src/HOL/SPARK/Tools/spark_vcs.ML
author wenzelm
Sun, 06 Nov 2011 16:41:53 +0100
changeset 46239 157e74588c49
parent 45524 6d8d09b90398
child 46457 a6d9464a230b
permissions -rw-r--r--
write changed .prv files only, to avoid writing into src file-space by default;
     1 (*  Title:      HOL/SPARK/Tools/spark_vcs.ML
     2     Author:     Stefan Berghofer
     3     Copyright:  secunet Security Networks AG
     4 
     5 Store for verification conditions generated by SPARK/Ada.
     6 *)
     7 
     8 signature SPARK_VCS =
     9 sig
    10   val set_vcs: Fdl_Parser.decls -> Fdl_Parser.rules ->
    11     (string * string) * Fdl_Parser.vcs -> Path.T -> string -> theory -> theory
    12   val add_proof_fun: (typ option -> 'a -> term) ->
    13     string * ((string list * string) option * 'a) ->
    14     theory -> theory
    15   val add_type: string * typ -> theory -> theory
    16   val lookup_vc: theory -> string -> (Element.context_i list *
    17     (string * thm list option * Element.context_i * Element.statement_i)) option
    18   val get_vcs: theory ->
    19     Element.context_i list * (binding * thm) list * (string *
    20     (string * thm list option * Element.context_i * Element.statement_i)) list
    21   val mark_proved: string -> thm list -> theory -> theory
    22   val close: theory -> theory
    23   val is_closed: theory -> bool
    24 end;
    25 
    26 structure SPARK_VCs: SPARK_VCS =
    27 struct
    28 
    29 open Fdl_Parser;
    30 
    31 
    32 (** theory data **)
    33 
    34 fun err_unfinished () = error "An unfinished SPARK environment is still open."
    35 
    36 val strip_number = pairself implode o take_suffix Fdl_Lexer.is_digit o raw_explode;
    37 
    38 val name_ord = prod_ord string_ord (option_ord int_ord) o
    39   pairself (strip_number ##> Int.fromString);
    40 
    41 structure VCtab = Table(type key = string val ord = name_ord);
    42 
    43 structure VCs = Theory_Data
    44 (
    45   type T =
    46     {pfuns: ((string list * string) option * term) Symtab.table,
    47      type_map: typ Symtab.table,
    48      env:
    49        {ctxt: Element.context_i list,
    50         defs: (binding * thm) list,
    51         types: fdl_type tab,
    52         funs: (string list * string) tab,
    53         ids: (term * string) Symtab.table * Name.context,
    54         proving: bool,
    55         vcs: (string * thm list option *
    56           (string * expr) list * (string * expr) list) VCtab.table,
    57         path: Path.T,
    58         prefix: string} option}
    59   val empty : T = {pfuns = Symtab.empty, type_map = Symtab.empty, env = NONE}
    60   val extend = I
    61   fun merge ({pfuns = pfuns1, type_map = type_map1, env = NONE},
    62         {pfuns = pfuns2, type_map = type_map2, env = NONE}) =
    63         {pfuns = Symtab.merge (eq_pair (op =) (op aconv)) (pfuns1, pfuns2),
    64          type_map = Symtab.merge (op =) (type_map1, type_map2),
    65          env = NONE}
    66     | merge _ = err_unfinished ()
    67 )
    68 
    69 
    70 (** utilities **)
    71 
    72 val to_lower = raw_explode #> map Symbol.to_ascii_lower #> implode;
    73 
    74 val lcase_eq = (op =) o pairself (to_lower o Long_Name.base_name);
    75 
    76 fun lookup_prfx "" tab s = Symtab.lookup tab s
    77   | lookup_prfx prfx tab s = (case Symtab.lookup tab s of
    78         NONE => Symtab.lookup tab (prfx ^ "__" ^ s)
    79       | x => x);
    80 
    81 fun strip_prfx s =
    82   let
    83     fun strip ys [] = ("", implode ys)
    84       | strip ys ("_" :: "_" :: xs) = (implode (rev xs), implode ys)
    85       | strip ys (x :: xs) = strip (x :: ys) xs
    86   in strip [] (rev (raw_explode s)) end;
    87 
    88 fun mk_unop s t =
    89   let val T = fastype_of t
    90   in Const (s, T --> T) $ t end;
    91 
    92 fun mk_times (t, u) =
    93   let
    94     val setT = fastype_of t;
    95     val T = HOLogic.dest_setT setT;
    96     val U = HOLogic.dest_setT (fastype_of u)
    97   in
    98     Const (@{const_name Sigma}, setT --> (T --> HOLogic.mk_setT U) -->
    99       HOLogic.mk_setT (HOLogic.mk_prodT (T, U))) $ t $ Abs ("", T, u)
   100   end;
   101 
   102 fun get_type thy prfx ty =
   103   let val {type_map, ...} = VCs.get thy
   104   in lookup_prfx prfx type_map ty end;
   105 
   106 fun mk_type _ _ "integer" = HOLogic.intT
   107   | mk_type _ _ "boolean" = HOLogic.boolT
   108   | mk_type thy prfx ty =
   109       (case get_type thy prfx ty of
   110          NONE =>
   111            Syntax.check_typ (Proof_Context.init_global thy)
   112              (Type (Sign.full_name thy (Binding.name ty), []))
   113        | SOME T => T);
   114 
   115 val booleanN = "boolean";
   116 val integerN = "integer";
   117 
   118 fun define_overloaded (def_name, eq) lthy =
   119   let
   120     val ((c, _), rhs) = eq |> Syntax.check_term lthy |>
   121       Logic.dest_equals |>> dest_Free;
   122     val ((_, (_, thm)), lthy') = Local_Theory.define
   123       ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs)) lthy
   124     val ctxt_thy = Proof_Context.init_global (Proof_Context.theory_of lthy');
   125     val thm' = singleton (Proof_Context.export lthy' ctxt_thy) thm
   126   in (thm', lthy') end;
   127 
   128 fun strip_underscores s =
   129   strip_underscores (unsuffix "_" s) handle Fail _ => s;
   130 
   131 fun strip_tilde s =
   132   unsuffix "~" s ^ "_init" handle Fail _ => s;
   133 
   134 val mangle_name = strip_underscores #> strip_tilde;
   135 
   136 fun mk_variables thy prfx xs ty (tab, ctxt) =
   137   let
   138     val T = mk_type thy prfx ty;
   139     val (ys, ctxt') = fold_map Name.variant (map mangle_name xs) ctxt;
   140     val zs = map (Free o rpair T) ys;
   141   in (zs, (fold (Symtab.update o apsnd (rpair ty)) (xs ~~ zs) tab, ctxt')) end;
   142 
   143 fun get_record_info thy T = (case Record.dest_recTs T of
