src/HOL/Tools/ATP/atp_translate.ML
author blanchet
Wed, 20 Jul 2011 00:37:42 +0200
changeset 44777 14d34bd434b8
parent 44776 1ace987e22e5
child 44778 073ab5379842
permissions -rw-r--r--
generate slightly less type information -- this should be sound since type arguments should keep things cleanly apart
     1 (*  Title:      HOL/Tools/ATP/atp_translate.ML
     2     Author:     Fabian Immler, TU Muenchen
     3     Author:     Makarius
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Translation of HOL to FOL for Metis and Sledgehammer.
     7 *)
     8 
     9 signature ATP_TRANSLATE =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type connective = ATP_Problem.connective
    13   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    14   type format = ATP_Problem.format
    15   type formula_kind = ATP_Problem.formula_kind
    16   type 'a problem = 'a ATP_Problem.problem
    17 
    18   datatype locality =
    19     General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
    20     Chained
    21 
    22   datatype order = First_Order | Higher_Order
    23   datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
    24   datatype type_level =
    25     All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
    26     No_Types
    27   datatype type_heaviness = Heavyweight | Lightweight
    28 
    29   datatype type_enc =
    30     Simple_Types of order * type_level |
    31     Preds of polymorphism * type_level * type_heaviness |
    32     Tags of polymorphism * type_level * type_heaviness
    33 
    34   val bound_var_prefix : string
    35   val schematic_var_prefix : string
    36   val fixed_var_prefix : string
    37   val tvar_prefix : string
    38   val tfree_prefix : string
    39   val const_prefix : string
    40   val type_const_prefix : string
    41   val class_prefix : string
    42   val skolem_const_prefix : string
    43   val old_skolem_const_prefix : string
    44   val new_skolem_const_prefix : string
    45   val type_decl_prefix : string
    46   val sym_decl_prefix : string
    47   val preds_sym_formula_prefix : string
    48   val lightweight_tags_sym_formula_prefix : string
    49   val fact_prefix : string
    50   val conjecture_prefix : string
    51   val helper_prefix : string
    52   val class_rel_clause_prefix : string
    53   val arity_clause_prefix : string
    54   val tfree_clause_prefix : string
    55   val typed_helper_suffix : string
    56   val untyped_helper_suffix : string
    57   val type_tag_idempotence_helper_name : string
    58   val predicator_name : string
    59   val app_op_name : string
    60   val type_tag_name : string
    61   val type_pred_name : string
    62   val simple_type_prefix : string
    63   val prefixed_predicator_name : string
    64   val prefixed_app_op_name : string
    65   val prefixed_type_tag_name : string
    66   val ascii_of : string -> string
    67   val unascii_of : string -> string
    68   val strip_prefix_and_unascii : string -> string -> string option
    69   val proxy_table : (string * (string * (thm * (string * string)))) list
    70   val proxify_const : string -> (string * string) option
    71   val invert_const : string -> string
    72   val unproxify_const : string -> string
    73   val new_skolem_var_name_from_const : string -> string
    74   val num_type_args : theory -> string -> int
    75   val atp_irrelevant_consts : string list
    76   val atp_schematic_consts_of : term -> typ list Symtab.table
    77   val is_locality_global : locality -> bool
    78   val type_enc_from_string : string -> type_enc
    79   val is_type_enc_higher_order : type_enc -> bool
    80   val polymorphism_of_type_enc : type_enc -> polymorphism
    81   val level_of_type_enc : type_enc -> type_level
    82   val is_type_enc_virtually_sound : type_enc -> bool
    83   val is_type_enc_fairly_sound : type_enc -> bool
    84   val choose_format : format list -> type_enc -> format * type_enc
    85   val mk_aconns :
    86     connective -> ('a, 'b, 'c) formula list -> ('a, 'b, 'c) formula
    87   val unmangled_const : string -> string * (string, 'b) ho_term list
    88   val unmangled_const_name : string -> string
    89   val helper_table : ((string * bool) * thm list) list
    90   val factsN : string
    91   val conceal_lambdas : Proof.context -> term -> term
    92   val introduce_combinators : Proof.context -> term -> term
    93   val prepare_atp_problem :
    94     Proof.context -> format -> formula_kind -> formula_kind -> type_enc -> bool
    95     -> bool -> (term list -> term list * term list) -> bool -> bool -> term list
    96     -> term -> ((string * locality) * term) list
    97     -> string problem * string Symtab.table * int * int
    98        * (string * locality) list vector * int list * int Symtab.table
    99   val atp_problem_weights : string problem -> (string * real) list
   100 end;
   101 
   102 structure ATP_Translate : ATP_TRANSLATE =
   103 struct
   104 
   105 open ATP_Util
   106 open ATP_Problem
   107 
   108 type name = string * string
   109 
   110 val generate_info = false (* experimental *)
   111 
   112 fun isabelle_info s =
   113   if generate_info then SOME (ATerm ("[]", [ATerm ("isabelle_" ^ s, [])]))
   114   else NONE
   115 
   116 val introN = "intro"
   117 val elimN = "elim"
   118 val simpN = "simp"
   119 
   120 val bound_var_prefix = "B_"
   121 val schematic_var_prefix = "V_"
   122 val fixed_var_prefix = "v_"
   123 val tvar_prefix = "T_"
   124 val tfree_prefix = "t_"
   125 val const_prefix = "c_"
   126 val type_const_prefix = "tc_"
   127 val class_prefix = "cl_"
   128 
   129 val skolem_const_prefix = "ATP" ^ Long_Name.separator ^ "Sko"
   130 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
   131 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
   132 
   133 val type_decl_prefix = "ty_"
   134 val sym_decl_prefix = "sy_"
   135 val preds_sym_formula_prefix = "psy_"
   136 val lightweight_tags_sym_formula_prefix = "tsy_"
   137 val fact_prefix = "fact_"
   138 val conjecture_prefix = "conj_"
   139 val helper_prefix = "help_"
   140 val class_rel_clause_prefix = "clar_"
   141 val arity_clause_prefix = "arity_"
   142 val tfree_clause_prefix = "tfree_"
   143 
   144 val lambda_fact_prefix = "ATP.lambda_"
   145 val typed_helper_suffix = "_T"
   146 val untyped_helper_suffix = "_U"
   147 val type_tag_idempotence_helper_name = helper_prefix ^ "ti_idem"
   148 
   149 val predicator_name = "hBOOL"
   150 val app_op_name = "hAPP"
   151 val type_tag_name = "ti"
   152 val type_pred_name = "is"
   153 val simple_type_prefix = "ty_"
   154 
   155 val prefixed_predicator_name = const_prefix ^ predicator_name
   156 val prefixed_app_op_name = const_prefix ^ app_op_name
   157 val prefixed_type_tag_name = const_prefix ^ type_tag_name
   158 
   159 (* Freshness almost guaranteed! *)
   160 val atp_weak_prefix = "ATP:"
   161 
   162 val concealed_lambda_prefix = atp_weak_prefix ^ "lambda_"
   163 
   164 (*Escaping of special characters.
   165   Alphanumeric characters are left unchanged.
   166   The character _ goes to __
   167   Characters in the range ASCII space to / go to _A to _P, respectively.
   168   Other characters go to _nnn where nnn is the decimal ASCII code.*)
   169 val upper_a_minus_space = Char.ord #"A" - Char.ord #" "
   170 
   171 fun stringN_of_int 0 _ = ""
   172   | stringN_of_int k n =
   173     stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
   174 
   175 fun ascii_of_char c =
   176   if Char.isAlphaNum c then
   177     String.str c
   178   else if c = #"_" then
   179     "__"
   180   else if #" " <= c andalso c <= #"/" then
   181     "_" ^ String.str (Char.chr (Char.ord c + upper_a_minus_space))
   182   else
   183     (* fixed width, in case more digits follow *)
   184     "_" ^ stringN_of_int 3 (Char.ord c)
   185 
   186 val ascii_of = String.translate ascii_of_char
   187 
   188 (** Remove ASCII armoring from names in proof files **)
   189 
   190 (* We don't raise error exceptions because this code can run inside a worker
   191    thread. Also, the errors are impossible. *)
   192 val unascii_of =
   193   let
   194     fun un rcs [] = String.implode(rev rcs)
   195       | un rcs [#"_"] = un (#"_" :: rcs) [] (* ERROR *)
   196         (* Three types of _ escapes: __, _A to _P, _nnn *)
   197       | un rcs (#"_" :: #"_" :: cs) = un (#"_" :: rcs) cs
   198       | un rcs (#"_" :: c :: cs) =
   199         if #"A" <= c andalso c<= #"P" then
   200           (* translation of #" " to #"/" *)
   201           un (Char.chr (Char.ord c - upper_a_minus_space) :: rcs) cs
   202         else
   203           let val digits = List.take (c :: cs, 3) handle General.Subscript => [] in
   204             case Int.fromString (String.implode digits) of
   205               SOME n => un (Char.chr n :: rcs) (List.drop (cs, 2))
   206             | NONE => un (c :: #"_" :: rcs) cs (* ERROR *)
   207           end
   208       | un rcs (c :: cs) = un (c :: rcs) cs
   209   in un [] o String.explode end
   210 
   211 (* If string s has the prefix s1, return the result of deleting it,
   212    un-ASCII'd. *)
   213 fun strip_prefix_and_unascii s1 s =
   214   if String.isPrefix s1 s then
   215     SOME (unascii_of (String.extract (s, size s1, NONE)))
   216   else
   217     NONE
   218 
   219 val proxy_table =
   220   [("c_False", (@{const_name False}, (@{thm fFalse_def},
   221        ("fFalse", @{const_name ATP.fFalse})))),
   222    ("c_True", (@{const_name True}, (@{thm fTrue_def},
   223        ("fTrue", @{const_name ATP.fTrue})))),
   224    ("c_Not", (@{const_name Not}, (@{thm fNot_def},
   225        ("fNot", @{const_name ATP.fNot})))),
   226    ("c_conj", (@{const_name conj}, (@{thm fconj_def},
   227        ("fconj", @{const_name ATP.fconj})))),
   228    ("c_disj", (@{const_name disj}, (@{thm fdisj_def},
   229        ("fdisj", @{const_name ATP.fdisj})))),
   230    ("c_implies", (@{const_name implies}, (@{thm fimplies_def},
   231        ("fimplies", @{const_name ATP.fimplies})))),
   232    ("equal", (@{const_name HOL.eq}, (@{thm fequal_def},
   233        ("fequal", @{const_name ATP.fequal})))),
   234    ("c_All", (@{const_name All}, (@{thm fAll_def},
   235        ("fAll", @{const_name ATP.fAll})))),
   236    ("c_Ex", (@{const_name Ex}, (@{thm fEx_def},
   237        ("fEx", @{const_name ATP.fEx}))))]
   238 
   239 val proxify_const = AList.lookup (op =) proxy_table #> Option.map (snd o snd)
   240 
   241 (* Readable names for the more common symbolic functions. Do not mess with the
   242    table unless you know what you are doing. *)
   243 val const_trans_table =
   244   [(@{type_name Product_Type.prod}, "prod"),
   245    (@{type_name Sum_Type.sum}, "sum"),
   246    (@{const_name False}, "False"),
   247    (@{const_name True}, "True"),
   248    (@{const_name Not}, "Not"),
   249    (@{const_name conj}, "conj"),
   250    (@{const_name disj}, "disj"),
   251    (@{const_name implies}, "implies"),
   252    (@{const_name HOL.eq}, "equal"),
   253    (@{const_name All}, "All"),
   254    (@{const_name Ex}, "Ex"),
   255    (@{const_name If}, "If"),
   256    (@{const_name Set.member}, "member"),
   257    (@{const_name Meson.COMBI}, "COMBI"),
   258    (@{const_name Meson.COMBK}, "COMBK"),
   259    (@{const_name Meson.COMBB}, "COMBB"),
   260    (@{const_name Meson.COMBC}, "COMBC"),
   261    (@{const_name Meson.COMBS}, "COMBS")]
   262   |> Symtab.make
   263   |> fold (Symtab.update o swap o snd o snd o snd) proxy_table
   264 
   265 (* Invert the table of translations between Isabelle and ATPs. *)
   266 val const_trans_table_inv =
   267   const_trans_table |> Symtab.dest |> map swap |> Symtab.make
   268 val const_trans_table_unprox =
   269   Symtab.empty
   270   |> fold (fn (_, (isa, (_, (_, atp)))) => Symtab.update (atp, isa)) proxy_table
   271 
   272 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
   273 val unproxify_const = perhaps (Symtab.lookup const_trans_table_unprox)
   274 
   275 fun lookup_const c =
   276   case Symtab.lookup const_trans_table c of
   277     SOME c' => c'
   278   | NONE => ascii_of c
   279 
   280 fun ascii_of_indexname (v, 0) = ascii_of v
   281   | ascii_of_indexname (v, i) = ascii_of v ^ "_" ^ string_of_int i
   282 
   283 fun make_bound_var x = bound_var_prefix ^ ascii_of x
   284 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
   285 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
   286 
   287 fun make_schematic_type_var (x, i) =
   288       tvar_prefix ^ (ascii_of_indexname (unprefix "'" x, i))
   289 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (unprefix "'" x))
