THF (Simple_Types _) = true
   570   | is_setting_higher_order _ _ = false
   571 
   572 fun choose_format formats (Simple_Types level) =
   573     if member (op =) formats THF then (THF, Simple_Types level)
   574     else if member (op =) formats TFF then (TFF, Simple_Types level)
   575     else choose_format formats (Preds (Mangled_Monomorphic, level, Heavy))
   576   | choose_format formats type_sys =
   577     (case hd formats of
   578        CNF_UEQ =>
   579        (CNF_UEQ, case type_sys of
   580                    Preds stuff =>
   581                    (if is_type_sys_fairly_sound type_sys then Preds else Tags)
   582                        stuff
   583                  | _ => type_sys)
   584      | format => (format, type_sys))
   585 
   586 type translated_formula =
   587   {name: string,
   588    locality: locality,
   589    kind: formula_kind,
   590    combformula: (name, typ, combterm) formula,
   591    atomic_types: typ list}
   592 
   593 fun update_combformula f ({name, locality, kind, combformula, atomic_types}
   594                           : translated_formula) =
   595   {name = name, locality = locality, kind = kind, combformula = f combformula,
   596    atomic_types = atomic_types} : translated_formula
   597 
   598 fun fact_lift f ({combformula, ...} : translated_formula) = f combformula
   599 
   600 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   601 
   602 fun insert_type ctxt get_T x xs =
   603   let val T = get_T x in
   604     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   605     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   606   end
   607 
   608 (* The Booleans indicate whether all type arguments should be kept. *)
   609 datatype type_arg_policy =
   610   Explicit_Type_Args of bool |
   611   Mangled_Type_Args of bool |
   612   No_Type_Args
   613 
   614 fun should_drop_arg_type_args (Simple_Types _) =
   615     false (* since TFF doesn't support overloading *)
   616   | should_drop_arg_type_args type_sys =
   617     level_of_type_sys type_sys = All_Types andalso
   618     heaviness_of_type_sys type_sys = Heavy
   619 
   620 fun general_type_arg_policy type_sys =
   621   if level_of_type_sys type_sys = No_Types then
   622     No_Type_Args
   623   else if polymorphism_of_type_sys type_sys = Mangled_Monomorphic then
   624     Mangled_Type_Args (should_drop_arg_type_args type_sys)
   625   else
   626     Explicit_Type_Args (should_drop_arg_type_args type_sys)
   627 
   628 fun type_arg_policy type_sys s =
   629   if s = @{const_name HOL.eq} orelse
   630      (s = app_op_name andalso level_of_type_sys type_sys = Const_Arg_Types) then
   631     No_Type_Args
   632   else
   633     general_type_arg_policy type_sys
   634 
   635 (*Make literals for sorted type variables*)
   636 fun generic_sorts_on_type (_, []) = []
   637   | generic_sorts_on_type ((x, i), s :: ss) =
   638     generic_sorts_on_type ((x, i), ss)
   639     |> (if s = the_single @{sort HOL.type} then
   640           I
   641         else if i = ~1 then
   642           cons (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   643         else
   644           cons (TyLitVar (`make_type_class s,
   645                           (make_schematic_type_var (x, i), x))))
   646 fun sorts_on_tfree (TFree (s, S)) = generic_sorts_on_type ((s, ~1), S)
   647   | sorts_on_tfree _ = []
   648 fun sorts_on_tvar (TVar z) = generic_sorts_on_type z
   649   | sorts_on_tvar _ = []
   650 
   651 (* Given a list of sorted type variables, return a list of type literals. *)
   652 fun raw_type_literals_for_types Ts =
   653   union_all (map sorts_on_tfree Ts @ map sorts_on_tvar Ts)
   654 
   655 fun type_literals_for_types type_sys sorts_on_typ Ts =
   656   if level_of_type_sys type_sys = No_Types then []
   657   else union_all (map sorts_on_typ Ts)
   658 
   659 fun mk_aconns c phis =
   660   let val (phis', phi') = split_last phis in
   661     fold_rev (mk_aconn c) phis' phi'
   662   end
   663 fun mk_ahorn [] phi = phi
   664   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   665 fun mk_aquant _ [] phi = phi
   666   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   667     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   668   | mk_aquant q xs phi = AQuant (q, xs, phi)
   669 
   670 fun close_universally atom_vars phi =
   671   let
   672     fun formula_vars bounds (AQuant (_, xs, phi)) =
   673         formula_vars (map fst xs @ bounds) phi
   674       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   675       | formula_vars bounds (AAtom tm) =
   676         union (op =) (atom_vars tm []
   677                       |> filter_out (member (op =) bounds o fst))
   678   in mk_aquant AForall (formula_vars [] phi []) phi end
   679 
   680 fun combterm_vars (CombApp (tm1, tm2)) = fold combterm_vars [tm1, tm2]
   681   | combterm_vars (CombConst _) = I
   682   | combterm_vars (CombVar (name, T)) = insert (op =) (name, SOME T)
   683 fun close_combformula_universally phi = close_universally combterm_vars phi
   684 
   685 fun term_vars (ATerm (name as (s, _), tms)) =
   686   is_tptp_variable s ? insert (op =) (name, NONE) #> fold term_vars tms
   687 fun close_formula_universally phi = close_universally term_vars phi
   688 
   689 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   690 val homo_infinite_type = Type (homo_infinite_type_name, [])
   691 
   692 fun fo_term_from_typ higher_order =
   693   let
   694     fun term (Type (s, Ts)) =
   695       ATerm (case (higher_order, s) of
   696                (true, @{type_name bool}) => `I tptp_bool_type
   697              | (true, @{type_name fun}) => `I tptp_fun_type
   698              | _ => if s = homo_infinite_type_name then `I tptp_individual_type
   699                     else `make_fixed_type_const s,
   700              map term Ts)
   701     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   702     | term (TVar ((x as (s, _)), _)) =
   703       ATerm ((make_schematic_type_var x, s), [])
   704   in term end
   705 
   706 (* This shouldn't clash with anything else. *)
   707 val mangled_type_sep = "\000"
   708 
   709 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   710   | generic_mangled_type_name f (ATerm (name, tys)) =
   711     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   712     ^ ")"
   713 
   714 val bool_atype = AType (`I tptp_bool_type)
   715 
   716 fun make_simple_type s =
   717   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   718      s = tptp_individual_type then
   719     s
   720   else
   721     simple_type_prefix ^ ascii_of s
   722 
   723 fun ho_type_from_fo_term higher_order pred_sym ary =
   724   let
   725     fun to_atype ty =
   726       AType ((make_simple_type (generic_mangled_type_name fst ty),
   727               generic_mangled_type_name snd ty))
   728     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   729     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   730       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   731     fun to_ho (ty as ATerm ((s, _), tys)) =
   732       if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   733   in if higher_order then to_ho else to_fo ary end
   734 
   735 fun mangled_type higher_order pred_sym ary =
   736   ho_type_from_fo_term higher_order pred_sym ary o fo_term_from_typ higher_order
   737 
   738 fun mangled_const_name T_args (s, s') =
   739   let
   740     val ty_args = map (fo_term_from_typ false) T_args
   741     fun type_suffix f g =
   742       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   743                 o generic_mangled_type_name f) ty_args ""