   144     [(tyname, [@{typ unit}])] =>
   145       Record.get_info thy (Long_Name.qualifier tyname)
   146   | _ => NONE);
   147 
   148 fun find_field fname = find_first (curry lcase_eq fname o fst);
   149 
   150 fun find_field' fname = get_first (fn (flds, fldty) =>
   151   if member (op =) flds fname then SOME fldty else NONE);
   152 
   153 fun assoc_ty_err thy T s msg =
   154   error ("Type " ^ Syntax.string_of_typ_global thy T ^
   155     " associated with SPARK type " ^ s ^ "\n" ^ msg);
   156 
   157 
   158 (** generate properties of enumeration types **)
   159 
   160 fun add_enum_type tyname tyname' thy =
   161   let
   162     val {case_name, ...} = the (Datatype_Data.get_info thy tyname');
   163     val cs = map Const (the (Datatype_Data.get_constrs thy tyname'));
   164     val k = length cs;
   165     val T = Type (tyname', []);
   166     val p = Const (@{const_name pos}, T --> HOLogic.intT);
   167     val v = Const (@{const_name val}, HOLogic.intT --> T);
   168     val card = Const (@{const_name card},
   169       HOLogic.mk_setT T --> HOLogic.natT) $ HOLogic.mk_UNIV T;
   170 
   171     fun mk_binrel_def s f = Logic.mk_equals
   172       (Const (s, T --> T --> HOLogic.boolT),
   173        Abs ("x", T, Abs ("y", T,
   174          Const (s, HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $
   175            (f $ Bound 1) $ (f $ Bound 0))));
   176 
   177     val (((def1, def2), def3), lthy) = thy |>
   178 
   179       Class.instantiation ([tyname'], [], @{sort spark_enum}) |>
   180 
   181       define_overloaded ("pos_" ^ tyname ^ "_def", Logic.mk_equals
   182         (p,
   183          list_comb (Const (case_name, replicate k HOLogic.intT @
   184              [T] ---> HOLogic.intT),
   185            map (HOLogic.mk_number HOLogic.intT) (0 upto k - 1)))) ||>>
   186 
   187       define_overloaded ("less_eq_" ^ tyname ^ "_def",
   188         mk_binrel_def @{const_name less_eq} p) ||>>
   189       define_overloaded ("less_" ^ tyname ^ "_def",
   190         mk_binrel_def @{const_name less} p);
   191 
   192     val UNIV_eq = Goal.prove lthy [] []
   193       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   194          (HOLogic.mk_UNIV T, HOLogic.mk_set T cs)))
   195       (fn _ =>
   196          rtac @{thm subset_antisym} 1 THEN
   197          rtac @{thm subsetI} 1 THEN
   198          Datatype_Aux.exh_tac (K (#exhaust (Datatype_Data.the_info
   199            (Proof_Context.theory_of lthy) tyname'))) 1 THEN
   200          ALLGOALS (asm_full_simp_tac (simpset_of lthy)));
   201 
   202     val finite_UNIV = Goal.prove lthy [] []
   203       (HOLogic.mk_Trueprop (Const (@{const_name finite},
   204          HOLogic.mk_setT T --> HOLogic.boolT) $ HOLogic.mk_UNIV T))
   205       (fn _ => simp_tac (simpset_of lthy addsimps [UNIV_eq]) 1);
   206 
   207     val card_UNIV = Goal.prove lthy [] []
   208       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   209          (card, HOLogic.mk_number HOLogic.natT k)))
   210       (fn _ => simp_tac (simpset_of lthy addsimps [UNIV_eq]) 1);
   211 
   212     val range_pos = Goal.prove lthy [] []
   213       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   214          (Const (@{const_name image}, (T --> HOLogic.intT) -->
   215             HOLogic.mk_setT T --> HOLogic.mk_setT HOLogic.intT) $
   216               p $ HOLogic.mk_UNIV T,
   217           Const (@{const_name atLeastLessThan}, HOLogic.intT -->
   218             HOLogic.intT --> HOLogic.mk_setT HOLogic.intT) $
   219               HOLogic.mk_number HOLogic.intT 0 $
   220               (@{term int} $ card))))
   221       (fn _ =>
   222          simp_tac (simpset_of lthy addsimps [card_UNIV]) 1 THEN
   223          simp_tac (simpset_of lthy addsimps [UNIV_eq, def1]) 1 THEN
   224          rtac @{thm subset_antisym} 1 THEN
   225          simp_tac (simpset_of lthy) 1 THEN
   226          rtac @{thm subsetI} 1 THEN
   227          asm_full_simp_tac (simpset_of lthy addsimps @{thms interval_expand}
   228            delsimps @{thms atLeastLessThan_iff}) 1);
   229 
   230     val lthy' =
   231       Class.prove_instantiation_instance (fn _ =>
   232         Class.intro_classes_tac [] THEN
   233         rtac finite_UNIV 1 THEN
   234         rtac range_pos 1 THEN
   235         simp_tac (HOL_basic_ss addsimps [def3]) 1 THEN
   236         simp_tac (HOL_basic_ss addsimps [def2]) 1) lthy;
   237 
   238     val (pos_eqs, val_eqs) = split_list (map_index (fn (i, c) =>
   239       let
   240         val n = HOLogic.mk_number HOLogic.intT i;
   241         val th = Goal.prove lthy' [] []
   242           (HOLogic.mk_Trueprop (HOLogic.mk_eq (p $ c, n)))
   243           (fn _ => simp_tac (simpset_of lthy' addsimps [def1]) 1);
   244         val th' = Goal.prove lthy' [] []
   245           (HOLogic.mk_Trueprop (HOLogic.mk_eq (v $ n, c)))
   246           (fn _ =>
   247              rtac (@{thm inj_pos} RS @{thm injD}) 1 THEN
   248              simp_tac (simpset_of lthy' addsimps
   249                [@{thm pos_val}, range_pos, card_UNIV, th]) 1)
   250       in (th, th') end) cs);
   251 
   252     val first_el = Goal.prove lthy' [] []
   253       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   254          (Const (@{const_name first_el}, T), hd cs)))
   255       (fn _ => simp_tac (simpset_of lthy' addsimps
   256          [@{thm first_el_def}, hd val_eqs]) 1);
   257 
   258     val last_el = Goal.prove lthy' [] []
   259       (HOLogic.mk_Trueprop (HOLogic.mk_eq
   260          (Const (@{const_name last_el}, T), List.last cs)))
   261       (fn _ => simp_tac (simpset_of lthy' addsimps
   262          [@{thm last_el_def}, List.last val_eqs, card_UNIV]) 1);
   263 
   264     val simp_att = [Attrib.internal (K Simplifier.simp_add)]
   265 
   266   in
   267     lthy' |>
   268     Local_Theory.note
   269       ((Binding.name (tyname ^ "_card"), simp_att), [card_UNIV]) ||>>
   270     Local_Theory.note