   290 
   291 (* "HOL.eq" is mapped to the ATP's equality. *)
   292 fun make_fixed_const @{const_name HOL.eq} = tptp_old_equal
   293   | make_fixed_const c = const_prefix ^ lookup_const c
   294 
   295 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
   296 
   297 fun make_type_class clas = class_prefix ^ ascii_of clas
   298 
   299 fun new_skolem_var_name_from_const s =
   300   let val ss = s |> space_explode Long_Name.separator in
   301     nth ss (length ss - 2)
   302   end
   303 
   304 (* The number of type arguments of a constant, zero if it's monomorphic. For
   305    (instances of) Skolem pseudoconstants, this information is encoded in the
   306    constant name. *)
   307 fun num_type_args thy s =
   308   if String.isPrefix skolem_const_prefix s then
   309     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   310   else
   311     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   312 
   313 (* These are either simplified away by "Meson.presimplify" (most of the time) or
   314    handled specially via "fFalse", "fTrue", ..., "fequal". *)
   315 val atp_irrelevant_consts =
   316   [@{const_name False}, @{const_name True}, @{const_name Not},
   317    @{const_name conj}, @{const_name disj}, @{const_name implies},
   318    @{const_name HOL.eq}, @{const_name If}, @{const_name Let}]
   319 
   320 val atp_monomorph_bad_consts =
   321   atp_irrelevant_consts @
   322   (* These are ignored anyway by the relevance filter (unless they appear in
   323      higher-order places) but not by the monomorphizer. *)
   324   [@{const_name all}, @{const_name "==>"}, @{const_name "=="},
   325    @{const_name Trueprop}, @{const_name All}, @{const_name Ex},
   326    @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}]
   327 
   328 fun add_schematic_const (x as (_, T)) =
   329   Monomorph.typ_has_tvars T ? Symtab.insert_list (op =) x
   330 val add_schematic_consts_of =
   331   Term.fold_aterms (fn Const (x as (s, _)) =>
   332                        not (member (op =) atp_monomorph_bad_consts s)
   333                        ? add_schematic_const x
   334                       | _ => I)
   335 fun atp_schematic_consts_of t = add_schematic_consts_of t Symtab.empty
   336 
   337 (** Definitions and functions for FOL clauses and formulas for TPTP **)
   338 
   339 (* The first component is the type class; the second is a "TVar" or "TFree". *)
   340 datatype type_literal =
   341   TyLitVar of name * name |
   342   TyLitFree of name * name
   343 
   344 
   345 (** Isabelle arities **)
   346 
   347 datatype arity_literal =
   348   TConsLit of name * name * name list |
   349   TVarLit of name * name
   350 
   351 fun gen_TVars 0 = []
   352   | gen_TVars n = ("T_" ^ string_of_int n) :: gen_TVars (n-1)
   353 
   354 val type_class = the_single @{sort type}
   355 
   356 fun add_packed_sort tvar =
   357   fold (fn s => s <> type_class ? cons (`make_type_class s, `I tvar))
   358 
   359 type arity_clause =
   360   {name : string,
   361    prem_lits : arity_literal list,
   362    concl_lits : arity_literal}
   363 
   364 (* Arity of type constructor "tcon :: (arg1, ..., argN) res" *)
   365 fun make_axiom_arity_clause (tcons, name, (cls, args)) =
   366   let
   367     val tvars = gen_TVars (length args)
   368     val tvars_srts = ListPair.zip (tvars, args)
   369   in
   370     {name = name,
   371      prem_lits = [] |> fold (uncurry add_packed_sort) tvars_srts |> map TVarLit,
   372      concl_lits = TConsLit (`make_type_class cls,
   373                             `make_fixed_type_const tcons,
   374                             tvars ~~ tvars)}
   375   end
   376 
   377 fun arity_clause _ _ (_, []) = []
   378   | arity_clause seen n (tcons, ("HOL.type", _) :: ars) =  (* ignore *)
   379     arity_clause seen n (tcons, ars)
   380   | arity_clause seen n (tcons, (ar as (class, _)) :: ars) =
   381     if member (op =) seen class then
   382       (* multiple arities for the same (tycon, class) pair *)
   383       make_axiom_arity_clause (tcons,
   384           lookup_const tcons ^ "___" ^ ascii_of class ^ "_" ^ string_of_int n,
   385           ar) ::
   386       arity_clause seen (n + 1) (tcons, ars)
   387     else
   388       make_axiom_arity_clause (tcons, lookup_const tcons ^ "___" ^
   389                                ascii_of class, ar) ::
   390       arity_clause (class :: seen) n (tcons, ars)
   391 
   392 fun multi_arity_clause [] = []
   393   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
   394       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
   395 
   396 (* Generate all pairs (tycon, class, sorts) such that tycon belongs to class in
   397    theory thy provided its arguments have the corresponding sorts. *)
   398 fun type_class_pairs thy tycons classes =
   399   let
   400     val alg = Sign.classes_of thy
   401     fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
   402     fun add_class tycon class =
   403       cons (class, domain_sorts tycon class)
   404       handle Sorts.CLASS_ERROR _ => I
   405     fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
   406   in map try_classes tycons end
   407 
   408 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
   409 fun iter_type_class_pairs _ _ [] = ([], [])
   410   | iter_type_class_pairs thy tycons classes =
   411       let
   412         fun maybe_insert_class s =
   413           (s <> type_class andalso not (member (op =) classes s))
   414           ? insert (op =) s
   415         val cpairs = type_class_pairs thy tycons classes
   416         val newclasses =
   417           [] |> fold (fold (fold (fold maybe_insert_class) o snd) o snd) cpairs
   418         val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
   419       in (classes' @ classes, union (op =) cpairs' cpairs) end
   420 
   421 fun make_arity_clauses thy tycons =
   422   iter_type_class_pairs thy tycons ##> multi_arity_clause
   423 
   424 
   425 (** Isabelle class relations **)
   426 
   427 type class_rel_clause =
   428   {name : string,
   429    subclass : name,
   430    superclass : name}
   431 
   432 (* Generate all pairs (sub, super) such that sub is a proper subclass of super
   433    in theory "thy". *)
   434 fun class_pairs _ [] _ = []
   435   | class_pairs thy subs supers =
   436       let
   437         val class_less = Sorts.class_less (Sign.classes_of thy)
   438         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
   439         fun add_supers sub = fold (add_super sub) supers
   440       in fold add_supers subs [] end
   441 
   442 fun make_class_rel_clause (sub, super) =
   443   {name = sub ^ "_" ^ super, subclass = `make_type_class sub,
   444    superclass = `make_type_class super}
   445 
   446 fun make_class_rel_clauses thy subs supers =
   447   map make_class_rel_clause (class_pairs thy subs supers)
   448 
   449 (* intermediate terms *)
   450 datatype iterm =
   451   IConst of name * typ * typ list |
   452   IVar of name * typ |
   453   IApp of iterm * iterm |
   454   IAbs of (name * typ) * iterm
   455 
   456 fun ityp_of (IConst (_, T, _)) = T
   457   | ityp_of (IVar (_, T)) = T
   458   | ityp_of (IApp (t1, _)) = snd (dest_funT (ityp_of t1))
   459   | ityp_of (IAbs ((_, T), tm)) = T --> ityp_of tm
   460 
   461 (*gets the head of a combinator application, along with the list of arguments*)
   462 fun strip_iterm_comb u =
   463   let
   464     fun stripc (IApp (t, u), ts) = stripc (t, u :: ts)
   465       | stripc x = x
   466   in stripc (u, []) end
   467 
   468 fun atyps_of T = fold_atyps (insert (op =)) T []
   469 
   470 fun new_skolem_const_name s num_T_args =
   471   [new_skolem_const_prefix, s, string_of_int num_T_args]
   472   |> space_implode Long_Name.separator
   473 
   474 (* Converts an Isabelle/HOL term (with combinators) into an intermediate term.
   475    Also accumulates sort infomation. *)
   476 fun iterm_from_term thy bs (P $ Q) =
   477     let
   478       val (P', P_atomics_Ts) = iterm_from_term thy bs P
   479       val (Q', Q_atomics_Ts) = iterm_from_term thy bs Q
   480     in (IApp (P', Q'), union (op =) P_atomics_Ts Q_atomics_Ts) end
   481   | iterm_from_term thy _ (Const (c, T)) =
   482     let
   483       val tvar_list =
   484         (if String.isPrefix old_skolem_const_prefix c then
   485            [] |> Term.add_tvarsT T |> map TVar
   486          else
   487            (c, T) |> Sign.const_typargs thy)
   488       val c' = IConst (`make_fixed_const c, T, tvar_list)
   489     in (c', atyps_of T) end
   490   | iterm_from_term _ _ (Free (v, T)) =
   491     (IConst (`make_fixed_var v, T, []), atyps_of T)
   492   | iterm_from_term _ _ (Var (v as (s, _), T)) =
   493     (if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
   494        let
   495          val Ts = T |> strip_type |> swap |> op ::
   496          val s' = new_skolem_const_name s (length Ts)
   497        in IConst (`make_fixed_const s', T, Ts) end
   498      else
   499        IVar ((make_schematic_var v, s), T), atyps_of T)
   500   | iterm_from_term _ bs (Bound j) =
   501     nth bs j |> (fn (s, T) => (IConst (`make_bound_var s, T, []), atyps_of T))
   502   | iterm_from_term thy bs (Abs (s, T, t)) =
   503     let
   504       fun vary s = s |> AList.defined (op =) bs s ? vary o Symbol.bump_string
   505       val s = vary s
   506       val (tm, atomic_Ts) = iterm_from_term thy ((s, T) :: bs) t
   507     in
   508       (IAbs ((`make_bound_var s, T), tm),
   509        union (op =) atomic_Ts (atyps_of T))
   510     end
   511 
   512 datatype locality =
   513   General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
   514   Chained
   515 
   516 (* (quasi-)underapproximation of the truth *)
   517 fun is_locality_global Local = false
   518   | is_locality_global Assum = false
   519   | is_locality_global Chained = false
   520   | is_locality_global _ = true
   521 
   522 datatype order = First_Order | Higher_Order
   523 datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
   524 datatype type_level =
   525   All_Types | Noninf_Nonmono_Types | Fin_Nonmono_Types | Const_Arg_Types |
   526   No_Types
   527 datatype type_heaviness = Heavyweight | Lightweight
   528 
   529 datatype type_enc =
   530   Simple_Types of order * type_level |
   531   Preds of polymorphism * type_level * type_heaviness |
   532   Tags of polymorphism * type_level * type_heaviness
   533 
   534 fun try_unsuffixes ss s =
   535   fold (fn s' => fn NONE => try (unsuffix s') s | some => some) ss NONE
   536 
   537 fun type_enc_from_string s =
   538   (case try (unprefix "poly_") s of
   539      SOME s => (SOME Polymorphic, s)
   540    | NONE =>
   541      case try (unprefix "mono_") s of
   542        SOME s => (SOME Monomorphic, s)
   543      | NONE =>
   544        case try (unprefix "mangled_") s of
   545          SOME s => (SOME Mangled_Monomorphic, s)
   546        | NONE => (NONE, s))
   547   ||> (fn s =>
   548           (* "_query" and "_bang" are for the ASCII-challenged Metis and
   549              Mirabelle. *)
   550           case try_unsuffixes ["?", "_query"] s of
   551             SOME s => (Noninf_Nonmono_Types, s)
   552           | NONE =>
   553             case try_unsuffixes ["!", "_bang"] s of
   554               SOME s => (Fin_Nonmono_Types, s)
   555             | NONE => (All_Types, s))
   556   ||> apsnd (fn s =>
   557                 case try (unsuffix "_heavy") s of
   558                   SOME s => (Heavyweight, s)
   559                 | NONE => (Lightweight, s))
   560   |> (fn (poly, (level, (heaviness, core))) =>
   561          case (core, (poly, level, heaviness)) of
   562            ("simple", (NONE, _, Lightweight)) =>
   563            Simple_Types (First_Order, level)
   564          | ("simple_higher", (NONE, _, Lightweight)) =>
   565            if level = Noninf_Nonmono_Types then raise Same.SAME
   566            else Simple_Types (Higher_Order, level)
   567          | ("preds", (SOME poly, _, _)) => Preds (poly, level, heaviness)
   568          | ("tags", (SOME Polymorphic, _, _)) =>
   569            Tags (Polymorphic, level, heaviness)
   570          | ("tags", (SOME poly, _, _)) => Tags (poly, level, heaviness)
   571          | ("args", (SOME poly, All_Types (* naja *), Lightweight)) =>
   572            Preds (poly, Const_Arg_Types, Lightweight)
   573          | ("erased", (NONE, All_Types (* naja *), Lightweight)) =>
   574            Preds (Polymorphic, No_Types, Lightweight)
   575          | _ => raise Same.SAME)
   576   handle Same.SAME => error ("Unknown type system: " ^ quote s ^ ".")