   744   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   745 
   746 val parse_mangled_ident =
   747   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   748 
   749 fun parse_mangled_type x =
   750   (parse_mangled_ident
   751    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   752                     [] >> ATerm) x
   753 and parse_mangled_types x =
   754   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   755 
   756 fun unmangled_type s =
   757   s |> suffix ")" |> raw_explode
   758     |> Scan.finite Symbol.stopper
   759            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   760                                                 quote s)) parse_mangled_type))
   761     |> fst
   762 
   763 val unmangled_const_name = space_explode mangled_type_sep #> hd
   764 fun unmangled_const s =
   765   let val ss = space_explode mangled_type_sep s in
   766     (hd ss, map unmangled_type (tl ss))
   767   end
   768 
   769 fun introduce_proxies format type_sys =
   770   let
   771     fun intro top_level (CombApp (tm1, tm2)) =
   772         CombApp (intro top_level tm1, intro false tm2)
   773       | intro top_level (CombConst (name as (s, _), T, T_args)) =
   774         (case proxify_const s of
   775            SOME (_, proxy_base) =>
   776            if top_level orelse is_setting_higher_order format type_sys then
   777              case (top_level, s) of
   778                (_, "c_False") => (`I tptp_false, [])
   779              | (_, "c_True") => (`I tptp_true, [])
   780              | (false, "c_Not") => (`I tptp_not, [])
   781              | (false, "c_conj") => (`I tptp_and, [])
   782              | (false, "c_disj") => (`I tptp_or, [])
   783              | (false, "c_implies") => (`I tptp_implies, [])
   784              | (false, s) =>
   785                if is_tptp_equal s then (`I tptp_equal, [])
   786                else (proxy_base |>> prefix const_prefix, T_args)
   787              | _ => (name, [])
   788            else
   789              (proxy_base |>> prefix const_prefix, T_args)
   790           | NONE => (name, T_args))
   791         |> (fn (name, T_args) => CombConst (name, T, T_args))
   792       | intro _ tm = tm
   793   in intro true end
   794 
   795 fun combformula_from_prop thy format type_sys eq_as_iff =
   796   let
   797     fun do_term bs t atomic_types =
   798       combterm_from_term thy bs (Envir.eta_contract t)
   799       |>> (introduce_proxies format type_sys #> AAtom)
   800       ||> union (op =) atomic_types
   801     fun do_quant bs q s T t' =
   802       let val s = Name.variant (map fst bs) s in
   803         do_formula ((s, T) :: bs) t'
   804         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   805       end
   806     and do_conn bs c t1 t2 =
   807       do_formula bs t1 ##>> do_formula bs t2
   808       #>> uncurry (mk_aconn c)
   809     and do_formula bs t =
   810       case t of
   811         @{const Trueprop} $ t1 => do_formula bs t1
   812       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   813       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   814         do_quant bs AForall s T t'
   815       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   816         do_quant bs AExists s T t'
   817       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   818       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   819       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   820       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   821         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   822       | _ => do_term bs t
   823   in do_formula [] end
   824 
   825 fun presimplify_term ctxt =
   826   Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   827   #> Meson.presimplify ctxt
   828   #> prop_of
   829 
   830 fun concealed_bound_name j = sledgehammer_weak_prefix ^ string_of_int j
   831 fun conceal_bounds Ts t =
   832   subst_bounds (map (Free o apfst concealed_bound_name)
   833                     (0 upto length Ts - 1 ~~ Ts), t)
   834 fun reveal_bounds Ts =
   835   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   836                     (0 upto length Ts - 1 ~~ Ts))
   837 
   838 fun extensionalize_term ctxt t =
   839   let val thy = Proof_Context.theory_of ctxt in
   840     t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   841       |> prop_of |> Logic.dest_equals |> snd
   842   end
   843 
   844 fun introduce_combinators_in_term ctxt kind t =
   845   let val thy = Proof_Context.theory_of ctxt in
   846     if Meson.is_fol_term thy t then
   847       t
   848     else
   849       let
   850         fun aux Ts t =
   851           case t of
   852             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   853           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   854             t0 $ Abs (s, T, aux (T :: Ts) t')
   855           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   856             aux Ts (t0 $ eta_expand Ts t1 1)
   857           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   858             t0 $ Abs (s, T, aux (T :: Ts) t')
   859           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   860             aux Ts (t0 $ eta_expand Ts t1 1)
   861           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   862           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   863           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   864           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   865               $ t1 $ t2 =>
   866             t0 $ aux Ts t1 $ aux Ts t2
   867           | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
   868                    t
   869                  else
   870                    t |> conceal_bounds Ts
   871                      |> Envir.eta_contract
   872                      |> cterm_of thy
   873                      |> Meson_Clausify.introduce_combinators_in_cterm
   874                      |> prop_of |> Logic.dest_equals |> snd
   875                      |> reveal_bounds Ts
   876         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   877       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   878       handle THM _ =>
   879              (* A type variable of sort "{}" will make abstraction fail. *)
   880              if kind = Conjecture then HOLogic.false_const
   881              else HOLogic.true_const
   882   end
   883 
   884 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   885    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   886 fun freeze_term t =
   887   let
   888     fun aux (t $ u) = aux t $ aux u
   889       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   890       | aux (Var ((s, i), T)) =
   891         Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   892       | aux t = t
   893   in t |> exists_subterm is_Var t ? aux end
   894 
   895 fun preprocess_prop ctxt presimp kind t =
   896   let
   897     val thy = Proof_Context.theory_of ctxt
   898     val t = t |> Envir.beta_eta_contract
   899               |> transform_elim_prop
   900               |> Object_Logic.atomize_term thy
   901     val need_trueprop = (fastype_of t = @{typ bool})
   902   in
   903     t |> need_trueprop ? HOLogic.mk_Trueprop
   904       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   905       |> extensionalize_term ctxt
   906       |> presimp ? presimplify_term ctxt
   907       |> introduce_combinators_in_term ctxt kind
   908   end
   909 