   271       ((Binding.name (tyname ^ "_pos"), simp_att), pos_eqs) ||>>
   272     Local_Theory.note
   273       ((Binding.name (tyname ^ "_val"), simp_att), val_eqs) ||>>
   274     Local_Theory.note
   275       ((Binding.name (tyname ^ "_first_el"), simp_att), [first_el]) ||>>
   276     Local_Theory.note
   277       ((Binding.name (tyname ^ "_last_el"), simp_att), [last_el]) |> snd |>
   278     Local_Theory.exit_global
   279   end;
   280 
   281 
   282 fun check_no_assoc thy prfx s = case get_type thy prfx s of
   283     NONE => ()
   284   | SOME _ => error ("Cannot associate a type with " ^ s ^
   285       "\nsince it is no record or enumeration type");
   286 
   287 fun check_enum [] [] = NONE 
   288   | check_enum els [] = SOME ("has no element(s) " ^ commas els)
   289   | check_enum [] cs = SOME ("has extra element(s) " ^
   290       commas (map (Long_Name.base_name o fst) cs))
   291   | check_enum (el :: els) ((cname, _) :: cs) =
   292       if lcase_eq (el, cname) then check_enum els cs
   293       else SOME ("either has no element " ^ el ^
   294         " or it is at the wrong position");
   295 
   296 fun add_type_def prfx (s, Basic_Type ty) (ids, thy) =
   297       (check_no_assoc thy prfx s;
   298        (ids,
   299         Typedecl.abbrev_global (Binding.name s, [], NoSyn)
   300           (mk_type thy prfx ty) thy |> snd))
   301 
   302   | add_type_def prfx (s, Enum_Type els) ((tab, ctxt), thy) =
   303       let
   304         val (thy', tyname) = (case get_type thy prfx s of
   305             NONE =>
   306               let
   307                 val tyb = Binding.name s;
   308                 val tyname = Sign.full_name thy tyb
   309               in
   310                 (thy |>
   311                  Datatype.add_datatype {strict = true, quiet = true} [s]
   312                    [([], tyb, NoSyn,
   313                      map (fn s => (Binding.name s, [], NoSyn)) els)] |> snd |>
   314                  add_enum_type s tyname,
   315                  tyname)
   316               end
   317           | SOME (T as Type (tyname, [])) =>
   318               (case Datatype_Data.get_constrs thy tyname of
   319                  NONE => assoc_ty_err thy T s "is not a datatype"
   320                | SOME cs =>
   321                    let
   322                      val (prfx', _) = strip_prfx s;
   323                      val els' =
   324                        if prfx' = "" then els
   325                        else map (unprefix (prfx' ^ "__")) els
   326                          handle Fail _ => error ("Bad enumeration type " ^ s)
   327                    in
   328                      case check_enum els' cs of
   329                        NONE => (thy, tyname)
   330                      | SOME msg => assoc_ty_err thy T s msg
   331                    end));
   332         val cs = map Const (the (Datatype_Data.get_constrs thy' tyname))
   333       in
   334         ((fold (Symtab.update_new o apsnd (rpair s)) (els ~~ cs) tab,
   335           fold Name.declare els ctxt),
   336          thy')
   337       end
   338 
   339   | add_type_def prfx (s, Array_Type (argtys, resty)) (ids, thy) =
   340       (check_no_assoc thy prfx s;
   341        (ids,
   342         Typedecl.abbrev_global (Binding.name s, [], NoSyn)
   343           (foldr1 HOLogic.mk_prodT (map (mk_type thy prfx) argtys) -->
   344              mk_type thy prfx resty) thy |> snd))
   345 
   346   | add_type_def prfx (s, Record_Type fldtys) (ids, thy) =
   347       (ids,
   348        let val fldTs = maps (fn (flds, ty) =>
   349          map (rpair (mk_type thy prfx ty)) flds) fldtys
   350        in case get_type thy prfx s of
   351            NONE =>
   352              Record.add_record ([], Binding.name s) NONE
   353                (map (fn (fld, T) => (Binding.name fld, T, NoSyn)) fldTs) thy
   354          | SOME rT =>
   355              (case get_record_info thy rT of
   356                 NONE => assoc_ty_err thy rT s "is not a record type"
   357               | SOME {fields, ...} =>
   358                   (case subtract (lcase_eq o pairself fst) fldTs fields of
   359                      [] => ()
   360                    | flds => assoc_ty_err thy rT s ("has extra field(s) " ^
   361                        commas (map (Long_Name.base_name o fst) flds));
   362                    map (fn (fld, T) =>
   363                      case AList.lookup lcase_eq fields fld of
   364                        NONE => assoc_ty_err thy rT s ("has no field " ^ fld)
   365                      | SOME U => T = U orelse assoc_ty_err thy rT s
   366                          ("has field " ^
   367                           fld ^ " whose type\n" ^
   368                           Syntax.string_of_typ_global thy U ^
   369                           "\ndoes not match declared type\n" ^
   370                           Syntax.string_of_typ_global thy T)) fldTs;
   371                    thy))
   372        end)
   373 
   374   | add_type_def prfx (s, Pending_Type) (ids, thy) =
   375       (ids,
   376        case get_type thy prfx s of
   377          SOME _ => thy
   378        | NONE => Typedecl.typedecl_global
   379            (Binding.name s, [], NoSyn) thy |> snd);
   380 
   381 
   382 fun term_of_expr thy prfx types pfuns =
   383   let
   384     fun tm_of vs (Funct ("->", [e, e'])) =
   385           (HOLogic.mk_imp (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   386 
   387       | tm_of vs (Funct ("<->", [e, e'])) =
   388           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   389 
   390       | tm_of vs (Funct ("or", [e, e'])) =
   391           (HOLogic.mk_disj (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   392 
   393       | tm_of vs (Funct ("and", [e, e'])) =
   394           (HOLogic.mk_conj (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   395 
   396       | tm_of vs (Funct ("not", [e])) =