   577 
   578 fun is_type_enc_higher_order (Simple_Types (Higher_Order, _)) = true
   579   | is_type_enc_higher_order _ = false
   580 
   581 fun polymorphism_of_type_enc (Simple_Types _) = Mangled_Monomorphic
   582   | polymorphism_of_type_enc (Preds (poly, _, _)) = poly
   583   | polymorphism_of_type_enc (Tags (poly, _, _)) = poly
   584 
   585 fun level_of_type_enc (Simple_Types (_, level)) = level
   586   | level_of_type_enc (Preds (_, level, _)) = level
   587   | level_of_type_enc (Tags (_, level, _)) = level
   588 
   589 fun heaviness_of_type_enc (Simple_Types _) = Heavyweight
   590   | heaviness_of_type_enc (Preds (_, _, heaviness)) = heaviness
   591   | heaviness_of_type_enc (Tags (_, _, heaviness)) = heaviness
   592 
   593 fun is_type_level_virtually_sound level =
   594   level = All_Types orelse level = Noninf_Nonmono_Types
   595 val is_type_enc_virtually_sound =
   596   is_type_level_virtually_sound o level_of_type_enc
   597 
   598 fun is_type_level_fairly_sound level =
   599   is_type_level_virtually_sound level orelse level = Fin_Nonmono_Types
   600 val is_type_enc_fairly_sound = is_type_level_fairly_sound o level_of_type_enc
   601 
   602 fun choose_format formats (Simple_Types (order, level)) =
   603     if member (op =) formats THF then
   604       (THF, Simple_Types (order, level))
   605     else if member (op =) formats TFF then
   606       (TFF, Simple_Types (First_Order, level))
   607     else
   608       choose_format formats (Preds (Mangled_Monomorphic, level, Heavyweight))
   609   | choose_format formats type_enc =
   610     (case hd formats of
   611        CNF_UEQ =>
   612        (CNF_UEQ, case type_enc of
   613                    Preds stuff =>
   614                    (if is_type_enc_fairly_sound type_enc then Tags else Preds)
   615                        stuff
   616                  | _ => type_enc)
   617      | format => (format, type_enc))
   618 
   619 type translated_formula =
   620   {name : string,
   621    locality : locality,
   622    kind : formula_kind,
   623    iformula : (name, typ, iterm) formula,
   624    atomic_types : typ list}
   625 
   626 fun update_iformula f ({name, locality, kind, iformula, atomic_types}
   627                        : translated_formula) =
   628   {name = name, locality = locality, kind = kind, iformula = f iformula,
   629    atomic_types = atomic_types} : translated_formula
   630 
   631 fun fact_lift f ({iformula, ...} : translated_formula) = f iformula
   632 
   633 val type_instance = Sign.typ_instance o Proof_Context.theory_of
   634 
   635 fun insert_type ctxt get_T x xs =
   636   let val T = get_T x in
   637     if exists (curry (type_instance ctxt) T o get_T) xs then xs
   638     else x :: filter_out (curry (type_instance ctxt o swap) T o get_T) xs
   639   end
   640 
   641 (* The Booleans indicate whether all type arguments should be kept. *)
   642 datatype type_arg_policy =
   643   Explicit_Type_Args of bool |
   644   Mangled_Type_Args of bool |
   645   No_Type_Args
   646 
   647 fun should_drop_arg_type_args (Simple_Types _) =
   648     false (* since TFF doesn't support overloading *)
   649   | should_drop_arg_type_args type_enc =
   650     level_of_type_enc type_enc = All_Types andalso
   651     heaviness_of_type_enc type_enc = Heavyweight
   652 
   653 fun type_arg_policy type_enc s =
   654   if s = type_tag_name then
   655     (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   656        Mangled_Type_Args
   657      else
   658        Explicit_Type_Args) false
   659   else case type_enc of
   660     Tags (_, All_Types, Heavyweight) => No_Type_Args
   661   | _ =>
   662     if level_of_type_enc type_enc = No_Types orelse
   663        s = @{const_name HOL.eq} orelse
   664        (s = app_op_name andalso
   665         level_of_type_enc type_enc = Const_Arg_Types) then
   666       No_Type_Args
   667     else
   668       should_drop_arg_type_args type_enc
   669       |> (if polymorphism_of_type_enc type_enc = Mangled_Monomorphic then
   670             Mangled_Type_Args
   671           else
   672             Explicit_Type_Args)
   673 
   674 (* Make literals for sorted type variables. *)
   675 fun generic_add_sorts_on_type (_, []) = I
   676   | generic_add_sorts_on_type ((x, i), s :: ss) =
   677     generic_add_sorts_on_type ((x, i), ss)
   678     #> (if s = the_single @{sort HOL.type} then
   679           I
   680         else if i = ~1 then
   681           insert (op =) (TyLitFree (`make_type_class s, `make_fixed_type_var x))
   682         else
   683           insert (op =) (TyLitVar (`make_type_class s,
   684                                    (make_schematic_type_var (x, i), x))))
   685 fun add_sorts_on_tfree (TFree (s, S)) = generic_add_sorts_on_type ((s, ~1), S)
   686   | add_sorts_on_tfree _ = I
   687 fun add_sorts_on_tvar (TVar z) = generic_add_sorts_on_type z
   688   | add_sorts_on_tvar _ = I
   689 
   690 fun type_literals_for_types type_enc add_sorts_on_typ Ts =
   691   [] |> level_of_type_enc type_enc <> No_Types ? fold add_sorts_on_typ Ts
   692 
   693 fun mk_aconns c phis =
   694   let val (phis', phi') = split_last phis in
   695     fold_rev (mk_aconn c) phis' phi'
   696   end
   697 fun mk_ahorn [] phi = phi
   698   | mk_ahorn phis psi = AConn (AImplies, [mk_aconns AAnd phis, psi])
   699 fun mk_aquant _ [] phi = phi
   700   | mk_aquant q xs (phi as AQuant (q', xs', phi')) =
   701     if q = q' then AQuant (q, xs @ xs', phi') else AQuant (q, xs, phi)
   702   | mk_aquant q xs phi = AQuant (q, xs, phi)
   703 
   704 fun close_universally atom_vars phi =
   705   let
   706     fun formula_vars bounds (AQuant (_, xs, phi)) =
   707         formula_vars (map fst xs @ bounds) phi
   708       | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
   709       | formula_vars bounds (AAtom tm) =
   710         union (op =) (atom_vars tm []
   711                       |> filter_out (member (op =) bounds o fst))
   712   in mk_aquant AForall (formula_vars [] phi []) phi end
   713 
   714 fun iterm_vars (IApp (tm1, tm2)) = fold iterm_vars [tm1, tm2]
   715   | iterm_vars (IConst _) = I
   716   | iterm_vars (IVar (name, T)) = insert (op =) (name, SOME T)
   717   | iterm_vars (IAbs (_, tm)) = iterm_vars tm
   718 fun close_iformula_universally phi = close_universally iterm_vars phi
   719 
   720 fun term_vars bounds (ATerm (name as (s, _), tms)) =
   721     (is_tptp_variable s andalso not (member (op =) bounds name))
   722     ? insert (op =) (name, NONE) #> fold (term_vars bounds) tms
   723   | term_vars bounds (AAbs ((name, _), tm)) = term_vars (name :: bounds) tm
   724 fun close_formula_universally phi = close_universally (term_vars []) phi
   725 
   726 val homo_infinite_type_name = @{type_name ind} (* any infinite type *)
   727 val homo_infinite_type = Type (homo_infinite_type_name, [])
   728 
   729 fun ho_term_from_typ format type_enc =
   730   let
   731     fun term (Type (s, Ts)) =
   732       ATerm (case (is_type_enc_higher_order type_enc, s) of
   733                (true, @{type_name bool}) => `I tptp_bool_type
   734              | (true, @{type_name fun}) => `I tptp_fun_type
   735              | _ => if s = homo_infinite_type_name andalso
   736                        (format = TFF orelse format = THF) then
   737                       `I tptp_individual_type
   738                     else
   739                       `make_fixed_type_const s,
   740              map term Ts)
   741     | term (TFree (s, _)) = ATerm (`make_fixed_type_var s, [])
   742     | term (TVar ((x as (s, _)), _)) =
   743       ATerm ((make_schematic_type_var x, s), [])
   744   in term end
   745 
   746 fun ho_term_for_type_arg format type_enc T =
   747   if T = dummyT then NONE else SOME (ho_term_from_typ format type_enc T)
   748 
   749 (* This shouldn't clash with anything else. *)
   750 val mangled_type_sep = "\000"
   751 
   752 fun generic_mangled_type_name f (ATerm (name, [])) = f name
   753   | generic_mangled_type_name f (ATerm (name, tys)) =
   754     f name ^ "(" ^ space_implode "," (map (generic_mangled_type_name f) tys)
   755     ^ ")"
   756   | generic_mangled_type_name _ _ = raise Fail "unexpected type abstraction"
   757 
   758 val bool_atype = AType (`I tptp_bool_type)
   759 
   760 fun make_simple_type s =
   761   if s = tptp_bool_type orelse s = tptp_fun_type orelse
   762      s = tptp_individual_type then
   763     s
   764   else
   765     simple_type_prefix ^ ascii_of s
   766 
   767 fun ho_type_from_ho_term type_enc pred_sym ary =
   768   let
   769     fun to_atype ty =
   770       AType ((make_simple_type (generic_mangled_type_name fst ty),
   771               generic_mangled_type_name snd ty))
   772     fun to_afun f1 f2 tys = AFun (f1 (hd tys), f2 (nth tys 1))
   773     fun to_fo 0 ty = if pred_sym then bool_atype else to_atype ty
   774       | to_fo ary (ATerm (_, tys)) = to_afun to_atype (to_fo (ary - 1)) tys
   775       | to_fo _ _ = raise Fail "unexpected type abstraction"
   776     fun to_ho (ty as ATerm ((s, _), tys)) =
   777         if s = tptp_fun_type then to_afun to_ho to_ho tys else to_atype ty
   778       | to_ho _ = raise Fail "unexpected type abstraction"
   779   in if is_type_enc_higher_order type_enc then to_ho else to_fo ary end
   780 
   781 fun ho_type_from_typ format type_enc pred_sym ary =
   782   ho_type_from_ho_term type_enc pred_sym ary
   783   o ho_term_from_typ format type_enc
   784 
   785 fun mangled_const_name format type_enc T_args (s, s') =
   786   let
   787     val ty_args = T_args |> map_filter (ho_term_for_type_arg format type_enc)
   788     fun type_suffix f g =
   789       fold_rev (curry (op ^) o g o prefix mangled_type_sep
   790                 o generic_mangled_type_name f) ty_args ""
   791   in (s ^ type_suffix fst ascii_of, s' ^ type_suffix snd I) end
   792 
   793 val parse_mangled_ident =
   794   Scan.many1 (not o member (op =) ["(", ")", ","]) >> implode
   795 
   796 fun parse_mangled_type x =
   797   (parse_mangled_ident
   798    -- Scan.optional ($$ "(" |-- Scan.optional parse_mangled_types [] --| $$ ")")
   799                     [] >> ATerm) x
   800 and parse_mangled_types x =
   801   (parse_mangled_type ::: Scan.repeat ($$ "," |-- parse_mangled_type)) x
   802 
   803 fun unmangled_type s =
   804   s |> suffix ")" |> raw_explode
   805     |> Scan.finite Symbol.stopper
   806            (Scan.error (!! (fn _ => raise Fail ("unrecognized mangled type " ^
   807                                                 quote s)) parse_mangled_type))
   808     |> fst
   809 
   810 val unmangled_const_name = space_explode mangled_type_sep #> hd
   811 fun unmangled_const s =
   812   let val ss = space_explode mangled_type_sep s in
   813     (hd ss, map unmangled_type (tl ss))
   814   end
   815 
   816 fun introduce_proxies type_enc =
   817   let
   818     fun intro top_level (IApp (tm1, tm2)) =
   819         IApp (intro top_level tm1, intro false tm2)
   820       | intro top_level (IConst (name as (s, _), T, T_args)) =
   821         (case proxify_const s of
   822            SOME proxy_base =>
   823            if top_level orelse is_type_enc_higher_order type_enc then
   824              case (top_level, s) of
   825                (_, "c_False") => (`I tptp_false, [])
   826              | (_, "c_True") => (`I tptp_true, [])
   827              | (false, "c_Not") => (`I tptp_not, [])
   828              | (false, "c_conj") => (`I tptp_and, [])
   829              | (false, "c_disj") => (`I tptp_or, [])