   910 (* making fact and conjecture formulas *)
   911 fun make_formula thy format type_sys eq_as_iff name loc kind t =
   912   let
   913     val (combformula, atomic_types) =
   914       combformula_from_prop thy format type_sys eq_as_iff t []
   915   in
   916     {name = name, locality = loc, kind = kind, combformula = combformula,
   917      atomic_types = atomic_types}
   918   end
   919 
   920 fun make_fact ctxt format type_sys keep_trivial eq_as_iff preproc presimp
   921               ((name, loc), t) =
   922   let val thy = Proof_Context.theory_of ctxt in
   923     case (keep_trivial,
   924           t |> preproc ? preprocess_prop ctxt presimp Axiom
   925             |> make_formula thy format type_sys eq_as_iff name loc Axiom) of
   926       (false,
   927        formula as {combformula = AAtom (CombConst ((s, _), _, _)), ...}) =>
   928       if s = tptp_true then NONE else SOME formula
   929     | (_, formula) => SOME formula
   930   end
   931 
   932 fun make_conjecture ctxt format prem_kind type_sys preproc ts =
   933   let
   934     val thy = Proof_Context.theory_of ctxt
   935     val last = length ts - 1
   936   in
   937     map2 (fn j => fn t =>
   938              let
   939                val (kind, maybe_negate) =
   940                  if j = last then
   941                    (Conjecture, I)
   942                  else
   943                    (prem_kind,
   944                     if prem_kind = Conjecture then update_combformula mk_anot
   945                     else I)
   946               in
   947                 t |> preproc ? (preprocess_prop ctxt true kind #> freeze_term)
   948                   |> make_formula thy format type_sys true (string_of_int j)
   949                                   General kind
   950                   |> maybe_negate
   951               end)
   952          (0 upto last) ts
   953   end
   954 
   955 (** Finite and infinite type inference **)
   956 
   957 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
   958   | deep_freeze_atyp T = T
   959 val deep_freeze_type = map_atyps deep_freeze_atyp
   960 
   961 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
   962    dangerous because their "exhaust" properties can easily lead to unsound ATP
   963    proofs. On the other hand, all HOL infinite types can be given the same
   964    models in first-order logic (via Löwenheim-Skolem). *)
   965 
   966 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
   967     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
   968   | should_encode_type _ _ All_Types _ = true
   969   | should_encode_type ctxt _ Finite_Types T = is_type_surely_finite ctxt T
   970   | should_encode_type _ _ _ _ = false
   971 
   972 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
   973                              should_predicate_on_var T =
   974     (heaviness = Heavy orelse should_predicate_on_var ()) andalso
   975     should_encode_type ctxt nonmono_Ts level T
   976   | should_predicate_on_type _ _ _ _ _ = false
   977 
   978 fun is_var_or_bound_var (CombConst ((s, _), _, _)) =
   979     String.isPrefix bound_var_prefix s
   980   | is_var_or_bound_var (CombVar _) = true
   981   | is_var_or_bound_var _ = false
   982 
   983 datatype tag_site = Top_Level | Eq_Arg | Elsewhere
   984 
   985 fun should_tag_with_type _ _ _ Top_Level _ _ = false
   986   | should_tag_with_type ctxt nonmono_Ts (Tags (_, level, heaviness)) site u T =
   987     (case heaviness of
   988        Heavy => should_encode_type ctxt nonmono_Ts level T
   989      | Light =>
   990        case (site, is_var_or_bound_var u) of
   991          (Eq_Arg, true) => should_encode_type ctxt nonmono_Ts level T
   992        | _ => false)
   993   | should_tag_with_type _ _ _ _ _ _ = false
   994 
   995 fun homogenized_type ctxt nonmono_Ts level =
   996   let
   997     val should_encode = should_encode_type ctxt nonmono_Ts level
   998     fun homo 0 T = if should_encode T then T else homo_infinite_type
   999       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1000         homo 0 T1 --> homo (ary - 1) T2
  1001       | homo _ _ = raise Fail "expected function type"
  1002   in homo end
  1003 
  1004 (** "hBOOL" and "hAPP" **)
  1005 
  1006 type sym_info =
  1007   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1008 
  1009 fun add_combterm_syms_to_table ctxt explicit_apply =
  1010   let
  1011     fun consider_var_arity const_T var_T max_ary =
  1012       let
  1013         fun iter ary T =
  1014           if ary = max_ary orelse type_instance ctxt (var_T, T) then ary
  1015           else iter (ary + 1) (range_type T)
  1016       in iter 0 const_T end
  1017     fun add top_level tm (accum as (ho_var_Ts, sym_tab)) =
  1018       let val (head, args) = strip_combterm_comb tm in
  1019         (case head of
  1020            CombConst ((s, _), T, _) =>
  1021            if String.isPrefix bound_var_prefix s then
  1022              if explicit_apply = NONE andalso can dest_funT T then
  1023                let
  1024                  fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1025                    {pred_sym = pred_sym,
  1026                     min_ary =
  1027                       fold (fn T' => consider_var_arity T' T) types min_ary,
  1028                     max_ary = max_ary, types = types}
  1029                  val ho_var_Ts' = ho_var_Ts |> insert_type ctxt I T
  1030                in
  1031                  if pointer_eq (ho_var_Ts', ho_var_Ts) then accum
  1032                  else (ho_var_Ts', Symtab.map (K repair_min_arity) sym_tab)
  1033                end
  1034              else
  1035                accum
  1036            else
  1037              let
  1038                val ary = length args
  1039              in
  1040                (ho_var_Ts,
  1041                 case Symtab.lookup sym_tab s of
  1042                   SOME {pred_sym, min_ary, max_ary, types} =>
  1043                   let
  1044                     val types' = types |> insert_type ctxt I T
  1045                     val min_ary =
  1046                       if is_some explicit_apply orelse
  1047                          pointer_eq (types', types) then
  1048                         min_ary
  1049                       else
  1050                         fold (consider_var_arity T) ho_var_Ts min_ary
  1051                   in
  1052                     Symtab.update (s, {pred_sym = pred_sym andalso top_level,
  1053                                        min_ary = Int.min (ary, min_ary),
  1054                                        max_ary = Int.max (ary, max_ary),
  1055                                        types = types'})
  1056                                   sym_tab
  1057                   end
  1058                 | NONE =>
  1059                   let
  1060                     val min_ary =
  1061                       case explicit_apply of
  1062                         SOME true => 0
  1063                       | SOME false => ary
  1064                       | NONE => fold (consider_var_arity T) ho_var_Ts ary
  1065                   in
  1066                     Symtab.update_new (s, {pred_sym = top_level,
  1067                                            min_ary = min_ary, max_ary = ary,
  1068                                            types = [T]})
  1069                                       sym_tab
  1070                   end)
  1071              end
  1072          | _ => accum)
  1073         |> fold (add false) args
  1074       end
  1075   in add true end
  1076 fun add_fact_syms_to_table ctxt explicit_apply =