   397           (HOLogic.mk_not (fst (tm_of vs e)), booleanN)
   398 
   399       | tm_of vs (Funct ("=", [e, e'])) =
   400           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   401 
   402       | tm_of vs (Funct ("<>", [e, e'])) = (HOLogic.mk_not
   403           (HOLogic.mk_eq (fst (tm_of vs e), fst (tm_of vs e'))), booleanN)
   404 
   405       | tm_of vs (Funct ("<", [e, e'])) = (HOLogic.mk_binrel @{const_name less}
   406           (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   407 
   408       | tm_of vs (Funct (">", [e, e'])) = (HOLogic.mk_binrel @{const_name less}
   409           (fst (tm_of vs e'), fst (tm_of vs e)), booleanN)
   410 
   411       | tm_of vs (Funct ("<=", [e, e'])) = (HOLogic.mk_binrel @{const_name less_eq}
   412           (fst (tm_of vs e), fst (tm_of vs e')), booleanN)
   413 
   414       | tm_of vs (Funct (">=", [e, e'])) = (HOLogic.mk_binrel @{const_name less_eq}
   415           (fst (tm_of vs e'), fst (tm_of vs e)), booleanN)
   416 
   417       | tm_of vs (Funct ("+", [e, e'])) = (HOLogic.mk_binop @{const_name plus}
   418           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   419 
   420       | tm_of vs (Funct ("-", [e, e'])) = (HOLogic.mk_binop @{const_name minus}
   421           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   422 
   423       | tm_of vs (Funct ("*", [e, e'])) = (HOLogic.mk_binop @{const_name times}
   424           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   425 
   426       | tm_of vs (Funct ("/", [e, e'])) = (HOLogic.mk_binop @{const_name divide}
   427           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   428 
   429       | tm_of vs (Funct ("div", [e, e'])) = (HOLogic.mk_binop @{const_name sdiv}
   430           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   431 
   432       | tm_of vs (Funct ("mod", [e, e'])) = (HOLogic.mk_binop @{const_name mod}
   433           (fst (tm_of vs e), fst (tm_of vs e')), integerN)
   434 
   435       | tm_of vs (Funct ("-", [e])) =
   436           (mk_unop @{const_name uminus} (fst (tm_of vs e)), integerN)
   437 
   438       | tm_of vs (Funct ("**", [e, e'])) =
   439           (Const (@{const_name power}, HOLogic.intT --> HOLogic.natT -->
   440              HOLogic.intT) $ fst (tm_of vs e) $
   441                (@{const nat} $ fst (tm_of vs e')), integerN)
   442 
   443       | tm_of (tab, _) (Ident s) =
   444           (case Symtab.lookup tab s of
   445              SOME t_ty => t_ty
   446            | NONE => (case lookup_prfx prfx pfuns s of
   447                SOME (SOME ([], resty), t) => (t, resty)
   448              | _ => error ("Undeclared identifier " ^ s)))
   449 
   450       | tm_of _ (Number i) = (HOLogic.mk_number HOLogic.intT i, integerN)
   451 
   452       | tm_of vs (Quantifier (s, xs, ty, e)) =
   453           let
   454             val (ys, vs') = mk_variables thy prfx xs ty vs;
   455             val q = (case s of
   456                 "for_all" => HOLogic.mk_all
   457               | "for_some" => HOLogic.mk_exists)
   458           in
   459             (fold_rev (fn Free (x, T) => fn t => q (x, T, t))
   460                ys (fst (tm_of vs' e)),
   461              booleanN)
   462           end
   463 
   464       | tm_of vs (Funct (s, es)) =
   465 
   466           (* record field selection *)
   467           (case try (unprefix "fld_") s of
   468              SOME fname => (case es of
   469                [e] =>
   470                  let
   471                    val (t, rcdty) = tm_of vs e;
   472                    val rT = mk_type thy prfx rcdty
   473                  in case (get_record_info thy rT, lookup types rcdty) of
   474                      (SOME {fields, ...}, SOME (Record_Type fldtys)) =>
   475                        (case (find_field fname fields,
   476                             find_field' fname fldtys) of
   477                           (SOME (fname', fT), SOME fldty) =>
   478                             (Const (fname', rT --> fT) $ t, fldty)
   479                         | _ => error ("Record " ^ rcdty ^
   480                             " has no field named " ^ fname))
   481                    | _ => error (rcdty ^ " is not a record type")
   482                  end
   483              | _ => error ("Function " ^ s ^ " expects one argument"))
   484            | NONE =>
   485 
   486           (* record field update *)
   487           (case try (unprefix "upf_") s of
   488              SOME fname => (case es of
   489                [e, e'] =>
   490                  let
   491                    val (t, rcdty) = tm_of vs e;
   492                    val rT = mk_type thy prfx rcdty;
   493                    val (u, fldty) = tm_of vs e';
   494                    val fT = mk_type thy prfx fldty
   495                  in case get_record_info thy rT of
   496                      SOME {fields, ...} =>
   497                        (case find_field fname fields of
   498                           SOME (fname', fU) =>
   499                             if fT = fU then
   500                               (Const (fname' ^ "_update",
   501                                  (fT --> fT) --> rT --> rT) $
   502                                    Abs ("x", fT, u) $ t,
   503                                rcdty)
   504                             else error ("Type\n" ^
   505                               Syntax.string_of_typ_global thy fT ^
   506                               "\ndoes not match type\n" ^
   507                               Syntax.string_of_typ_global thy fU ^
   508                               "\nof field " ^ fname)
   509                         | NONE => error ("Record " ^ rcdty ^
   510                             " has no field named " ^ fname))
   511                    | _ => error (rcdty ^ " is not a record type")
   512                  end