   830              | (false, "c_implies") => (`I tptp_implies, [])
   831              | (false, "c_All") => (`I tptp_ho_forall, [])
   832              | (false, "c_Ex") => (`I tptp_ho_exists, [])
   833              | (false, s) =>
   834                if is_tptp_equal s then (`I tptp_equal, [])
   835                else (proxy_base |>> prefix const_prefix, T_args)
   836              | _ => (name, [])
   837            else
   838              (proxy_base |>> prefix const_prefix, T_args)
   839           | NONE => (name, T_args))
   840         |> (fn (name, T_args) => IConst (name, T, T_args))
   841       | intro _ (IAbs (bound, tm)) = IAbs (bound, intro false tm)
   842       | intro _ tm = tm
   843   in intro true end
   844 
   845 fun iformula_from_prop thy type_enc eq_as_iff =
   846   let
   847     fun do_term bs t atomic_types =
   848       iterm_from_term thy bs (Envir.eta_contract t)
   849       |>> (introduce_proxies type_enc #> AAtom)
   850       ||> union (op =) atomic_types
   851     fun do_quant bs q s T t' =
   852       let val s = singleton (Name.variant_list (map fst bs)) s in
   853         do_formula ((s, T) :: bs) t'
   854         #>> mk_aquant q [(`make_bound_var s, SOME T)]
   855       end
   856     and do_conn bs c t1 t2 =
   857       do_formula bs t1 ##>> do_formula bs t2 #>> uncurry (mk_aconn c)
   858     and do_formula bs t =
   859       case t of
   860         @{const Trueprop} $ t1 => do_formula bs t1
   861       | @{const Not} $ t1 => do_formula bs t1 #>> mk_anot
   862       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
   863         do_quant bs AForall s T t'
   864       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
   865         do_quant bs AExists s T t'
   866       | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
   867       | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
   868       | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
   869       | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
   870         if eq_as_iff then do_conn bs AIff t1 t2 else do_term bs t
   871       | _ => do_term bs t
   872   in do_formula [] end
   873 
   874 fun presimplify_term _ [] t = t
   875   | presimplify_term ctxt presimp_consts t =
   876     t |> exists_Const (member (op =) presimp_consts o fst) t
   877          ? (Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
   878             #> Meson.presimplify ctxt
   879             #> prop_of)
   880 
   881 fun concealed_bound_name j = atp_weak_prefix ^ string_of_int j
   882 fun conceal_bounds Ts t =
   883   subst_bounds (map (Free o apfst concealed_bound_name)
   884                     (0 upto length Ts - 1 ~~ Ts), t)
   885 fun reveal_bounds Ts =
   886   subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
   887                     (0 upto length Ts - 1 ~~ Ts))
   888 
   889 fun is_fun_equality (@{const_name HOL.eq},
   890                      Type (_, [Type (@{type_name fun}, _), _])) = true
   891   | is_fun_equality _ = false
   892 
   893 fun extensionalize_term ctxt t =
   894   if exists_Const is_fun_equality t then
   895     let val thy = Proof_Context.theory_of ctxt in
   896       t |> cterm_of thy |> Meson.extensionalize_conv ctxt
   897         |> prop_of |> Logic.dest_equals |> snd
   898     end
   899   else
   900     t
   901 
   902 fun simple_translate_lambdas do_lambdas ctxt t =
   903   let val thy = Proof_Context.theory_of ctxt in
   904     if Meson.is_fol_term thy t then
   905       t
   906     else
   907       let
   908         fun aux Ts t =
   909           case t of
   910             @{const Not} $ t1 => @{const Not} $ aux Ts t1
   911           | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
   912             t0 $ Abs (s, T, aux (T :: Ts) t')
   913           | (t0 as Const (@{const_name All}, _)) $ t1 =>
   914             aux Ts (t0 $ eta_expand Ts t1 1)
   915           | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
   916             t0 $ Abs (s, T, aux (T :: Ts) t')
   917           | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
   918             aux Ts (t0 $ eta_expand Ts t1 1)
   919           | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   920           | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   921           | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
   922           | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
   923               $ t1 $ t2 =>
   924             t0 $ aux Ts t1 $ aux Ts t2
   925           | _ =>
   926             if not (exists_subterm (fn Abs _ => true | _ => false) t) then t
   927             else t |> Envir.eta_contract |> do_lambdas ctxt Ts
   928         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
   929       in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
   930   end
   931 
   932 fun do_conceal_lambdas Ts (t1 $ t2) =
   933     do_conceal_lambdas Ts t1 $ do_conceal_lambdas Ts t2
   934   | do_conceal_lambdas Ts (Abs (_, T, t)) =
   935     (* slightly unsound because of hash collisions *)
   936     Free (concealed_lambda_prefix ^ string_of_int (hash_term t),
   937           T --> fastype_of1 (Ts, t))
   938   | do_conceal_lambdas _ t = t
   939 val conceal_lambdas = simple_translate_lambdas (K do_conceal_lambdas)
   940 
   941 fun do_introduce_combinators ctxt Ts t =
   942   let val thy = Proof_Context.theory_of ctxt in
   943     t |> conceal_bounds Ts
   944       |> cterm_of thy
   945       |> Meson_Clausify.introduce_combinators_in_cterm
   946       |> prop_of |> Logic.dest_equals |> snd
   947       |> reveal_bounds Ts
   948   end
   949   (* A type variable of sort "{}" will make abstraction fail. *)
   950   handle THM _ => t |> do_conceal_lambdas Ts
   951 val introduce_combinators = simple_translate_lambdas do_introduce_combinators
   952 
   953 fun preprocess_abstractions_in_terms trans_lambdas facts =
   954   let
   955     val (facts, lambda_ts) =
   956       facts |> map (snd o snd) |> trans_lambdas 
   957             |>> map2 (fn (name, (kind, _)) => fn t => (name, (kind, t))) facts
   958     val lambda_facts =
   959       map2 (fn t => fn j =>
   960                ((lambda_fact_prefix ^ Int.toString j, Helper), (Axiom, t)))
   961            lambda_ts (1 upto length lambda_ts)
   962   in (facts, lambda_facts) end
   963 
   964 (* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
   965    same in Sledgehammer to prevent the discovery of unreplayable proofs. *)
   966 fun freeze_term t =
   967   let
   968     fun aux (t $ u) = aux t $ aux u
   969       | aux (Abs (s, T, t)) = Abs (s, T, aux t)
   970       | aux (Var ((s, i), T)) =
   971         Free (atp_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
   972       | aux t = t
   973   in t |> exists_subterm is_Var t ? aux end
   974 
   975 fun presimp_prop ctxt presimp_consts t =
   976   let
   977     val thy = Proof_Context.theory_of ctxt
   978     val t = t |> Envir.beta_eta_contract
   979               |> transform_elim_prop
   980               |> Object_Logic.atomize_term thy
   981     val need_trueprop = (fastype_of t = @{typ bool})
   982   in
   983     t |> need_trueprop ? HOLogic.mk_Trueprop
   984       |> Raw_Simplifier.rewrite_term thy (Meson.unfold_set_const_simps ctxt) []
   985       |> extensionalize_term ctxt
   986       |> presimplify_term ctxt presimp_consts
   987       |> perhaps (try (HOLogic.dest_Trueprop))
   988   end
   989 
   990 (* making fact and conjecture formulas *)
   991 fun make_formula thy type_enc eq_as_iff name loc kind t =
   992   let
   993     val (iformula, atomic_types) =
   994       iformula_from_prop thy type_enc eq_as_iff t []
   995   in
   996     {name = name, locality = loc, kind = kind, iformula = iformula,
   997      atomic_types = atomic_types}
   998   end
   999 
  1000 fun make_fact ctxt format type_enc eq_as_iff ((name, loc), t) =
  1001   let val thy = Proof_Context.theory_of ctxt in
  1002     case t |> make_formula thy type_enc (eq_as_iff andalso format <> CNF) name
  1003                            loc Axiom of
  1004       formula as {iformula = AAtom (IConst ((s, _), _, _)), ...} =>
  1005       if s = tptp_true then NONE else SOME formula
  1006     | formula => SOME formula
  1007   end
  1008 
  1009 fun make_conjecture ctxt format type_enc ps =
  1010   let
  1011     val thy = Proof_Context.theory_of ctxt
  1012     val last = length ps - 1
  1013   in
  1014     map2 (fn j => fn ((name, loc), (kind, t)) =>
  1015              t |> make_formula thy type_enc (format <> CNF) name loc kind
  1016                |> (j <> last) = (kind = Conjecture) ? update_iformula mk_anot)
  1017          (0 upto last) ps
  1018   end
  1019 
  1020 (** Finite and infinite type inference **)
  1021 
  1022 fun deep_freeze_atyp (TVar (_, S)) = TFree ("v", S)
  1023   | deep_freeze_atyp T = T
  1024 val deep_freeze_type = map_atyps deep_freeze_atyp
  1025 
  1026 (* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
  1027    dangerous because their "exhaust" properties can easily lead to unsound ATP
  1028    proofs. On the other hand, all HOL infinite types can be given the same
  1029    models in first-order logic (via Löwenheim-Skolem). *)
  1030 
  1031 fun should_encode_type ctxt (nonmono_Ts as _ :: _) _ T =
  1032     exists (curry (type_instance ctxt) (deep_freeze_type T)) nonmono_Ts
  1033   | should_encode_type _ _ All_Types _ = true
  1034   | should_encode_type ctxt _ Fin_Nonmono_Types T =
  1035     is_type_surely_finite ctxt false T
  1036   | should_encode_type _ _ _ _ = false
  1037 
  1038 fun should_predicate_on_type ctxt nonmono_Ts (Preds (_, level, heaviness))
  1039                              should_predicate_on_var T =
  1040     (heaviness = Heavyweight orelse should_predicate_on_var ()) andalso
  1041     should_encode_type ctxt nonmono_Ts level T
  1042   | should_predicate_on_type _ _ _ _ _ = false
  1043 
  1044 fun is_var_or_bound_var (IConst ((s, _), _, _)) =
  1045     String.isPrefix bound_var_prefix s
  1046   | is_var_or_bound_var (IVar _) = true
  1047   | is_var_or_bound_var _ = false
  1048 
  1049 datatype tag_site =
  1050   Top_Level of bool option |
  1051   Eq_Arg of bool option |
  1052   Elsewhere
  1053 
  1054 fun should_tag_with_type _ _ _ (Top_Level _) _ _ = false
  1055   | should_tag_with_type ctxt nonmono_Ts (Tags (poly, level, heaviness)) site
  1056                          u T =
  1057     (case heaviness of
  1058        Heavyweight => should_encode_type ctxt nonmono_Ts level T
  1059      | Lightweight =>
  1060        case (site, is_var_or_bound_var u) of
  1061          (Eq_Arg pos, true) =>
  1062          (* The first disjunct prevents a subtle soundness issue explained in
  1063             Blanchette's Ph.D. thesis. See also
  1064             "formula_lines_for_lightweight_tags_sym_decl". *)
  1065          (pos <> SOME false andalso poly = Polymorphic andalso
  1066           level <> All_Types andalso heaviness = Lightweight andalso
  1067           exists (fn T' => type_instance ctxt (T', T)) nonmono_Ts) orelse
  1068          should_encode_type ctxt nonmono_Ts level T
  1069        | _ => false)
  1070   | should_tag_with_type _ _ _ _ _ _ = false
  1071 
  1072 fun homogenized_type ctxt nonmono_Ts level =
  1073   let
  1074     val should_encode = should_encode_type ctxt nonmono_Ts level
  1075     fun homo 0 T = if should_encode T then T else homo_infinite_type
  1076       | homo ary (Type (@{type_name fun}, [T1, T2])) =