  1077   fact_lift (formula_fold NONE
  1078                           (K (add_combterm_syms_to_table ctxt explicit_apply)))
  1079 
  1080 val default_sym_table_entries : (string * sym_info) list =
  1081   [(tptp_equal, {pred_sym = true, min_ary = 2, max_ary = 2, types = []}),
  1082    (tptp_old_equal, {pred_sym = true, min_ary = 2, max_ary = 2, types = []}),
  1083    (make_fixed_const predicator_name,
  1084     {pred_sym = true, min_ary = 1, max_ary = 1, types = []})] @
  1085   ([tptp_false, tptp_true]
  1086    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []}))
  1087 
  1088 fun sym_table_for_facts ctxt explicit_apply facts =
  1089   Symtab.empty
  1090   |> fold Symtab.default default_sym_table_entries
  1091   |> pair [] |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1092 
  1093 fun min_arity_of sym_tab s =
  1094   case Symtab.lookup sym_tab s of
  1095     SOME ({min_ary, ...} : sym_info) => min_ary
  1096   | NONE =>
  1097     case strip_prefix_and_unascii const_prefix s of
  1098       SOME s =>
  1099       let val s = s |> unmangled_const_name |> invert_const in
  1100         if s = predicator_name then 1
  1101         else if s = app_op_name then 2
  1102         else if s = type_pred_name then 1
  1103         else 0
  1104       end
  1105     | NONE => 0
  1106 
  1107 (* True if the constant ever appears outside of the top-level position in
  1108    literals, or if it appears with different arities (e.g., because of different
  1109    type instantiations). If false, the constant always receives all of its
  1110    arguments and is used as a predicate. *)
  1111 fun is_pred_sym sym_tab s =
  1112   case Symtab.lookup sym_tab s of
  1113     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1114     pred_sym andalso min_ary = max_ary
  1115   | NONE => false
  1116 
  1117 val predicator_combconst =
  1118   CombConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1119 fun predicator tm = CombApp (predicator_combconst, tm)
  1120 
  1121 fun introduce_predicators_in_combterm sym_tab tm =
  1122   case strip_combterm_comb tm of
  1123     (CombConst ((s, _), _, _), _) =>
  1124     if is_pred_sym sym_tab s then tm else predicator tm
  1125   | _ => predicator tm
  1126 
  1127 fun list_app head args = fold (curry (CombApp o swap)) args head
  1128 
  1129 fun explicit_app arg head =
  1130   let
  1131     val head_T = combtyp_of head
  1132     val (arg_T, res_T) = dest_funT head_T
  1133     val explicit_app =
  1134       CombConst (`make_fixed_const app_op_name, head_T --> head_T,
  1135                  [arg_T, res_T])
  1136   in list_app explicit_app [head, arg] end
  1137 fun list_explicit_app head args = fold explicit_app args head
  1138 
  1139 fun introduce_explicit_apps_in_combterm sym_tab =
  1140   let
  1141     fun aux tm =
  1142       case strip_combterm_comb tm of
  1143         (head as CombConst ((s, _), _, _), args) =>
  1144         args |> map aux
  1145              |> chop (min_arity_of sym_tab s)
  1146              |>> list_app head
  1147              |-> list_explicit_app
  1148       | (head, args) => list_explicit_app head (map aux args)
  1149   in aux end
  1150 
  1151 fun chop_fun 0 T = ([], T)
  1152   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1153     chop_fun (n - 1) ran_T |>> cons dom_T
  1154   | chop_fun _ _ = raise Fail "unexpected non-function"
  1155 
  1156 fun filter_type_args _ _ _ [] = []
  1157   | filter_type_args thy s arity T_args =
  1158     let
  1159       (* will throw "TYPE" for pseudo-constants *)
  1160       val U = if s = app_op_name then
  1161                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1162               else
  1163                 s |> Sign.the_const_type thy
  1164     in
  1165       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1166         [] => []
  1167       | res_U_vars =>
  1168         let val U_args = (s, U) |> Sign.const_typargs thy in
  1169           U_args ~~ T_args
  1170           |> map_filter (fn (U, T) =>
  1171                             if member (op =) res_U_vars (dest_TVar U) then
  1172                               SOME T
  1173                             else
  1174                               NONE)
  1175         end
  1176     end
  1177     handle TYPE _ => T_args
  1178 
  1179 fun enforce_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys =
  1180   let
  1181     val thy = Proof_Context.theory_of ctxt
  1182     fun aux arity (CombApp (tm1, tm2)) =
  1183         CombApp (aux (arity + 1) tm1, aux 0 tm2)
  1184       | aux arity (CombConst (name as (s, _), T, T_args)) =
  1185         let
  1186           val level = level_of_type_sys type_sys
  1187           val (T, T_args) =
  1188             (* Aggressively merge most "hAPPs" if the type system is unsound
  1189                anyway, by distinguishing overloads only on the homogenized
  1190                result type. Don't do it for lightweight type systems, though,
  1191                since it leads to too many unsound proofs. *)
  1192             if s = const_prefix ^ app_op_name andalso
  1193                length T_args = 2 andalso
  1194                not (is_type_sys_virtually_sound type_sys) andalso
  1195                heaviness_of_type_sys type_sys = Heavy then
  1196               T_args |> map (homogenized_type ctxt nonmono_Ts level 0)
  1197                      |> (fn Ts => let val T = hd Ts --> nth Ts 1 in
  1198                                     (T --> T, tl Ts)
  1199                                   end)
  1200             else
  1201               (T, T_args)
  1202         in
  1203           (case strip_prefix_and_unascii const_prefix s of
  1204              NONE => (name, T_args)
  1205            | SOME s'' =>
  1206              let
  1207                val s'' = invert_const s''
  1208                fun filtered_T_args false = T_args
  1209                  | filtered_T_args true = filter_type_args thy s'' arity T_args
  1210              in
  1211                case type_arg_policy type_sys s'' of
  1212                  Explicit_Type_Args drop_args =>
  1213                  (name, filtered_T_args drop_args)
  1214                | Mangled_Type_Args drop_args =>
  1215                  (mangled_const_name (filtered_T_args drop_args) name, [])
  1216                | No_Type_Args => (name, [])
  1217              end)
  1218           |> (fn (name, T_args) => CombConst (name, T, T_args))
  1219         end
  1220       | aux _ tm = tm
  1221   in aux 0 end
  1222 
  1223 fun repair_combterm ctxt format nonmono_Ts type_sys sym_tab =
  1224   not (is_setting_higher_order format type_sys)
  1225   ? (introduce_explicit_apps_in_combterm sym_tab
  1226      #> introduce_predicators_in_combterm sym_tab)
  1227   #> enforce_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys
  1228 fun repair_fact ctxt format nonmono_Ts type_sys sym_tab =
  1229   update_combformula (formula_map
  1230       (repair_combterm ctxt format nonmono_Ts type_sys sym_tab))
  1231 
  1232 (** Helper facts **)
  1233 
  1234 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1235 val helper_table =
  1236   [("COMBI", (false, @{thms Meson.COMBI_def})),
  1237    ("COMBK", (false, @{thms Meson.COMBK_def})),
  1238    ("COMBB", (false, @{thms Meson.COMBB_def})),
  1239    ("COMBC", (false, @{thms Meson.COMBC_def})),
  1240    ("COMBS", (false, @{thms Meson.COMBS_def})),
  1241    ("fequal",
  1242     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1243        However, this is done so for backward compatibility: Including the