   513              | _ => error ("Function " ^ s ^ " expects two arguments"))
   514            | NONE =>
   515 
   516           (* enumeration type to integer *)
   517           (case try (unsuffix "__pos") s of
   518              SOME tyname => (case es of
   519                [e] => (Const (@{const_name pos},
   520                    mk_type thy prfx tyname --> HOLogic.intT) $ fst (tm_of vs e),
   521                  integerN)
   522              | _ => error ("Function " ^ s ^ " expects one argument"))
   523            | NONE =>
   524 
   525           (* integer to enumeration type *)
   526           (case try (unsuffix "__val") s of
   527              SOME tyname => (case es of
   528                [e] => (Const (@{const_name val},
   529                    HOLogic.intT --> mk_type thy prfx tyname) $ fst (tm_of vs e),
   530                  tyname)
   531              | _ => error ("Function " ^ s ^ " expects one argument"))
   532            | NONE =>
   533 
   534           (* successor / predecessor of enumeration type element *)
   535           if s = "succ" orelse s = "pred" then (case es of
   536               [e] =>
   537                 let
   538                   val (t, tyname) = tm_of vs e;
   539                   val T = mk_type thy prfx tyname
   540                 in (Const
   541                   (if s = "succ" then @{const_name succ}
   542                    else @{const_name pred}, T --> T) $ t, tyname)
   543                 end
   544             | _ => error ("Function " ^ s ^ " expects one argument"))
   545 
   546           (* user-defined proof function *)
   547           else
   548             (case lookup_prfx prfx pfuns s of
   549                SOME (SOME (_, resty), t) =>
   550                  (list_comb (t, map (fst o tm_of vs) es), resty)
   551              | _ => error ("Undeclared proof function " ^ s))))))
   552 
   553       | tm_of vs (Element (e, es)) =
   554           let val (t, ty) = tm_of vs e
   555           in case lookup types ty of
   556               SOME (Array_Type (_, elty)) =>
   557                 (t $ foldr1 HOLogic.mk_prod (map (fst o tm_of vs) es), elty)
   558             | _ => error (ty ^ " is not an array type")
   559           end
   560 
   561       | tm_of vs (Update (e, es, e')) =
   562           let val (t, ty) = tm_of vs e
   563           in case lookup types ty of
   564               SOME (Array_Type (idxtys, elty)) =>
   565                 let
   566                   val T = foldr1 HOLogic.mk_prodT
   567                     (map (mk_type thy prfx) idxtys);
   568                   val U = mk_type thy prfx elty;
   569                   val fT = T --> U
   570                 in
   571                   (Const (@{const_name fun_upd}, fT --> T --> U --> fT) $
   572                      t $ foldr1 HOLogic.mk_prod (map (fst o tm_of vs) es) $
   573                        fst (tm_of vs e'),
   574                    ty)
   575                 end
   576             | _ => error (ty ^ " is not an array type")
   577           end
   578 
   579       | tm_of vs (Record (s, flds)) =
   580           let
   581             val T = mk_type thy prfx s;
   582             val {extension = (ext_name, _), fields, ...} =
   583               (case get_record_info thy T of
   584                  NONE => error (s ^ " is not a record type")
   585                | SOME info => info);
   586             val flds' = map (apsnd (tm_of vs)) flds;
   587             val fnames = map (Long_Name.base_name o fst) fields;
   588             val fnames' = map fst flds;
   589             val (fvals, ftys) = split_list (map (fn s' =>
   590               case AList.lookup lcase_eq flds' s' of
   591                 SOME fval_ty => fval_ty
   592               | NONE => error ("Field " ^ s' ^ " missing in record " ^ s))
   593                   fnames);
   594             val _ = (case subtract lcase_eq fnames fnames' of
   595                 [] => ()
   596               | xs => error ("Extra field(s) " ^ commas xs ^
   597                   " in record " ^ s));
   598             val _ = (case duplicates (op =) fnames' of
   599                 [] => ()
   600               | xs => error ("Duplicate field(s) " ^ commas xs ^
   601                   " in record " ^ s))
   602           in
   603             (list_comb
   604                (Const (ext_name,
   605                   map (mk_type thy prfx) ftys @ [HOLogic.unitT] ---> T),
   606                 fvals @ [HOLogic.unit]),
   607              s)
   608           end
   609 
   610       | tm_of vs (Array (s, default, assocs)) =
   611           (case lookup types s of
   612              SOME (Array_Type (idxtys, elty)) =>
   613                let
   614                  val Ts = map (mk_type thy prfx) idxtys;
   615                  val T = foldr1 HOLogic.mk_prodT Ts;
   616                  val U = mk_type thy prfx elty;
   617                  fun mk_idx' T (e, NONE) = HOLogic.mk_set T [fst (tm_of vs e)]
   618                    | mk_idx' T (e, SOME e') = Const (@{const_name atLeastAtMost},
   619                        T --> T --> HOLogic.mk_setT T) $
   620                          fst (tm_of vs e) $ fst (tm_of vs e');
   621                  fun mk_idx idx =
   622                    if length Ts <> length idx then
   623                      error ("Arity mismatch in construction of array " ^ s)
   624                    else foldr1 mk_times (map2 mk_idx' Ts idx);
   625                  fun mk_upd (idxs, e) t =
   626                    if length idxs = 1 andalso forall (is_none o snd) (hd idxs)
   627                    then
   628                      Const (@{const_name fun_upd}, (T --> U) -->
   629                          T --> U --> T --> U) $ t $
   630                        foldl1 HOLogic.mk_prod
   631                          (map (fst o tm_of vs o fst) (hd idxs)) $
   632                        fst (tm_of vs e)