  1077         homo 0 T1 --> homo (ary - 1) T2
  1078       | homo _ _ = raise Fail "expected function type"
  1079   in homo end
  1080 
  1081 (** "hBOOL" and "hAPP" **)
  1082 
  1083 type sym_info =
  1084   {pred_sym : bool, min_ary : int, max_ary : int, types : typ list}
  1085 
  1086 fun add_iterm_syms_to_table ctxt explicit_apply =
  1087   let
  1088     fun consider_var_arity const_T var_T max_ary =
  1089       let
  1090         fun iter ary T =
  1091           if ary = max_ary orelse type_instance ctxt (var_T, T) orelse
  1092              type_instance ctxt (T, var_T) then
  1093             ary
  1094           else
  1095             iter (ary + 1) (range_type T)
  1096       in iter 0 const_T end
  1097     fun add_var_or_bound_var T (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1098       if explicit_apply = NONE andalso
  1099          (can dest_funT T orelse T = @{typ bool}) then
  1100         let
  1101           val bool_vars' = bool_vars orelse body_type T = @{typ bool}
  1102           fun repair_min_arity {pred_sym, min_ary, max_ary, types} =
  1103             {pred_sym = pred_sym andalso not bool_vars',
  1104              min_ary = fold (fn T' => consider_var_arity T' T) types min_ary,
  1105              max_ary = max_ary, types = types}
  1106           val fun_var_Ts' =
  1107             fun_var_Ts |> can dest_funT T ? insert_type ctxt I T
  1108         in
  1109           if bool_vars' = bool_vars andalso
  1110              pointer_eq (fun_var_Ts', fun_var_Ts) then
  1111             accum
  1112           else
  1113             ((bool_vars', fun_var_Ts'), Symtab.map (K repair_min_arity) sym_tab)
  1114         end
  1115       else
  1116         accum
  1117     fun add top_level tm (accum as ((bool_vars, fun_var_Ts), sym_tab)) =
  1118       let val (head, args) = strip_iterm_comb tm in
  1119         (case head of
  1120            IConst ((s, _), T, _) =>
  1121            if String.isPrefix bound_var_prefix s then
  1122              add_var_or_bound_var T accum
  1123            else
  1124              let val ary = length args in
  1125                ((bool_vars, fun_var_Ts),
  1126                 case Symtab.lookup sym_tab s of
  1127                   SOME {pred_sym, min_ary, max_ary, types} =>
  1128                   let
  1129                     val pred_sym =
  1130                       pred_sym andalso top_level andalso not bool_vars
  1131                     val types' = types |> insert_type ctxt I T
  1132                     val min_ary =
  1133                       if is_some explicit_apply orelse
  1134                          pointer_eq (types', types) then
  1135                         min_ary
  1136                       else
  1137                         fold (consider_var_arity T) fun_var_Ts min_ary
  1138                   in
  1139                     Symtab.update (s, {pred_sym = pred_sym,
  1140                                        min_ary = Int.min (ary, min_ary),
  1141                                        max_ary = Int.max (ary, max_ary),
  1142                                        types = types'})
  1143                                   sym_tab
  1144                   end
  1145                 | NONE =>
  1146                   let
  1147                     val pred_sym = top_level andalso not bool_vars
  1148                     val min_ary =
  1149                       case explicit_apply of
  1150                         SOME true => 0
  1151                       | SOME false => ary
  1152                       | NONE => fold (consider_var_arity T) fun_var_Ts ary
  1153                   in
  1154                     Symtab.update_new (s, {pred_sym = pred_sym,
  1155                                            min_ary = min_ary, max_ary = ary,
  1156                                            types = [T]})
  1157                                       sym_tab
  1158                   end)
  1159              end
  1160          | IVar (_, T) => add_var_or_bound_var T accum
  1161          | IAbs ((_, T), tm) => accum |> add_var_or_bound_var T |> add false tm
  1162          | _ => accum)
  1163         |> fold (add false) args
  1164       end
  1165   in add true end
  1166 fun add_fact_syms_to_table ctxt explicit_apply =
  1167   fact_lift (formula_fold NONE
  1168                           (K (add_iterm_syms_to_table ctxt explicit_apply)))
  1169 
  1170 val default_sym_tab_entries : (string * sym_info) list =
  1171   (prefixed_predicator_name,
  1172    {pred_sym = true, min_ary = 1, max_ary = 1, types = []}) ::
  1173   ([tptp_false, tptp_true]
  1174    |> map (rpair {pred_sym = true, min_ary = 0, max_ary = 0, types = []})) @
  1175   ([tptp_equal, tptp_old_equal]
  1176    |> map (rpair {pred_sym = true, min_ary = 2, max_ary = 2, types = []}))
  1177 
  1178 fun sym_table_for_facts ctxt explicit_apply facts =
  1179   ((false, []), Symtab.empty)
  1180   |> fold (add_fact_syms_to_table ctxt explicit_apply) facts |> snd
  1181   |> fold Symtab.update default_sym_tab_entries
  1182 
  1183 fun min_arity_of sym_tab s =
  1184   case Symtab.lookup sym_tab s of
  1185     SOME ({min_ary, ...} : sym_info) => min_ary
  1186   | NONE =>
  1187     case strip_prefix_and_unascii const_prefix s of
  1188       SOME s =>
  1189       let val s = s |> unmangled_const_name |> invert_const in
  1190         if s = predicator_name then 1
  1191         else if s = app_op_name then 2
  1192         else if s = type_pred_name then 1
  1193         else 0
  1194       end
  1195     | NONE => 0
  1196 
  1197 (* True if the constant ever appears outside of the top-level position in
  1198    literals, or if it appears with different arities (e.g., because of different
  1199    type instantiations). If false, the constant always receives all of its
  1200    arguments and is used as a predicate. *)
  1201 fun is_pred_sym sym_tab s =
  1202   case Symtab.lookup sym_tab s of
  1203     SOME ({pred_sym, min_ary, max_ary, ...} : sym_info) =>
  1204     pred_sym andalso min_ary = max_ary
  1205   | NONE => false
  1206 
  1207 val predicator_combconst =
  1208   IConst (`make_fixed_const predicator_name, @{typ "bool => bool"}, [])
  1209 fun predicator tm = IApp (predicator_combconst, tm)
  1210 
  1211 fun introduce_predicators_in_iterm sym_tab tm =
  1212   case strip_iterm_comb tm of
  1213     (IConst ((s, _), _, _), _) =>
  1214     if is_pred_sym sym_tab s then tm else predicator tm
  1215   | _ => predicator tm
  1216 
  1217 fun list_app head args = fold (curry (IApp o swap)) args head
  1218 
  1219 val app_op = `make_fixed_const app_op_name
  1220 
  1221 fun explicit_app arg head =
  1222   let
  1223     val head_T = ityp_of head
  1224     val (arg_T, res_T) = dest_funT head_T
  1225     val explicit_app = IConst (app_op, head_T --> head_T, [arg_T, res_T])
  1226   in list_app explicit_app [head, arg] end
  1227 fun list_explicit_app head args = fold explicit_app args head
  1228 
  1229 fun introduce_explicit_apps_in_iterm sym_tab =
  1230   let
  1231     fun aux tm =
  1232       case strip_iterm_comb tm of
  1233         (head as IConst ((s, _), _, _), args) =>
  1234         args |> map aux
  1235              |> chop (min_arity_of sym_tab s)
  1236              |>> list_app head
  1237              |-> list_explicit_app
  1238       | (head, args) => list_explicit_app head (map aux args)
  1239   in aux end
  1240 
  1241 fun chop_fun 0 T = ([], T)
  1242   | chop_fun n (Type (@{type_name fun}, [dom_T, ran_T])) =
  1243     chop_fun (n - 1) ran_T |>> cons dom_T
  1244   | chop_fun _ _ = raise Fail "unexpected non-function"
  1245 
  1246 fun filter_type_args _ _ _ [] = []
  1247   | filter_type_args thy s arity T_args =
  1248     let
  1249       (* will throw "TYPE" for pseudo-constants *)
  1250       val U = if s = app_op_name then
  1251                 @{typ "('a => 'b) => 'a => 'b"} |> Logic.varifyT_global
  1252               else
  1253                 s |> Sign.the_const_type thy
  1254     in
  1255       case Term.add_tvarsT (U |> chop_fun arity |> snd) [] of
  1256         [] => []
  1257       | res_U_vars =>
  1258         let val U_args = (s, U) |> Sign.const_typargs thy in
  1259           U_args ~~ T_args
  1260           |> map (fn (U, T) =>
  1261                      if member (op =) res_U_vars (dest_TVar U) then T
  1262                      else dummyT)
  1263         end
  1264     end
  1265     handle TYPE _ => T_args
  1266 
  1267 fun enforce_type_arg_policy_in_iterm ctxt format type_enc =
  1268   let
  1269     val thy = Proof_Context.theory_of ctxt
  1270     fun aux arity (IApp (tm1, tm2)) = IApp (aux (arity + 1) tm1, aux 0 tm2)
  1271       | aux arity (IConst (name as (s, _), T, T_args)) =
  1272         (case strip_prefix_and_unascii const_prefix s of
  1273            NONE => (name, T_args)
  1274          | SOME s'' =>
  1275            let
  1276              val s'' = invert_const s''
  1277              fun filtered_T_args false = T_args
  1278                | filtered_T_args true = filter_type_args thy s'' arity T_args
  1279            in
  1280              case type_arg_policy type_enc s'' of
  1281                Explicit_Type_Args drop_args =>
  1282                (name, filtered_T_args drop_args)
  1283              | Mangled_Type_Args drop_args =>
  1284                (mangled_const_name format type_enc (filtered_T_args drop_args)
  1285                                    name, [])
  1286              | No_Type_Args => (name, [])
  1287            end)
  1288         |> (fn (name, T_args) => IConst (name, T, T_args))
  1289       | aux _ (IAbs (bound, tm)) = IAbs (bound, aux 0 tm)
  1290       | aux _ tm = tm
  1291   in aux 0 end
  1292 
  1293 fun repair_iterm ctxt format type_enc sym_tab =
  1294   not (is_type_enc_higher_order type_enc)
  1295   ? (introduce_explicit_apps_in_iterm sym_tab
  1296      #> introduce_predicators_in_iterm sym_tab)
  1297   #> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1298 fun repair_fact ctxt format type_enc sym_tab =
  1299   update_iformula (formula_map (repair_iterm ctxt format type_enc sym_tab))
  1300 
  1301 (** Helper facts **)
  1302 
  1303 (* The Boolean indicates that a fairly sound type encoding is needed. *)
  1304 val helper_table =
  1305   [(("COMBI", false), @{thms Meson.COMBI_def}),
  1306    (("COMBK", false), @{thms Meson.COMBK_def}),
  1307    (("COMBB", false), @{thms Meson.COMBB_def}),
  1308    (("COMBC", false), @{thms Meson.COMBC_def}),
  1309    (("COMBS", false), @{thms Meson.COMBS_def}),
  1310    (("fFalse", false), [@{lemma "~ fFalse" by (unfold fFalse_def) fast}]),
  1311    (("fFalse", true), @{thms True_or_False}),
  1312    (("fTrue", false), [@{lemma "fTrue" by (unfold fTrue_def) fast}]),
  1313    (("fTrue", true), @{thms True_or_False}),
  1314    (("fNot", false),
  1315     @{thms fNot_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1316            fNot_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1317    (("fconj", false),
  1318     @{lemma "~ P | ~ Q | fconj P Q" "~ fconj P Q | P" "~ fconj P Q | Q"
  1319         by (unfold fconj_def) fast+}),
  1320    (("fdisj", false),
  1321     @{lemma "~ P | fdisj P Q" "~ Q | fdisj P Q" "~ fdisj P Q | P | Q"
  1322         by (unfold fdisj_def) fast+}),
  1323    (("fimplies", false),
  1324     @{lemma "P | fimplies P Q" "~ Q | fimplies P Q" "~ fimplies P Q | ~ P | Q"
  1325         by (unfold fimplies_def) fast+}),
  1326    (("fequal", true),
  1327     (* This is a lie: Higher-order equality doesn't need a sound type encoding.