  1244        equality helpers by default in Metis breaks a few existing proofs. *)
  1245     (true, @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1246                   fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]})),
  1247    ("fFalse", (true, @{thms True_or_False})),
  1248    ("fFalse", (false, [@{lemma "~ fFalse" by (unfold fFalse_def) fast}])),
  1249    ("fTrue", (true, @{thms True_or_False})),
  1250    ("fTrue", (false, [@{lemma "fTrue" by (unfold fTrue_def) fast}])),
  1251    ("fNot",
  1252     (false, @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1253                    fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]})),
  1254    ("fconj",
  1255     (false,
  1256      @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1257          by (unfold fconj_def) fast+})),
  1258    ("fdisj",
  1259     (false,
  1260      @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1261          by (unfold fdisj_def) fast+})),
  1262    ("fimplies",
  1263     (false, @{lemma "P | fimplies P Q" "~ Q | fimplies P Q"
  1264                     "~ fimplies P Q | ~ P | Q"
  1265                 by (unfold fimplies_def) fast+})),
  1266    ("If", (true, @{thms if_True if_False True_or_False}))]
  1267 
  1268 fun ti_ti_helper_fact () =
  1269   let
  1270     fun var s = ATerm (`I s, [])
  1271     fun tag tm = ATerm (`make_fixed_const type_tag_name, [var "X", tm])
  1272   in
  1273     Formula (helper_prefix ^ "ti_ti", Axiom,
  1274              AAtom (ATerm (`I tptp_equal, [tag (tag (var "Y")), tag (var "Y")]))
  1275              |> close_formula_universally, simp_info, NONE)
  1276   end
  1277 
  1278 fun helper_facts_for_sym ctxt format type_sys (s, {types, ...} : sym_info) =
  1279   case strip_prefix_and_unascii const_prefix s of
  1280     SOME mangled_s =>
  1281     let
  1282       val thy = Proof_Context.theory_of ctxt
  1283       val unmangled_s = mangled_s |> unmangled_const_name
  1284       fun dub_and_inst c needs_fairly_sound (th, j) =
  1285         ((c ^ "_" ^ string_of_int j ^
  1286           (if needs_fairly_sound then typed_helper_suffix
  1287            else untyped_helper_suffix),
  1288           General),
  1289          let val t = th |> prop_of in
  1290            t |> ((case general_type_arg_policy type_sys of
  1291                     Mangled_Type_Args _ => true
  1292                   | _ => false) andalso
  1293                  not (null (Term.hidden_polymorphism t)))
  1294                 ? (case types of
  1295                      [T] => specialize_type thy (invert_const unmangled_s, T)
  1296                    | _ => I)
  1297          end)
  1298       fun make_facts eq_as_iff =
  1299         map_filter (make_fact ctxt format type_sys true false eq_as_iff false)
  1300       val fairly_sound = is_type_sys_fairly_sound type_sys
  1301     in
  1302       helper_table
  1303       |> maps (fn (metis_s, (needs_fairly_sound, ths)) =>
  1304                   if metis_s <> unmangled_s orelse
  1305                      (needs_fairly_sound andalso not fairly_sound) then
  1306                     []
  1307                   else
  1308                     ths ~~ (1 upto length ths)
  1309                     |> map (dub_and_inst mangled_s needs_fairly_sound)
  1310                     |> make_facts (not needs_fairly_sound))
  1311     end
  1312   | NONE => []
  1313 fun helper_facts_for_sym_table ctxt format type_sys sym_tab =
  1314   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_sys) sym_tab
  1315                   []
  1316 
  1317 fun translate_atp_fact ctxt format type_sys keep_trivial =
  1318   `(make_fact ctxt format type_sys keep_trivial true true true o apsnd prop_of)
  1319 
  1320 (***************************************************************)
  1321 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1322 (***************************************************************)
  1323 
  1324 fun set_insert (x, s) = Symtab.update (x, ()) s
  1325 
  1326 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1327 
  1328 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1329 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1330 
  1331 fun classes_of_terms get_Ts =
  1332   map (map #2 o get_Ts)
  1333   #> List.foldl add_classes Symtab.empty
  1334   #> delete_type #> Symtab.keys
  1335 
  1336 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1337 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1338 
  1339 (*fold type constructors*)
  1340 fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
  1341   | fold_type_consts _ _ x = x
  1342 
  1343 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1344 fun add_type_consts_in_term thy =
  1345   let
  1346     fun aux (Const (@{const_name Meson.skolem}, _) $ _) = I
  1347       | aux (t $ u) = aux t #> aux u
  1348       | aux (Const x) =
  1349         fold (fold_type_consts set_insert) (Sign.const_typargs thy x)
  1350       | aux (Abs (_, _, u)) = aux u
  1351       | aux _ = I
  1352   in aux end
  1353 
  1354 fun type_consts_of_terms thy ts =
  1355   Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty)
  1356 
  1357 fun translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1358                        rich_facts =
  1359   let
  1360     val thy = Proof_Context.theory_of ctxt
  1361     val fact_ts = map (prop_of o snd o snd) rich_facts
  1362     val (facts, fact_names) =
  1363       rich_facts
  1364       |> map_filter (fn (NONE, _) => NONE
  1365                       | (SOME fact, (name, _)) => SOME (fact, name))
  1366       |> ListPair.unzip
  1367     (* Remove existing facts from the conjecture, as this can dramatically
  1368        boost an ATP's performance (for some reason). *)
  1369     val hyp_ts = hyp_ts |> filter_out (member (op aconv) fact_ts)
  1370     val goal_t = Logic.list_implies (hyp_ts, concl_t)
  1371     val all_ts = goal_t :: fact_ts
  1372     val subs = tfree_classes_of_terms all_ts
  1373     val supers = tvar_classes_of_terms all_ts
  1374     val tycons = type_consts_of_terms thy all_ts
  1375     val conjs =
  1376       hyp_ts @ [concl_t]
  1377       |> make_conjecture ctxt format prem_kind type_sys preproc
  1378     val (supers', arity_clauses) =
  1379       if level_of_type_sys type_sys = No_Types then ([], [])
  1380       else make_arity_clauses thy tycons supers
  1381     val class_rel_clauses = make_class_rel_clauses thy subs supers'
  1382   in
  1383     (fact_names |> map single, (conjs, facts, class_rel_clauses, arity_clauses))
  1384   end
  1385 
  1386 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1387     (true, ATerm (class, [ATerm (name, [])]))
  1388   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1389     (true, ATerm (class, [ATerm (name, [])]))
  1390 
  1391 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1392 
  1393 fun type_pred_combterm ctxt nonmono_Ts type_sys T tm =
  1394   CombApp (CombConst (`make_fixed_const type_pred_name, T --> @{typ bool}, [T])
  1395            |> enforce_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys,
  1396            tm)
  1397 
  1398 fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
  1399   | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1400     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1401 fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
  1402   | is_var_nonmonotonic_in_formula pos phi _ name =
  1403     formula_fold pos (var_occurs_positively_naked_in_term name) phi false
  1404 
  1405 fun mk_const_aterm x T_args args =
  1406   ATerm (x, map (fo_term_from_typ false) T_args @ args)
  1407 