   633                    else
   634                      Const (@{const_name fun_upds}, (T --> U) -->
   635                          HOLogic.mk_setT T --> U --> T --> U) $ t $
   636                        foldl1 (HOLogic.mk_binop @{const_name sup})
   637                          (map mk_idx idxs) $
   638                        fst (tm_of vs e)
   639                in
   640                  (fold mk_upd assocs
   641                     (case default of
   642                        SOME e => Abs ("x", T, fst (tm_of vs e))
   643                      | NONE => Const (@{const_name undefined}, T --> U)),
   644                   s)
   645                end
   646            | _ => error (s ^ " is not an array type"))
   647 
   648   in tm_of end;
   649 
   650 
   651 fun term_of_rule thy prfx types pfuns ids rule =
   652   let val tm_of = fst o term_of_expr thy prfx types pfuns ids
   653   in case rule of
   654       Inference_Rule (es, e) => Logic.list_implies
   655         (map (HOLogic.mk_Trueprop o tm_of) es, HOLogic.mk_Trueprop (tm_of e))
   656     | Substitution_Rule (es, e, e') => Logic.list_implies
   657         (map (HOLogic.mk_Trueprop o tm_of) es,
   658          HOLogic.mk_Trueprop (HOLogic.mk_eq (tm_of e, tm_of e')))
   659   end;
   660 
   661 
   662 val builtin = Symtab.make (map (rpair ())
   663   ["->", "<->", "or", "and", "not", "=", "<>", "<", ">", "<=", ">=",
   664    "+", "-", "*", "/", "div", "mod", "**"]);
   665 
   666 fun complex_expr (Number _) = false
   667   | complex_expr (Ident _) = false 
   668   | complex_expr (Funct (s, es)) =
   669       not (Symtab.defined builtin s) orelse exists complex_expr es
   670   | complex_expr (Quantifier (_, _, _, e)) = complex_expr e
   671   | complex_expr _ = true;
   672 
   673 fun complex_rule (Inference_Rule (es, e)) =
   674       complex_expr e orelse exists complex_expr es
   675   | complex_rule (Substitution_Rule (es, e, e')) =
   676       complex_expr e orelse complex_expr e' orelse
   677       exists complex_expr es;
   678 
   679 val is_pfun =
   680   Symtab.defined builtin orf
   681   can (unprefix "fld_") orf can (unprefix "upf_") orf
   682   can (unsuffix "__pos") orf can (unsuffix "__val") orf
   683   equal "succ" orf equal "pred";
   684 
   685 fun fold_opt f = the_default I o Option.map f;
   686 fun fold_pair f g (x, y) = f x #> g y;
   687 
   688 fun fold_expr f g (Funct (s, es)) = f s #> fold (fold_expr f g) es
   689   | fold_expr f g (Ident s) = g s
   690   | fold_expr f g (Number _) = I
   691   | fold_expr f g (Quantifier (_, _, _, e)) = fold_expr f g e
   692   | fold_expr f g (Element (e, es)) =
   693       fold_expr f g e #> fold (fold_expr f g) es
   694   | fold_expr f g (Update (e, es, e')) =
   695       fold_expr f g e #> fold (fold_expr f g) es #> fold_expr f g e'
   696   | fold_expr f g (Record (_, flds)) = fold (fold_expr f g o snd) flds
   697   | fold_expr f g (Array (_, default, assocs)) =
   698       fold_opt (fold_expr f g) default #>
   699       fold (fold_pair
   700         (fold (fold (fold_pair
   701           (fold_expr f g) (fold_opt (fold_expr f g)))))
   702         (fold_expr f g)) assocs;
   703 
   704 fun add_expr_pfuns funs = fold_expr
   705   (fn s => if is_pfun s then I else insert (op =) s)
   706   (fn s => if is_none (lookup funs s) then I else insert (op =) s);
   707 
   708 val add_expr_idents = fold_expr (K I) (insert (op =));
   709 
   710 fun pfun_type thy prfx (argtys, resty) =
   711   map (mk_type thy prfx) argtys ---> mk_type thy prfx resty;
   712 
   713 fun check_pfun_type thy prfx s t optty1 optty2 =
   714   let
   715     val T = fastype_of t;
   716     fun check ty =
   717       let val U = pfun_type thy prfx ty
   718       in
   719         T = U orelse
   720         error ("Type\n" ^
   721           Syntax.string_of_typ_global thy T ^
   722           "\nof function " ^
   723           Syntax.string_of_term_global thy t ^
   724           " associated with proof function " ^ s ^
   725           "\ndoes not match declared type\n" ^
   726           Syntax.string_of_typ_global thy U)
   727       end
   728   in (Option.map check optty1; Option.map check optty2; ()) end;
   729 
   730 fun upd_option x y = if is_some x then x else y;
   731 
   732 fun check_pfuns_types thy prfx funs =
   733   Symtab.map (fn s => fn (optty, t) =>
   734    let val optty' = lookup funs
   735      (if prfx = "" then s
   736       else unprefix (prfx ^ "__") s handle Fail _ => s)
   737    in
   738      (check_pfun_type thy prfx s t optty optty';
   739       (NONE |> upd_option optty |> upd_option optty', t))
   740    end);
   741 
   742 
   743 (** the VC store **)
   744 
   745 fun err_vcs names = error (Pretty.string_of
   746   (Pretty.big_list "The following verification conditions have not been proved:"
   747     (map Pretty.str names)))
   748 
   749 fun set_env (env as {funs, prefix, ...}) thy = VCs.map (fn
   750     {pfuns, type_map, env = NONE} =>
   751       {pfuns = check_pfuns_types thy prefix funs pfuns,
   752        type_map = type_map,
   753        env = SOME env}
   754   | _ => err_unfinished ()) thy;
   755 
   756 fun mk_pat s = (case Int.fromString s of
   757     SOME i => [HOLogic.mk_Trueprop (Var (("C", i), HOLogic.boolT))]
   758   | NONE => error ("Bad conclusion identifier: C" ^ s));
   759 
   760 fun mk_vc thy prfx types pfuns ids (tr, proved, ps, cs) =
   761   let val prop_of =
   762     HOLogic.mk_Trueprop o fst o term_of_expr thy prfx types pfuns ids
   763   in
   764     (tr, proved,
   765      Element.Assumes (map (fn (s', e) =>
   766        ((Binding.name ("H" ^ s'), []), [(prop_of e, [])])) ps),
   767      Element.Shows (map (fn (s', e) =>
   768        (Attrib.empty_binding, [(prop_of e, mk_pat s')])) cs))
   769   end;
   770 
   771 fun fold_vcs f vcs =
   772   VCtab.fold (fn (_, (_, _, ps, cs)) => fold f ps #> fold f cs) vcs;
   773 