  1328        However, this is done so for backward compatibility: Including the
  1329        equality helpers by default in Metis breaks a few existing proofs. *)
  1330     @{thms fequal_def [THEN Meson.iff_to_disjD, THEN conjunct1]
  1331            fequal_def [THEN Meson.iff_to_disjD, THEN conjunct2]}),
  1332    (("fAll", false), []), (*TODO: add helpers*)
  1333    (("fEx", false), []), (*TODO: add helpers*)
  1334    (("If", true), @{thms if_True if_False True_or_False})]
  1335   |> map (apsnd (map zero_var_indexes))
  1336 
  1337 val type_tag = `make_fixed_const type_tag_name
  1338 
  1339 fun type_tag_idempotence_fact () =
  1340   let
  1341     fun var s = ATerm (`I s, [])
  1342     fun tag tm = ATerm (type_tag, [var "T", tm])
  1343     val tagged_a = tag (var "A")
  1344   in
  1345     Formula (type_tag_idempotence_helper_name, Axiom,
  1346              AAtom (ATerm (`I tptp_equal, [tag tagged_a, tagged_a]))
  1347              |> close_formula_universally, isabelle_info simpN, NONE)
  1348   end
  1349 
  1350 fun should_specialize_helper type_enc t =
  1351   polymorphism_of_type_enc type_enc = Mangled_Monomorphic andalso
  1352   level_of_type_enc type_enc <> No_Types andalso
  1353   not (null (Term.hidden_polymorphism t))
  1354 
  1355 fun helper_facts_for_sym ctxt format type_enc (s, {types, ...} : sym_info) =
  1356   case strip_prefix_and_unascii const_prefix s of
  1357     SOME mangled_s =>
  1358     let
  1359       val thy = Proof_Context.theory_of ctxt
  1360       val unmangled_s = mangled_s |> unmangled_const_name
  1361       fun dub needs_fairly_sound j k =
  1362         (unmangled_s ^ "_" ^ string_of_int j ^ "_" ^ string_of_int k ^
  1363          (if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
  1364          (if needs_fairly_sound then typed_helper_suffix
  1365           else untyped_helper_suffix),
  1366          Helper)
  1367       fun dub_and_inst needs_fairly_sound (th, j) =
  1368         let val t = prop_of th in
  1369           if should_specialize_helper type_enc t then
  1370             map (fn T => specialize_type thy (invert_const unmangled_s, T) t)
  1371                 types
  1372           else
  1373             [t]
  1374         end
  1375         |> map (fn (k, t) => (dub needs_fairly_sound j k, t)) o tag_list 1
  1376       val make_facts = map_filter (make_fact ctxt format type_enc false)
  1377       val fairly_sound = is_type_enc_fairly_sound type_enc
  1378     in
  1379       helper_table
  1380       |> maps (fn ((helper_s, needs_fairly_sound), ths) =>
  1381                   if helper_s <> unmangled_s orelse
  1382                      (needs_fairly_sound andalso not fairly_sound) then
  1383                     []
  1384                   else
  1385                     ths ~~ (1 upto length ths)
  1386                     |> maps (dub_and_inst needs_fairly_sound)
  1387                     |> make_facts)
  1388     end
  1389   | NONE => []
  1390 fun helper_facts_for_sym_table ctxt format type_enc sym_tab =
  1391   Symtab.fold_rev (append o helper_facts_for_sym ctxt format type_enc) sym_tab
  1392                   []
  1393 
  1394 (***************************************************************)
  1395 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
  1396 (***************************************************************)
  1397 
  1398 fun set_insert (x, s) = Symtab.update (x, ()) s
  1399 
  1400 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
  1401 
  1402 (* Remove this trivial type class (FIXME: similar code elsewhere) *)
  1403 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset
  1404 
  1405 fun classes_of_terms get_Ts =
  1406   map (map snd o get_Ts)
  1407   #> List.foldl add_classes Symtab.empty
  1408   #> delete_type #> Symtab.keys
  1409 
  1410 val tfree_classes_of_terms = classes_of_terms OldTerm.term_tfrees
  1411 val tvar_classes_of_terms = classes_of_terms OldTerm.term_tvars
  1412 
  1413 fun fold_type_constrs f (Type (s, Ts)) x =
  1414     fold (fold_type_constrs f) Ts (f (s, x))
  1415   | fold_type_constrs _ _ x = x
  1416 
  1417 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
  1418 fun add_type_constrs_in_term thy =
  1419   let
  1420     fun add (Const (@{const_name Meson.skolem}, _) $ _) = I
  1421       | add (t $ u) = add t #> add u
  1422       | add (Const (x as (s, _))) =
  1423         if String.isPrefix skolem_const_prefix s then I
  1424         else x |> Sign.const_typargs thy |> fold (fold_type_constrs set_insert)
  1425       | add (Abs (_, _, u)) = add u
  1426       | add _ = I
  1427   in add end
  1428 
  1429 fun type_constrs_of_terms thy ts =
  1430   Symtab.keys (fold (add_type_constrs_in_term thy) ts Symtab.empty)
  1431 
  1432 fun translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1433                        hyp_ts concl_t facts =
  1434   let
  1435     val thy = Proof_Context.theory_of ctxt
  1436     val presimp_consts = Meson.presimplified_consts ctxt
  1437     val fact_ts = facts |> map snd
  1438     (* Remove existing facts from the conjecture, as this can dramatically
  1439        boost an ATP's performance (for some reason). *)
  1440     val hyp_ts =
  1441       hyp_ts
  1442       |> map (fn t => if member (op aconv) fact_ts t then @{prop True} else t)
  1443     val facts = facts |> map (apsnd (pair Axiom))
  1444     val conjs =
  1445       map (pair prem_kind) hyp_ts @ [(Conjecture, concl_t)]
  1446       |> map2 (pair o rpair Local o string_of_int) (0 upto length hyp_ts)
  1447     val ((conjs, facts), lambdas) =
  1448       if preproc then
  1449         conjs @ facts
  1450         |> map (apsnd (apsnd (presimp_prop ctxt presimp_consts)))
  1451         |> preprocess_abstractions_in_terms trans_lambdas
  1452         |>> chop (length conjs)
  1453         |>> apfst (map (apsnd (apsnd freeze_term)))
  1454       else
  1455         ((conjs, facts), [])
  1456     val conjs = conjs |> make_conjecture ctxt format type_enc
  1457     val (fact_names, facts) =
  1458       facts
  1459       |> map_filter (fn (name, (_, t)) =>
  1460                         make_fact ctxt format type_enc true (name, t)
  1461                         |> Option.map (pair name))
  1462       |> ListPair.unzip
  1463     val lambdas =
  1464       lambdas |> map_filter (make_fact ctxt format type_enc true o apsnd snd)
  1465     val all_ts = concl_t :: hyp_ts @ fact_ts
  1466     val subs = tfree_classes_of_terms all_ts
  1467     val supers = tvar_classes_of_terms all_ts
  1468     val tycons = type_constrs_of_terms thy all_ts
  1469     val (supers, arity_clauses) =
  1470       if level_of_type_enc type_enc = No_Types then ([], [])
  1471       else make_arity_clauses thy tycons supers
  1472     val class_rel_clauses = make_class_rel_clauses thy subs supers
  1473   in
  1474     (fact_names |> map single,
  1475      (conjs, facts @ lambdas, class_rel_clauses, arity_clauses))
  1476   end
  1477 
  1478 fun fo_literal_from_type_literal (TyLitVar (class, name)) =
  1479     (true, ATerm (class, [ATerm (name, [])]))
  1480   | fo_literal_from_type_literal (TyLitFree (class, name)) =
  1481     (true, ATerm (class, [ATerm (name, [])]))
  1482 
  1483 fun formula_from_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
  1484 
  1485 val type_pred = `make_fixed_const type_pred_name
  1486 
  1487 fun type_pred_iterm ctxt format type_enc T tm =
  1488   IApp (IConst (type_pred, T --> @{typ bool}, [T])
  1489         |> enforce_type_arg_policy_in_iterm ctxt format type_enc, tm)
  1490 
  1491 fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
  1492   | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
  1493     accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
  1494   | is_var_positively_naked_in_term _ _ _ _ = true
  1495 fun should_predicate_on_var_in_formula pos phi (SOME true) name =
  1496     formula_fold pos (is_var_positively_naked_in_term name) phi false
  1497   | should_predicate_on_var_in_formula _ _ _ _ = true
  1498 
  1499 fun mk_aterm format type_enc name T_args args =
  1500   ATerm (name, map_filter (ho_term_for_type_arg format type_enc) T_args @ args)
  1501 
  1502 fun tag_with_type ctxt format nonmono_Ts type_enc pos T tm =
  1503   IConst (type_tag, T --> T, [T])
  1504   |> enforce_type_arg_policy_in_iterm ctxt format type_enc
  1505   |> ho_term_from_iterm ctxt format nonmono_Ts type_enc (Top_Level pos)
  1506   |> (fn ATerm (s, tms) => ATerm (s, tms @ [tm])
  1507        | _ => raise Fail "unexpected lambda-abstraction")
  1508 and ho_term_from_iterm ctxt format nonmono_Ts type_enc =
  1509   let
  1510     fun aux site u =
  1511       let
  1512         val (head, args) = strip_iterm_comb u
  1513         val pos =
  1514           case site of
  1515             Top_Level pos => pos
  1516           | Eq_Arg pos => pos
  1517           | Elsewhere => NONE
  1518         val t =
  1519           case head of
  1520             IConst (name as (s, _), _, T_args) =>
  1521             let
  1522               val arg_site = if is_tptp_equal s then Eq_Arg pos else Elsewhere
  1523             in
  1524               mk_aterm format type_enc name T_args (map (aux arg_site) args)
  1525             end
  1526           | IVar (name, _) =>
  1527             mk_aterm format type_enc name [] (map (aux Elsewhere) args)
  1528           | IAbs ((name, T), tm) =>
  1529             AAbs ((name, ho_type_from_typ format type_enc true 0 T),
  1530                   aux Elsewhere tm)
  1531           | IApp _ => raise Fail "impossible \"IApp\""
  1532         val T = ityp_of u
  1533       in
  1534         t |> (if should_tag_with_type ctxt nonmono_Ts type_enc site u T then
  1535                 tag_with_type ctxt format nonmono_Ts type_enc pos T
  1536               else
  1537                 I)
  1538       end
  1539   in aux end
  1540 and formula_from_iformula ctxt format nonmono_Ts type_enc
  1541                           should_predicate_on_var =
  1542   let
  1543     val do_term = ho_term_from_iterm ctxt format nonmono_Ts type_enc o Top_Level
  1544     val do_bound_type =
  1545       case type_enc of
  1546         Simple_Types (_, level) =>
  1547         homogenized_type ctxt nonmono_Ts level 0
  1548         #> ho_type_from_typ format type_enc false 0 #> SOME
  1549       | _ => K NONE
  1550     fun do_out_of_bound_type pos phi universal (name, T) =
  1551       if should_predicate_on_type ctxt nonmono_Ts type_enc
  1552              (fn () => should_predicate_on_var pos phi universal name) T then
  1553         IVar (name, T)
  1554         |> type_pred_iterm ctxt format type_enc T
  1555         |> do_term pos |> AAtom |> SOME
  1556       else
  1557         NONE
  1558     fun do_formula pos (AQuant (q, xs, phi)) =
  1559         let
  1560           val phi = phi |> do_formula pos
  1561           val universal = Option.map (q = AExists ? not) pos