  1408 fun tag_with_type ctxt format nonmono_Ts type_sys T tm =
  1409   CombConst (`make_fixed_const type_tag_name, T --> T, [T])
  1410   |> enforce_type_arg_policy_in_combterm ctxt nonmono_Ts type_sys
  1411   |> term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1412   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm]))
  1413 and term_from_combterm ctxt format nonmono_Ts type_sys =
  1414   let
  1415     fun aux site u =
  1416       let
  1417         val (head, args) = strip_combterm_comb u
  1418         val (x as (s, _), T_args) =
  1419           case head of
  1420             CombConst (name, _, T_args) => (name, T_args)
  1421           | CombVar (name, _) => (name, [])
  1422           | CombApp _ => raise Fail "impossible \"CombApp\""
  1423         val arg_site = if site = Top_Level andalso is_tptp_equal s then Eq_Arg
  1424                        else Elsewhere
  1425         val t = mk_const_aterm x T_args (map (aux arg_site) args)
  1426         val T = combtyp_of u
  1427       in
  1428         t |> (if should_tag_with_type ctxt nonmono_Ts type_sys site u T then
  1429                 tag_with_type ctxt format nonmono_Ts type_sys T
  1430               else
  1431                 I)
  1432       end
  1433   in aux end
  1434 and formula_from_combformula ctxt format nonmono_Ts type_sys
  1435                              should_predicate_on_var =
  1436   let
  1437     val higher_order = is_setting_higher_order format type_sys
  1438     val do_term = term_from_combterm ctxt format nonmono_Ts type_sys Top_Level
  1439     val do_bound_type =
  1440       case type_sys of
  1441         Simple_Types level =>
  1442         homogenized_type ctxt nonmono_Ts level 0
  1443         #> mangled_type higher_order false 0 #> SOME
  1444       | _ => K NONE
  1445     fun do_out_of_bound_type pos phi universal (name, T) =
  1446       if should_predicate_on_type ctxt nonmono_Ts type_sys
  1447              (fn () => should_predicate_on_var pos phi universal name) T then
  1448         CombVar (name, T)
  1449         |> type_pred_combterm ctxt nonmono_Ts type_sys T
  1450         |> do_term |> AAtom |> SOME
  1451       else
  1452         NONE
  1453     fun do_formula pos (AQuant (q, xs, phi)) =
  1454         let
  1455           val phi = phi |> do_formula pos
  1456           val universal = Option.map (q = AExists ? not) pos
  1457         in
  1458           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1459                                         | SOME T => do_bound_type T)),
  1460                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1461                       (map_filter
  1462                            (fn (_, NONE) => NONE
  1463                              | (s, SOME T) =>
  1464                                do_out_of_bound_type pos phi universal (s, T))
  1465                            xs)
  1466                       phi)
  1467         end
  1468       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1469       | do_formula _ (AAtom tm) = AAtom (do_term tm)
  1470   in do_formula o SOME end
  1471 
  1472 fun bound_tvars type_sys Ts =
  1473   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1474                 (type_literals_for_types type_sys sorts_on_tvar Ts))
  1475 
  1476 fun formula_for_fact ctxt format nonmono_Ts type_sys
  1477                      ({combformula, atomic_types, ...} : translated_formula) =
  1478   combformula
  1479   |> close_combformula_universally
  1480   |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1481                               is_var_nonmonotonic_in_formula true
  1482   |> bound_tvars type_sys atomic_types
  1483   |> close_formula_universally
  1484 
  1485 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1486    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1487    the remote provers might care. *)
  1488 fun formula_line_for_fact ctxt format prefix nonmono_Ts type_sys
  1489                           (j, formula as {name, locality, kind, ...}) =
  1490   Formula (prefix ^ (if polymorphism_of_type_sys type_sys = Polymorphic then ""
  1491                      else string_of_int j ^ "_") ^
  1492            ascii_of name,
  1493            kind, formula_for_fact ctxt format nonmono_Ts type_sys formula, NONE,
  1494            case locality of
  1495              Intro => intro_info
  1496            | Elim => elim_info
  1497            | Simp => simp_info
  1498            | _ => NONE)
  1499 
  1500 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1501                                        : class_rel_clause) =
  1502   let val ty_arg = ATerm (`I "T", []) in
  1503     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1504              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1505                                AAtom (ATerm (superclass, [ty_arg]))])
  1506              |> close_formula_universally, intro_info, NONE)
  1507   end
  1508 
  1509 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1510     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1511   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1512     (false, ATerm (c, [ATerm (sort, [])]))
  1513 
  1514 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1515                                    : arity_clause) =
  1516   Formula (arity_clause_prefix ^ ascii_of name, Axiom,
  1517            mk_ahorn (map (formula_from_fo_literal o apfst not
  1518                           o fo_literal_from_arity_literal) prem_lits)
  1519                     (formula_from_fo_literal
  1520                          (fo_literal_from_arity_literal concl_lits))
  1521            |> close_formula_universally, intro_info, NONE)
  1522 
  1523 fun formula_line_for_conjecture ctxt format nonmono_Ts type_sys
  1524         ({name, kind, combformula, atomic_types, ...} : translated_formula) =
  1525   Formula (conjecture_prefix ^ name, kind,
  1526            formula_from_combformula ctxt format nonmono_Ts type_sys
  1527                is_var_nonmonotonic_in_formula false
  1528                (close_combformula_universally combformula)
  1529            |> bound_tvars type_sys atomic_types
  1530            |> close_formula_universally, NONE, NONE)
  1531 
  1532 fun free_type_literals type_sys ({atomic_types, ...} : translated_formula) =
  1533   atomic_types |> type_literals_for_types type_sys sorts_on_tfree
  1534                |> map fo_literal_from_type_literal
  1535 
  1536 fun formula_line_for_free_type j lit =
  1537   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1538            formula_from_fo_literal lit, NONE, NONE)
  1539 fun formula_lines_for_free_types type_sys facts =
  1540   let
  1541     val litss = map (free_type_literals type_sys) facts
  1542     val lits = fold (union (op =)) litss []
  1543   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1544 
  1545 (** Symbol declarations **)
  1546 
  1547 fun should_declare_sym type_sys pred_sym s =
  1548   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1549   (case type_sys of
  1550      Simple_Types _ => true
  1551    | Tags (_, _, Light) => true
  1552    | _ => not pred_sym)
  1553 
  1554 fun sym_decl_table_for_facts ctxt type_sys repaired_sym_tab (conjs, facts) =
  1555   let
  1556     fun add_combterm in_conj tm =
  1557       let val (head, args) = strip_combterm_comb tm in
  1558         (case head of
  1559            CombConst ((s, s'), T, T_args) =>
  1560            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1561              if should_declare_sym type_sys pred_sym s then