   774 fun pfuns_of_vcs prfx funs pfuns vcs =
   775   fold_vcs (add_expr_pfuns funs o snd) vcs [] |>
   776   filter (is_none o lookup_prfx prfx pfuns);
   777 
   778 fun declare_missing_pfuns thy prfx funs pfuns vcs (tab, ctxt) =
   779   let
   780     val (fs, (tys, Ts)) =
   781       pfuns_of_vcs prfx funs pfuns vcs |>
   782       map_filter (fn s => lookup funs s |>
   783         Option.map (fn ty => (s, (SOME ty, pfun_type thy prfx ty)))) |>
   784       split_list ||> split_list;
   785     val (fs', ctxt') = fold_map Name.variant fs ctxt
   786   in
   787     (fold Symtab.update_new (fs ~~ (tys ~~ map Free (fs' ~~ Ts))) pfuns,
   788      Element.Fixes (map2 (fn s => fn T =>
   789        (Binding.name s, SOME T, NoSyn)) fs' Ts),
   790      (tab, ctxt'))
   791   end;
   792 
   793 fun add_proof_fun prep (s, (optty, raw_t)) thy =
   794   VCs.map (fn
   795       {env = SOME {proving = true, ...}, ...} => err_unfinished ()
   796     | {pfuns, type_map, env} =>
   797         let
   798           val (optty', prfx) = (case env of
   799               SOME {funs, prefix, ...} => (lookup funs s, prefix)
   800             | NONE => (NONE, ""));
   801           val optty'' = NONE |> upd_option optty |> upd_option optty';
   802           val t = prep (Option.map (pfun_type thy prfx) optty'') raw_t;
   803           val _ = (case fold_aterms (fn u =>
   804               if is_Var u orelse is_Free u then insert (op =) u else I) t [] of
   805               [] => ()
   806             | ts => error ("Term\n" ^ Syntax.string_of_term_global thy t ^
   807                 "\nto be associated with proof function " ^ s ^
   808                 " contains free variable(s) " ^
   809                 commas (map (Syntax.string_of_term_global thy) ts)));
   810         in
   811           (check_pfun_type thy prfx s t optty optty';
   812            if is_some optty'' orelse is_none env then
   813              {pfuns = Symtab.update_new (s, (optty'', t)) pfuns,
   814               type_map = type_map,
   815               env = env}
   816                handle Symtab.DUP _ => error ("Proof function " ^ s ^
   817                  " already associated with function")
   818            else error ("Undeclared proof function " ^ s))
   819         end) thy;
   820 
   821 fun add_type (s, T as Type (tyname, Ts)) thy =
   822       thy |>
   823       VCs.map (fn
   824           {env = SOME _, ...} => err_unfinished ()
   825         | {pfuns, type_map, env} =>
   826             {pfuns = pfuns,
   827              type_map = Symtab.update_new (s, T) type_map,
   828              env = env}
   829               handle Symtab.DUP _ => error ("SPARK type " ^ s ^
   830                 " already associated with type")) |>
   831       (fn thy' =>
   832          case Datatype_Data.get_constrs thy' tyname of
   833            NONE => thy'
   834          | SOME cs =>
   835              if null Ts then
   836                (map
   837                   (fn (_, Type (_, [])) => ()
   838                     | (cname, _) => assoc_ty_err thy T s
   839                         ("has illegal constructor " ^
   840                          Long_Name.base_name cname)) cs;
   841                 add_enum_type s tyname thy')
   842              else assoc_ty_err thy T s "is illegal")
   843   | add_type (s, T) thy = assoc_ty_err thy T s "is illegal";
   844 
   845 val is_closed = is_none o #env o VCs.get;
   846 
   847 fun lookup_vc thy name =
   848   (case VCs.get thy of
   849     {env = SOME {vcs, types, funs, ids, ctxt, prefix, ...}, pfuns, ...} =>
   850       (case VCtab.lookup vcs name of
   851          SOME vc =>
   852            let val (pfuns', ctxt', ids') =
   853              declare_missing_pfuns thy prefix funs pfuns vcs ids
   854            in SOME (ctxt @ [ctxt'], mk_vc thy prefix types pfuns' ids' vc) end
   855        | NONE => NONE)
   856   | _ => NONE);
   857 
   858 fun get_vcs thy = (case VCs.get thy of
   859     {env = SOME {vcs, types, funs, ids, ctxt, defs, prefix, ...}, pfuns, ...} =>
   860       let val (pfuns', ctxt', ids') =
   861         declare_missing_pfuns thy prefix funs pfuns vcs ids
   862       in
   863         (ctxt @ [ctxt'], defs,
   864          VCtab.dest vcs |>
   865          map (apsnd (mk_vc thy prefix types pfuns' ids')))
   866       end
   867   | _ => ([], [], []));
   868 
   869 fun mark_proved name thms = VCs.map (fn
   870     {pfuns, type_map,
   871      env = SOME {ctxt, defs, types, funs, ids, vcs, path, prefix, ...}} =>
   872       {pfuns = pfuns,
   873        type_map = type_map,
   874        env = SOME {ctxt = ctxt, defs = defs,
   875          types = types, funs = funs, ids = ids,
   876          proving = true,
   877          vcs = VCtab.map_entry name (fn (trace, _, ps, cs) =>
   878            (trace, SOME thms, ps, cs)) vcs,
   879          path = path,
   880          prefix = prefix}}
   881   | x => x);
   882 
   883 fun write_prv path s =
   884   let val path_prv = Path.ext "prv" path;
   885   in if try File.read path_prv = SOME s then () else File.write path_prv s end;
   886 
   887 fun close thy =
   888   thy |>
   889   VCs.map (fn
   890       {pfuns, type_map, env = SOME {vcs, path, ...}} =>
   891         (case VCtab.fold_rev (fn vc as (_, (_, p, _, _)) =>
   892              (if is_some p then apfst else apsnd) (cons vc)) vcs ([], []) of
   893            (proved, []) =>
   894              (Thm.join_proofs (maps (the o #2 o snd) proved);
   895               write_prv path
   896                 (implode (map (fn (s, _) => snd (strip_number s) ^
   897                    " -- proved by " ^ Distribution.version ^ "\n") proved));
   898               {pfuns = pfuns, type_map = type_map, env = NONE})
   899          | (_, unproved) => err_vcs (map fst unproved))
   900     | _ => error "No SPARK environment is currently open") |>
   901   Sign.parent_path;
   902 
   903 
   904 (** set up verification conditions **)