  1562         in
  1563           AQuant (q, xs |> map (apsnd (fn NONE => NONE
  1564                                         | SOME T => do_bound_type T)),
  1565                   (if q = AForall then mk_ahorn else fold_rev (mk_aconn AAnd))
  1566                       (map_filter
  1567                            (fn (_, NONE) => NONE
  1568                              | (s, SOME T) =>
  1569                                do_out_of_bound_type pos phi universal (s, T))
  1570                            xs)
  1571                       phi)
  1572         end
  1573       | do_formula pos (AConn conn) = aconn_map pos do_formula conn
  1574       | do_formula pos (AAtom tm) = AAtom (do_term pos tm)
  1575   in do_formula end
  1576 
  1577 fun bound_tvars type_enc Ts =
  1578   mk_ahorn (map (formula_from_fo_literal o fo_literal_from_type_literal)
  1579                 (type_literals_for_types type_enc add_sorts_on_tvar Ts))
  1580 
  1581 (* Each fact is given a unique fact number to avoid name clashes (e.g., because
  1582    of monomorphization). The TPTP explicitly forbids name clashes, and some of
  1583    the remote provers might care. *)
  1584 fun formula_line_for_fact ctxt format prefix encode freshen pos nonmono_Ts
  1585         type_enc (j, {name, locality, kind, iformula, atomic_types}) =
  1586   (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ encode name, kind,
  1587    iformula
  1588    |> close_iformula_universally
  1589    |> formula_from_iformula ctxt format nonmono_Ts type_enc
  1590                             should_predicate_on_var_in_formula
  1591                             (if pos then SOME true else NONE)
  1592    |> bound_tvars type_enc atomic_types
  1593    |> close_formula_universally,
  1594    NONE,
  1595    case locality of
  1596      Intro => isabelle_info introN
  1597    | Elim => isabelle_info elimN
  1598    | Simp => isabelle_info simpN
  1599    | _ => NONE)
  1600   |> Formula
  1601 
  1602 fun formula_line_for_class_rel_clause ({name, subclass, superclass, ...}
  1603                                        : class_rel_clause) =
  1604   let val ty_arg = ATerm (`I "T", []) in
  1605     Formula (class_rel_clause_prefix ^ ascii_of name, Axiom,
  1606              AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
  1607                                AAtom (ATerm (superclass, [ty_arg]))])
  1608              |> close_formula_universally, isabelle_info introN, NONE)
  1609   end
  1610 
  1611 fun fo_literal_from_arity_literal (TConsLit (c, t, args)) =
  1612     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
  1613   | fo_literal_from_arity_literal (TVarLit (c, sort)) =
  1614     (false, ATerm (c, [ATerm (sort, [])]))
  1615 
  1616 fun formula_line_for_arity_clause ({name, prem_lits, concl_lits, ...}
  1617                                    : arity_clause) =
  1618   Formula (arity_clause_prefix ^ name, Axiom,
  1619            mk_ahorn (map (formula_from_fo_literal o apfst not
  1620                           o fo_literal_from_arity_literal) prem_lits)
  1621                     (formula_from_fo_literal
  1622                          (fo_literal_from_arity_literal concl_lits))
  1623            |> close_formula_universally, isabelle_info introN, NONE)
  1624 
  1625 fun formula_line_for_conjecture ctxt format nonmono_Ts type_enc
  1626         ({name, kind, iformula, atomic_types, ...} : translated_formula) =
  1627   Formula (conjecture_prefix ^ name, kind,
  1628            formula_from_iformula ctxt format nonmono_Ts type_enc
  1629                should_predicate_on_var_in_formula (SOME false)
  1630                (close_iformula_universally iformula)
  1631            |> bound_tvars type_enc atomic_types
  1632            |> close_formula_universally, NONE, NONE)
  1633 
  1634 fun free_type_literals type_enc ({atomic_types, ...} : translated_formula) =
  1635   atomic_types |> type_literals_for_types type_enc add_sorts_on_tfree
  1636                |> map fo_literal_from_type_literal
  1637 
  1638 fun formula_line_for_free_type j lit =
  1639   Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis,
  1640            formula_from_fo_literal lit, NONE, NONE)
  1641 fun formula_lines_for_free_types type_enc facts =
  1642   let
  1643     val litss = map (free_type_literals type_enc) facts
  1644     val lits = fold (union (op =)) litss []
  1645   in map2 formula_line_for_free_type (0 upto length lits - 1) lits end
  1646 
  1647 (** Symbol declarations **)
  1648 
  1649 fun should_declare_sym type_enc pred_sym s =
  1650   is_tptp_user_symbol s andalso not (String.isPrefix bound_var_prefix s) andalso
  1651   (case type_enc of
  1652      Simple_Types _ => true
  1653    | Tags (_, _, Lightweight) => true
  1654    | _ => not pred_sym)
  1655 
  1656 fun sym_decl_table_for_facts ctxt type_enc repaired_sym_tab (conjs, facts) =
  1657   let
  1658     fun add_iterm in_conj tm =
  1659       let val (head, args) = strip_iterm_comb tm in
  1660         (case head of
  1661            IConst ((s, s'), T, T_args) =>
  1662            let val pred_sym = is_pred_sym repaired_sym_tab s in
  1663              if should_declare_sym type_enc pred_sym s then
  1664                Symtab.map_default (s, [])
  1665                    (insert_type ctxt #3 (s', T_args, T, pred_sym, length args,
  1666                                          in_conj))
  1667              else
  1668                I
  1669            end
  1670          | IAbs (_, tm) => add_iterm in_conj tm
  1671          | _ => I)
  1672         #> fold (add_iterm in_conj) args
  1673       end
  1674     fun add_fact in_conj = fact_lift (formula_fold NONE (K (add_iterm in_conj)))
  1675   in
  1676     Symtab.empty
  1677     |> is_type_enc_fairly_sound type_enc
  1678        ? (fold (add_fact true) conjs #> fold (add_fact false) facts)
  1679   end
  1680 
  1681 (* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
  1682    out with monotonicity" paper presented at CADE 2011. *)
  1683 fun add_iterm_nonmonotonic_types _ _ _ _ (SOME false) _ = I
  1684   | add_iterm_nonmonotonic_types ctxt level sound locality _
  1685         (IApp (IApp (IConst ((s, _), Type (_, [T, _]), _), tm1), tm2)) =
  1686     (is_tptp_equal s andalso exists is_var_or_bound_var [tm1, tm2] andalso
  1687      (case level of
  1688         Noninf_Nonmono_Types =>
  1689         not (is_locality_global locality) orelse
  1690         not (is_type_surely_infinite ctxt sound T)
  1691       | Fin_Nonmono_Types => is_type_surely_finite ctxt false T
  1692       | _ => true)) ? insert_type ctxt I (deep_freeze_type T)
  1693   | add_iterm_nonmonotonic_types _ _ _ _ _ _ = I
  1694 fun add_fact_nonmonotonic_types ctxt level sound
  1695         ({kind, locality, iformula, ...} : translated_formula) =
  1696   formula_fold (SOME (kind <> Conjecture))
  1697                (add_iterm_nonmonotonic_types ctxt level sound locality)
  1698                iformula
  1699 fun nonmonotonic_types_for_facts ctxt type_enc sound facts =
  1700   let val level = level_of_type_enc type_enc in
  1701     if level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types then
  1702       [] |> fold (add_fact_nonmonotonic_types ctxt level sound) facts
  1703          (* We must add "bool" in case the helper "True_or_False" is added
  1704             later. In addition, several places in the code rely on the list of
  1705             nonmonotonic types not being empty. *)
  1706          |> insert_type ctxt I @{typ bool}
  1707     else
  1708       []
  1709   end
  1710 
  1711 fun decl_line_for_sym ctxt format nonmono_Ts type_enc s
  1712                       (s', T_args, T, pred_sym, ary, _) =
  1713   let
  1714     val (T_arg_Ts, level) =
  1715       case type_enc of
  1716         Simple_Types (_, level) => ([], level)
  1717       | _ => (replicate (length T_args) homo_infinite_type, No_Types)
  1718   in
  1719     Decl (sym_decl_prefix ^ s, (s, s'),
  1720           (T_arg_Ts ---> (T |> homogenized_type ctxt nonmono_Ts level ary))
  1721           |> ho_type_from_typ format type_enc pred_sym (length T_arg_Ts + ary))
  1722   end
  1723 
  1724 fun formula_line_for_preds_sym_decl ctxt format conj_sym_kind nonmono_Ts
  1725         poly_nonmono_Ts type_enc n s j (s', T_args, T, _, ary, in_conj) =
  1726   let
  1727     val (kind, maybe_negate) =
  1728       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1729       else (Axiom, I)
  1730     val (arg_Ts, res_T) = chop_fun ary T
  1731     val num_args = length arg_Ts
  1732     val bound_names =
  1733       1 upto num_args |> map (`I o make_bound_var o string_of_int)
  1734     val bounds =
  1735       bound_names ~~ arg_Ts |> map (fn (name, T) => IConst (name, T, []))
  1736     val sym_needs_arg_types = exists (curry (op =) dummyT) T_args)
  1737     fun should_keep_arg_type T =
  1738       sym_needs_arg_types orelse
  1739       not (should_predicate_on_type ctxt nonmono_Ts type_enc (K false) T)
  1740     val bound_Ts =
  1741       arg_Ts |> map (fn T => if should_keep_arg_type T then SOME T else NONE)
  1742   in
  1743     Formula (preds_sym_formula_prefix ^ s ^
  1744              (if n > 1 then "_" ^ string_of_int j else ""), kind,
  1745              IConst ((s, s'), T, T_args)
  1746              |> fold (curry (IApp o swap)) bounds
  1747              |> type_pred_iterm ctxt format type_enc res_T
  1748              |> AAtom |> mk_aquant AForall (bound_names ~~ bound_Ts)
  1749              |> formula_from_iformula ctxt format poly_nonmono_Ts type_enc
  1750                                       (K (K (K (K true)))) (SOME true)
  1751              |> n > 1 ? bound_tvars type_enc (atyps_of T)
  1752              |> close_formula_universally
  1753              |> maybe_negate,
  1754              isabelle_info introN, NONE)
  1755   end
  1756 
  1757 fun formula_lines_for_lightweight_tags_sym_decl ctxt format conj_sym_kind
  1758         poly_nonmono_Ts type_enc n s
  1759         (j, (s', T_args, T, pred_sym, ary, in_conj)) =
  1760   let
  1761     val ident_base =
  1762       lightweight_tags_sym_formula_prefix ^ s ^
  1763       (if n > 1 then "_" ^ string_of_int j else "")
  1764     val (kind, maybe_negate) =
  1765       if in_conj then (conj_sym_kind, conj_sym_kind = Conjecture ? mk_anot)
  1766       else (Axiom, I)
  1767     val (arg_Ts, res_T) = chop_fun ary T
  1768     val bound_names =
  1769       1 upto length arg_Ts |> map (`I o make_bound_var o string_of_int)
  1770     val bounds = bound_names |> map (fn name => ATerm (name, []))
  1771     val cst = mk_aterm format type_enc (s, s') T_args
  1772     val atomic_Ts = atyps_of T
  1773     fun eq tms =
  1774       (if pred_sym then AConn (AIff, map AAtom tms)
  1775        else AAtom (ATerm (`I tptp_equal, tms)))
  1776       |> bound_tvars type_enc atomic_Ts
  1777       |> close_formula_universally
  1778       |> maybe_negate