  1562                Symtab.map_default (s, [])
  1563                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1564                                          in_conj))
  1565              else
  1566                I
  1567            end
  1568          | _ => I)
  1569         #> fold (add_combterm in_conj) args
  1570       end
  1571     fun add_fact in_conj =
  1572       fact_lift (formula_fold NONE (K (add_combterm in_conj)))
  1573   in
  1574     Symtab.empty
  1575     |> is_type_sys_fairly_sound type_sys
  1576        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1577   end
  1578 
  1579 (* These types witness that the type classes they belong to allow infinite
  1580    models and hence that any types with these type classes is monotonic. *)
  1581 val known_infinite_types =
  1582   [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
  1583 
  1584 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1585    out with monotonicity" paper presented at CADE 2011. *)
  1586 fun add_combterm_nonmonotonic_types _ _ (SOME false) _ = I
  1587   | add_combterm_nonmonotonic_types ctxt level _
  1588         (CombApp (CombApp (CombConst ((s, _), Type (_, [T, _]), _), tm1), tm2)) =
  1589     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1590      (case level of
  1591         Nonmonotonic_Types =>
  1592         not (is_type_surely_infinite ctxt known_infinite_types T)
  1593       | Finite_Types => is_type_surely_finite ctxt T
  1594       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1595   | add_combterm_nonmonotonic_types _ _ _ _ = I
  1596 fun add_fact_nonmonotonic_types ctxt level ({kind, combformula, ...}
  1597                                             : translated_formula) =
  1598   formula_fold (SOME (kind <> Conjecture))
  1599                (add_combterm_nonmonotonic_types ctxt level) combformula
  1600 fun nonmonotonic_types_for_facts ctxt type_sys facts =
  1601   let val level = level_of_type_sys type_sys in
  1602     if level = Nonmonotonic_Types orelse level = Finite_Types then
  1603       [] |> fold (add_fact_nonmonotonic_types ctxt level) facts
  1604          (* We must add "bool" in case the helper "True_or_False" is added
  1605             later. In addition, several places in the code rely on the list of
  1606             nonmonotonic types not being empty. *)
  1607          |> insert_type ctxt I @{typ bool}
  1608     else
  1609       []
  1610   end
  1611 
  1612 fun decl_line_for_sym ctxt format nonmono_Ts type_sys s
  1613                       (s', T_args, T, pred_sym, ary, _) =
  1614   let
  1615     val (higher_order, T_arg_Ts, level) =
  1616       case type_sys of
  1617         Simple_Types level => (format = THF, [], level)
  1618       | _ => (false, replicate (length T_args) homo_infinite_type, No_Types)
  1619   in
  1620     Decl (sym_decl_prefix ^ s, (s, s'),
  1621           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1622           |> mangled_type higher_order pred_sym (length T_arg_Ts + ary))
  1623   end
  1624 
  1625 fun is_polymorphic_type T = fold_atyps (fn TVar _ => K true | _ => I) T false
  1626 
  1627 fun formula_line_for_pred_sym_decl ctxt format conj_sym_kind nonmono_Ts type_sys
  1628                                    n s j (s', T_args, T, _, ary, in_conj) =
  1629   let
  1630     val (kind, maybe_negate) =
  1631       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1632       else (Axiom, I)
  1633     val (arg_Ts, res_T) = chop_fun ary T
  1634     val bound_names =
  1635       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1636     val bounds =
  1637       bound_names ~~ arg_Ts |> map (fn (name, T) => CombConst (name, T, []))
  1638     val bound_Ts =
  1639       arg_Ts |> map (fn T => if n > 1 orelse is_polymorphic_type T then SOME T
  1640                              else NONE)
  1641   in
  1642     Formula (sym_formula_prefix ^ s ^
  1643              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1644              CombConst ((s, s'), T, T_args)
  1645              |> fold (curry (CombApp o swap)) bounds
  1646              |> type_pred_combterm ctxt nonmono_Ts type_sys res_T
  1647              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1648              |> formula_from_combformula ctxt format nonmono_Ts type_sys
  1649                                          (K (K (K (K true)))) true
  1650              |> n > 1 ? bound_tvars type_sys (atyps_of T)
  1651              |> close_formula_universally
  1652              |> maybe_negate,
  1653              intro_info, NONE)
  1654   end
  1655 
  1656 fun formula_lines_for_tag_sym_decl ctxt format conj_sym_kind nonmono_Ts type_sys
  1657         n s (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1658   let
  1659     val ident_base =
  1660       sym_formula_prefix ^ s ^ (if n > 1 then "_" ^ string_of_int j else "")
  1661     val (kind, maybe_negate) =
  1662       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1663       else (Axiom, I)
  1664     val (arg_Ts, res_T) = chop_fun ary T
  1665     val bound_names =
  1666       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1667     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1668     val cst = mk_const_aterm (s, s') T_args
  1669     val atomic_Ts = atyps_of T
  1670     fun eq tms =
  1671       (if pred_sym then AConn (AIff, map AAtom tms)
  1672        else AAtom (ATerm (`I tptp_equal, tms)))
  1673       |> bound_tvars type_sys atomic_Ts
  1674       |> close_formula_universally
  1675       |> maybe_negate
  1676     val should_encode = should_encode_type ctxt nonmono_Ts All_Types
  1677     val tag_with = tag_with_type ctxt format nonmono_Ts type_sys
  1678     val add_formula_for_res =
  1679       if should_encode res_T then
  1680         cons (Formula (ident_base ^ "_res", kind,
  1681                        eq [tag_with res_T (cst bounds), cst bounds],
  1682                        simp_info, NONE))
  1683       else
  1684         I
  1685     fun add_formula_for_arg k =
  1686       let val arg_T = nth arg_Ts k in
  1687         if should_encode arg_T then
  1688           case chop k bounds of
  1689             (bounds1, bound :: bounds2) =>
  1690             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1691                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1692                                cst bounds],
  1693                            simp_info, NONE))
  1694           | _ => raise Fail "expected nonempty tail"
  1695         else
  1696           I
  1697       end
  1698   in
  1699     [] |> not pred_sym ? add_formula_for_res
  1700        |> fold add_formula_for_arg (ary - 1 downto 0)
  1701   end
  1702 
  1703 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1704 
  1705 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts type_sys
  1706                                 (s, decls) =
  1707   case type_sys of
  1708     Simple_Types _ =>
  1709     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_sys s)
  1710   | Preds _ =>
  1711     let
  1712       val decls =
  1713         case decls of
  1714           decl :: (decls' as _ :: _) =>
  1715           let val T = result_type_of_decl decl in
  1716             if forall (curry (type_instance ctxt o swap) T
  1717                        o result_type_of_decl) decls' then
  1718               [decl]
  1719             else
  1720               decls
  1721           end
  1722         | _ => decls
  1723       val n = length decls
  1724       val decls =
  1725         decls
  1726         |> filter (should_predicate_on_type ctxt nonmono_Ts type_sys (K true)