   905 
   906 fun partition_opt f =
   907   let
   908     fun part ys zs [] = (rev ys, rev zs)
   909       | part ys zs (x :: xs) = (case f x of
   910             SOME y => part (y :: ys) zs xs
   911           | NONE => part ys (x :: zs) xs)
   912   in part [] [] end;
   913 
   914 fun dest_def (id, (Substitution_Rule ([], Ident s, rhs))) = SOME (id, (s, rhs))
   915   | dest_def _ = NONE;
   916 
   917 fun mk_rulename (s, i) = Binding.name (s ^ string_of_int i);
   918 
   919 fun add_const prfx (s, ty) ((tab, ctxt), thy) =
   920   let
   921     val T = mk_type thy prfx ty;
   922     val b = Binding.name s;
   923     val c = Const (Sign.full_name thy b, T)
   924   in
   925     (c,
   926      ((Symtab.update (s, (c, ty)) tab, Name.declare s ctxt),
   927       Sign.add_consts_i [(b, T, NoSyn)] thy))
   928   end;
   929 
   930 fun add_def prfx types pfuns consts (id, (s, e)) (ids as (tab, ctxt), thy) =
   931   (case lookup consts s of
   932      SOME ty =>
   933        let
   934          val (t, ty') = term_of_expr thy prfx types pfuns ids e;
   935          val T = mk_type thy prfx ty;
   936          val T' = mk_type thy prfx ty';
   937          val _ = T = T' orelse
   938            error ("Declared type " ^ ty ^ " of " ^ s ^
   939              "\ndoes not match type " ^ ty' ^ " in definition");
   940          val id' = mk_rulename id;
   941          val lthy = Named_Target.theory_init thy;
   942          val ((t', (_, th)), lthy') = Specification.definition
   943            (NONE, ((id', []), HOLogic.mk_Trueprop (HOLogic.mk_eq
   944              (Free (s, T), t)))) lthy;
   945          val phi = Proof_Context.export_morphism lthy' lthy
   946        in
   947          ((id', Morphism.thm phi th),
   948           ((Symtab.update (s, (Morphism.term phi t', ty)) tab,
   949             Name.declare s ctxt),
   950            Local_Theory.exit_global lthy'))
   951        end
   952    | NONE => error ("Undeclared constant " ^ s));
   953 
   954 fun add_var prfx (s, ty) (ids, thy) =
   955   let val ([Free p], ids') = mk_variables thy prfx [s] ty ids
   956   in (p, (ids', thy)) end;
   957 
   958 fun add_init_vars prfx vcs (ids_thy as ((tab, _), _)) =
   959   fold_map (add_var prfx)
   960     (map_filter
   961        (fn s => case try (unsuffix "~") s of
   962           SOME s' => (case Symtab.lookup tab s' of
   963             SOME (_, ty) => SOME (s, ty)
   964           | NONE => error ("Undeclared identifier " ^ s'))
   965         | NONE => NONE)
   966        (fold_vcs (add_expr_idents o snd) vcs []))
   967     ids_thy;
   968 
   969 fun is_trivial_vc ([], [(_, Ident "true")]) = true
   970   | is_trivial_vc _ = false;
   971 
   972 fun rulenames rules = commas
   973   (map (fn ((s, i), _) => s ^ "(" ^ string_of_int i ^ ")") rules);
   974 
   975 (* sort definitions according to their dependency *)
   976 fun sort_defs _ _ _ _ [] sdefs = rev sdefs
   977   | sort_defs prfx funs pfuns consts defs sdefs =
   978       (case find_first (fn (_, (_, e)) =>
   979          forall (is_some o lookup_prfx prfx pfuns)
   980            (add_expr_pfuns funs e []) andalso
   981          forall (fn id =>
   982            member (fn (s, (_, (s', _))) => s = s') sdefs id orelse
   983            consts id)
   984              (add_expr_idents e [])) defs of
   985          SOME d => sort_defs prfx funs pfuns consts
   986            (remove (op =) d defs) (d :: sdefs)
   987        | NONE => error ("Bad definitions: " ^ rulenames defs));
   988 
   989 fun set_vcs ({types, vars, consts, funs} : decls)
   990       (rules, _) ((_, ident), vcs) path prfx thy =
   991   let
   992     val {pfuns, ...} = VCs.get thy;
   993     val (defs, rules') = partition_opt dest_def rules;
   994     val consts' =
   995       subtract (fn ((_, (s, _)), (s', _)) => s = s') defs (items consts);
   996     (* ignore all complex rules in rls files *)
   997     val (rules'', other_rules) =
   998       List.partition (complex_rule o snd) rules';
   999     val _ = if null rules'' then ()
  1000       else warning ("Ignoring rules: " ^ rulenames rules'');
  1001 
  1002     val vcs' = VCtab.make (maps (fn (tr, vcs) =>
  1003       map (fn (s, (ps, cs)) => (s, (tr, NONE, ps, cs)))
  1004         (filter_out (is_trivial_vc o snd) vcs)) vcs);
  1005 
  1006     val _ = (case filter_out (is_some o lookup funs)
  1007         (pfuns_of_vcs prfx funs pfuns vcs') of
  1008         [] => ()
  1009       | fs => error ("Undeclared proof function(s) " ^ commas fs));
  1010 
  1011     val (((defs', vars''), ivars), (ids, thy')) =
  1012       ((Symtab.empty |>
  1013         Symtab.update ("false", (HOLogic.false_const, booleanN)) |>
  1014         Symtab.update ("true", (HOLogic.true_const, booleanN)),
  1015         Name.context),
  1016        thy |> Sign.add_path (Long_Name.base_name ident)) |>
  1017       fold (add_type_def prfx) (items types) |>
  1018       fold (snd oo add_const prfx) consts' |> (fn ids_thy as ((tab, _), _) =>
  1019         ids_thy |>
  1020         fold_map (add_def prfx types pfuns consts)
  1021           (sort_defs prfx funs pfuns (Symtab.defined tab) defs []) ||>>
  1022         fold_map (add_var prfx) (items vars) ||>>
  1023         add_init_vars prfx vcs');
  1024 
  1025     val ctxt =
  1026       [Element.Fixes (map (fn (s, T) =>
  1027          (Binding.name s, SOME T, NoSyn)) (vars'' @ ivars)),
  1028        Element.Assumes (map (fn (id, rl) =>
  1029          ((mk_rulename id, []),
  1030           [(term_of_rule thy' prfx types pfuns ids rl, [])]))
  1031            other_rules),
  1032        Element.Notes ("", [((Binding.name "defns", []), map (rpair [] o single o snd) defs')])]
  1033           
  1034   in
  1035     set_env {ctxt = ctxt, defs = defs', types = types, funs = funs,
  1036       ids = ids, proving = false, vcs = vcs', path = path, prefix = prfx} thy'
  1037   end;
  1038 
  1039 end;