  1779     (* See also "should_tag_with_type". *)
  1780     fun should_encode T =
  1781       should_encode_type ctxt poly_nonmono_Ts All_Types T orelse
  1782       (case type_enc of
  1783          Tags (Polymorphic, level, Lightweight) =>
  1784          level <> All_Types andalso Monomorph.typ_has_tvars T
  1785        | _ => false)
  1786     val tag_with = tag_with_type ctxt format poly_nonmono_Ts type_enc NONE
  1787     val add_formula_for_res =
  1788       if should_encode res_T then
  1789         cons (Formula (ident_base ^ "_res", kind,
  1790                        eq [tag_with res_T (cst bounds), cst bounds],
  1791                        isabelle_info simpN, NONE))
  1792       else
  1793         I
  1794     fun add_formula_for_arg k =
  1795       let val arg_T = nth arg_Ts k in
  1796         if should_encode arg_T then
  1797           case chop k bounds of
  1798             (bounds1, bound :: bounds2) =>
  1799             cons (Formula (ident_base ^ "_arg" ^ string_of_int (k + 1), kind,
  1800                            eq [cst (bounds1 @ tag_with arg_T bound :: bounds2),
  1801                                cst bounds],
  1802                            isabelle_info simpN, NONE))
  1803           | _ => raise Fail "expected nonempty tail"
  1804         else
  1805           I
  1806       end
  1807   in
  1808     [] |> not pred_sym ? add_formula_for_res
  1809        |> fold add_formula_for_arg (ary - 1 downto 0)
  1810   end
  1811 
  1812 fun result_type_of_decl (_, _, T, _, ary, _) = chop_fun ary T |> snd
  1813 
  1814 fun problem_lines_for_sym_decls ctxt format conj_sym_kind nonmono_Ts
  1815                                 poly_nonmono_Ts type_enc (s, decls) =
  1816   case type_enc of
  1817     Simple_Types _ =>
  1818     decls |> map (decl_line_for_sym ctxt format nonmono_Ts type_enc s)
  1819   | Preds _ =>
  1820     let
  1821       val decls =
  1822         case decls of
  1823           decl :: (decls' as _ :: _) =>
  1824           let val T = result_type_of_decl decl in
  1825             if forall (curry (type_instance ctxt o swap) T
  1826                        o result_type_of_decl) decls' then
  1827               [decl]
  1828             else
  1829               decls
  1830           end
  1831         | _ => decls
  1832       val n = length decls
  1833       val decls =
  1834         decls |> filter (should_predicate_on_type ctxt poly_nonmono_Ts type_enc
  1835                                                   (K true)
  1836                          o result_type_of_decl)
  1837     in
  1838       (0 upto length decls - 1, decls)
  1839       |-> map2 (formula_line_for_preds_sym_decl ctxt format conj_sym_kind
  1840                    nonmono_Ts poly_nonmono_Ts type_enc n s)
  1841     end
  1842   | Tags (_, _, heaviness) =>
  1843     (case heaviness of
  1844        Heavyweight => []
  1845      | Lightweight =>
  1846        let val n = length decls in
  1847          (0 upto n - 1 ~~ decls)
  1848          |> maps (formula_lines_for_lightweight_tags_sym_decl ctxt format
  1849                       conj_sym_kind poly_nonmono_Ts type_enc n s)
  1850        end)
  1851 
  1852 fun problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1853                                      poly_nonmono_Ts type_enc sym_decl_tab =
  1854   sym_decl_tab
  1855   |> Symtab.dest
  1856   |> sort_wrt fst
  1857   |> rpair []
  1858   |-> fold_rev (append o problem_lines_for_sym_decls ctxt format conj_sym_kind
  1859                              nonmono_Ts poly_nonmono_Ts type_enc)
  1860 
  1861 fun needs_type_tag_idempotence (Tags (poly, level, heaviness)) =
  1862     poly <> Mangled_Monomorphic andalso
  1863     ((level = All_Types andalso heaviness = Lightweight) orelse
  1864      level = Noninf_Nonmono_Types orelse level = Fin_Nonmono_Types)
  1865   | needs_type_tag_idempotence _ = false
  1866 
  1867 fun offset_of_heading_in_problem _ [] j = j
  1868   | offset_of_heading_in_problem needle ((heading, lines) :: problem) j =
  1869     if heading = needle then j
  1870     else offset_of_heading_in_problem needle problem (j + length lines)
  1871 
  1872 val implicit_declsN = "Should-be-implicit typings"
  1873 val explicit_declsN = "Explicit typings"
  1874 val factsN = "Relevant facts"
  1875 val class_relsN = "Class relationships"
  1876 val aritiesN = "Arities"
  1877 val helpersN = "Helper facts"
  1878 val conjsN = "Conjectures"
  1879 val free_typesN = "Type variables"
  1880 
  1881 val explicit_apply = NONE (* for experiments *)
  1882 
  1883 fun prepare_atp_problem ctxt format conj_sym_kind prem_kind type_enc sound
  1884         exporter trans_lambdas readable_names preproc hyp_ts concl_t facts =
  1885   let
  1886     val (format, type_enc) = choose_format [format] type_enc
  1887     val (fact_names, (conjs, facts, class_rel_clauses, arity_clauses)) =
  1888       translate_formulas ctxt format prem_kind type_enc trans_lambdas preproc
  1889                          hyp_ts concl_t facts
  1890     val sym_tab = conjs @ facts |> sym_table_for_facts ctxt explicit_apply
  1891     val nonmono_Ts =
  1892       conjs @ facts |> nonmonotonic_types_for_facts ctxt type_enc sound
  1893     val repair = repair_fact ctxt format type_enc sym_tab
  1894     val (conjs, facts) = (conjs, facts) |> pairself (map repair)
  1895     val repaired_sym_tab =
  1896       conjs @ facts |> sym_table_for_facts ctxt (SOME false)
  1897     val helpers =
  1898       repaired_sym_tab |> helper_facts_for_sym_table ctxt format type_enc
  1899                        |> map repair
  1900     val poly_nonmono_Ts =
  1901       if null nonmono_Ts orelse nonmono_Ts = [@{typ bool}] orelse
  1902          polymorphism_of_type_enc type_enc <> Polymorphic then
  1903         nonmono_Ts
  1904       else
  1905         [TVar (("'a", 0), HOLogic.typeS)]
  1906     val sym_decl_lines =
  1907       (conjs, helpers @ facts)
  1908       |> sym_decl_table_for_facts ctxt type_enc repaired_sym_tab
  1909       |> problem_lines_for_sym_decl_table ctxt format conj_sym_kind nonmono_Ts
  1910                                                poly_nonmono_Ts type_enc
  1911     val helper_lines =
  1912       0 upto length helpers - 1 ~~ helpers
  1913       |> map (formula_line_for_fact ctxt format helper_prefix I false true
  1914                                     poly_nonmono_Ts type_enc)
  1915       |> (if needs_type_tag_idempotence type_enc then
  1916             cons (type_tag_idempotence_fact ())
  1917           else
  1918             I)
  1919     (* Reordering these might confuse the proof reconstruction code or the SPASS
  1920        FLOTTER hack. *)
  1921     val problem =
  1922       [(explicit_declsN, sym_decl_lines),
  1923        (factsN,
  1924         map (formula_line_for_fact ctxt format fact_prefix ascii_of
  1925                                    (not exporter) (not exporter) nonmono_Ts
  1926                                    type_enc)
  1927             (0 upto length facts - 1 ~~ facts)),
  1928        (class_relsN, map formula_line_for_class_rel_clause class_rel_clauses),
  1929        (aritiesN, map formula_line_for_arity_clause arity_clauses),
  1930        (helpersN, helper_lines),
  1931        (conjsN,
  1932         map (formula_line_for_conjecture ctxt format nonmono_Ts type_enc)
  1933             conjs),
  1934        (free_typesN, formula_lines_for_free_types type_enc (facts @ conjs))]
  1935     val problem =
  1936       problem
  1937       |> (case format of
  1938             CNF => ensure_cnf_problem
  1939           | CNF_UEQ => filter_cnf_ueq_problem
  1940           | _ => I)
  1941       |> (if is_format_typed format then
  1942             declare_undeclared_syms_in_atp_problem type_decl_prefix
  1943                                                    implicit_declsN
  1944           else
  1945             I)
  1946     val (problem, pool) = problem |> nice_atp_problem readable_names
  1947     val helpers_offset = offset_of_heading_in_problem helpersN problem 0
  1948     val typed_helpers =
  1949       map_filter (fn (j, {name, ...}) =>
  1950                      if String.isSuffix typed_helper_suffix name then SOME j
  1951                      else NONE)
  1952                  ((helpers_offset + 1 upto helpers_offset + length helpers)
  1953                   ~~ helpers)
  1954     fun add_sym_arity (s, {min_ary, ...} : sym_info) =
  1955       if min_ary > 0 then
  1956         case strip_prefix_and_unascii const_prefix s of
  1957           SOME s => Symtab.insert (op =) (s, min_ary)
  1958         | NONE => I
  1959       else
  1960         I
  1961   in
  1962     (problem,
  1963      case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
  1964      offset_of_heading_in_problem conjsN problem 0,
  1965      offset_of_heading_in_problem factsN problem 0,
  1966      fact_names |> Vector.fromList,
  1967      typed_helpers,
  1968      Symtab.empty |> Symtab.fold add_sym_arity sym_tab)
  1969   end
  1970 
  1971 (* FUDGE *)
  1972 val conj_weight = 0.0
  1973 val hyp_weight = 0.1
  1974 val fact_min_weight = 0.2
  1975 val fact_max_weight = 1.0
  1976 val type_info_default_weight = 0.8
  1977 
  1978 fun add_term_weights weight (ATerm (s, tms)) =
  1979     is_tptp_user_symbol s ? Symtab.default (s, weight)
  1980     #> fold (add_term_weights weight) tms
  1981   | add_term_weights weight (AAbs (_, tm)) = add_term_weights weight tm
  1982 fun add_problem_line_weights weight (Formula (_, _, phi, _, _)) =
  1983     formula_fold NONE (K (add_term_weights weight)) phi
  1984   | add_problem_line_weights _ _ = I
  1985 
  1986 fun add_conjectures_weights [] = I
  1987   | add_conjectures_weights conjs =
  1988     let val (hyps, conj) = split_last conjs in
  1989       add_problem_line_weights conj_weight conj
  1990       #> fold (add_problem_line_weights hyp_weight) hyps
  1991     end
  1992 
  1993 fun add_facts_weights facts =
  1994   let
  1995     val num_facts = length facts
  1996     fun weight_of j =
  1997       fact_min_weight + (fact_max_weight - fact_min_weight) * Real.fromInt j
  1998                         / Real.fromInt num_facts
  1999   in
  2000     map weight_of (0 upto num_facts - 1) ~~ facts
  2001     |> fold (uncurry add_problem_line_weights)
  2002   end
  2003 
  2004 (* Weights are from 0.0 (most important) to 1.0 (least important). *)
  2005 fun atp_problem_weights problem =
  2006   let val get = these o AList.lookup (op =) problem in
  2007     Symtab.empty
  2008     |> add_conjectures_weights (get free_typesN @ get conjsN)
  2009     |> add_facts_weights (get factsN)
  2010     |> fold (fold (add_problem_line_weights type_info_default_weight) o get)
  2011             [explicit_declsN, class_relsN, aritiesN]
  2012     |> Symtab.dest
  2013     |> sort (prod_ord Real.compare string_ord o pairself swap)
  2014   end
  2015 
  2016 end;