  1727                    o result_type_of_decl)
  1728     in
  1729       (0 upto length decls - 1, decls)
  1730       |-> map2 (formula_line_for_pred_sym_decl ctxt format conj_sym_kind
  1731                                                nonmono_Ts type_sys n s)
  1732     end
  1733   | Tags (_, _, heaviness) =>
  1734     (case heaviness of
  1735        Heavy => []
  1736      | Light =>
  1737        let val n = length decls in
  1738          (0 upto n - 1 ~~ decls)
  1739          |> maps (formula_lines_for_tag_sym_decl ctxt format conj_sym_kind
  1740                                                  nonmono_Ts type_sys n s)
  1741        end)
  1742 
  1743 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1744                                      type_sys sym_decl_tab =
  1745   sym_decl_tab
  1746   |> Symtab.dest
  1747   |> sort_wrt fst
  1748   |> rpair []
  1749   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1750                                                      nonmono_Ts type_sys)
  1751 
  1752 fun should_add_ti_ti_helper (Tags (Polymorphic, level, Heavy)) =
  1753     level = Nonmonotonic_Types orelse level = Finite_Types
  1754   | should_add_ti_ti_helper _ = false
  1755 
  1756 fun offset_of_heading_in_problem _ [] j = j
  1757   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1758     if heading = needle then j
  1759     else offset_of_heading_in_problem needle problem (j + length lines)
  1760 
  1761 val implicit_declsN = "Should-be-implicit typings"
  1762 val explicit_declsN = "Explicit typings"
  1763 val factsN = "Relevant facts"
  1764 val class_relsN = "Class relationships"
  1765 val aritiesN = "Arities"
  1766 val helpersN = "Helper facts"
  1767 val conjsN = "Conjectures"
  1768 val free_typesN = "Type variables"
  1769 
  1770 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_sys
  1771                         explicit_apply readable_names preproc hyp_ts concl_t
  1772                         facts =
  1773   let
  1774     val (format, type_sys) = choose_format [format] type_sys
  1775     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1776       translate_formulas ctxt format prem_kind type_sys preproc hyp_ts concl_t
  1777                          facts
  1778     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1779     val nonmono_Ts = conjs @ facts |> nonmonotonic_types_for_facts ctxt type_sys
  1780     val repair = repair_fact ctxt format nonmono_Ts type_sys sym_tab
  1781     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1782     val repaired_sym_tab =
  1783       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1784     val helpers =
  1785       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_sys
  1786                        |> map repair
  1787     val lavish_nonmono_Ts =
  1788       if null nonmono_Ts orelse
  1789          polymorphism_of_type_sys type_sys <> Polymorphic then
  1790         nonmono_Ts
  1791       else
  1792         [TVar (("'a", 0), HOLogic.typeS)]
  1793     val sym_decl_lines =
  1794       (conjs, helpers @ facts)
  1795       |> sym_decl_table_for_facts ctxt type_sys repaired_sym_tab
  1796       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind
  1797                                           lavish_nonmono_Ts type_sys
  1798     val helper_lines =
  1799       0 upto length helpers - 1 ~~ helpers
  1800       |> map (formula_line_for_fact ctxt format helper_prefix lavish_nonmono_Ts
  1801                                     type_sys)
  1802       |> (if should_add_ti_ti_helper type_sys then cons (ti_ti_helper_fact ())
  1803           else I)
  1804     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1805        FLOTTER hack. *)
  1806     val problem =
  1807       [(explicit_declsN, sym_decl_lines),
  1808        (factsN,
  1809         map (formula_line_for_fact ctxt format fact_prefix nonmono_Ts type_sys)
  1810             (0 upto length facts - 1 ~~ facts)),
  1811        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1812        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1813        (helpersN, helper_lines),
  1814        (conjsN,
  1815         map (formula_line_for_conjecture ctxt format nonmono_Ts type_sys)
  1816             conjs),
  1817        (free_typesN, formula_lines_for_free_types type_sys (facts @ conjs))]
  1818     val problem =
  1819       problem
  1820       |> (case format of
  1821             CNF => ensure_cnf_problem
  1822           | CNF_UEQ => filter_cnf_ueq_problem
  1823           | _ => I)
  1824       |> (if is_format_typed format then
  1825             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1826                                                    implicit_declsN
  1827           else
  1828             I)
  1829     val (problem, pool) = problem |> nice_atp_problem readable_names
  1830     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1831     val typed_helpers =
  1832       map_filter (fn (j, {name, ...}) =>
  1833                      if String.isSuffix typed_helper_suffix name then SOME j
  1834                      else NONE)
  1835                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1836                   ~~ helpers)
  1837     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1838       if min_ary > 0 then
  1839         case strip_prefix_and_unascii const_prefix s of
  1840           SOME s => Symtab.insert (op =) (s, min_ary)
  1841         | NONE => I
  1842       else
  1843         I
  1844   in
  1845     (problem,
  1846      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1847      offset_of_heading_in_problem conjsN problem 0,
  1848      offset_of_heading_in_problem factsN problem 0,
  1849      fact_names |> Vector.fromList,
  1850      typed_helpers,
  1851      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1852   end
  1853 
  1854 (* FUDGE *)
  1855 val conj_weight = 0.0
  1856 val hyp_weight = 0.1
  1857 val fact_min_weight = 0.2
  1858 val fact_max_weight = 1.0
  1859 val type_info_default_weight = 0.8
  1860 
  1861 fun add_term_weights weight (ATerm (s, tms)) =
  1862   is_tptp_user_symbol s ? Symtab.default (s, weight)
  1863   #> fold (add_term_weights weight) tms
  1864 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1865     formula_fold NONE (K (add_term_weights weight)) phi
  1866   | add_problem_line_weights _ _ = I
  1867 
  1868 fun add_conjectures_weights [] = I
  1869   | add_conjectures_weights conjs =
  1870     let val (hyps, conj) = split_last conjs in
  1871       add_problem_line_weights conj_weight conj
  1872       #> fold (add_problem_line_weights hyp_weight) hyps
  1873     end
  1874 
  1875 fun add_facts_weights facts =
  1876   let
  1877     val num_facts = length facts
  1878     fun weight_of j =
  1879       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1880                         / Real.fromInt num_facts
  1881   in
  1882     map weight_of (0 upto num_facts - 1) ~~ facts
  1883     |> fold (uncurry add_problem_line_weights)
  1884   end
  1885 
  1886 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  1887 fun atp_problem_weights problem =
  1888   let val get = these o AList.lookup (op =) problem in
  1889     Symtab.empty
  1890     |> add_conjectures_weights (get free_typesN @ get conjsN)
  1891     |> add_facts_weights (get factsN)
  1892     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  1893             [explicit_declsN, class_relsN, aritiesN]
  1894     |> Symtab.dest
  1895     |> sort (prod_ord Real.compare string_ord o pairself swap)
  1896   end
  1897 
  1898 end;