src/HOL/Tools/meson.ML
author paulson
Wed, 13 Sep 2006 12:17:17 +0200
changeset 20524 1493053fc111
parent 20417 c611b1412056
child 20822 634070b40731
permissions -rw-r--r--
Tweaks to is_fol_term, the first-order test. We don't count "=" as a connective
since this test is applied to clause forms.
     1 (*  Title:      HOL/Tools/meson.ML
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1992  University of Cambridge
     5 
     6 The MESON resolution proof procedure for HOL.
     7 
     8 When making clauses, avoids using the rewriter -- instead uses RS recursively
     9 
    10 NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
    11 FUNCTION nodups -- if done to goal clauses too!
    12 *)
    13 
    14 signature BASIC_MESON =
    15 sig
    16   val size_of_subgoals	: thm -> int
    17   val make_cnf		: thm list -> thm -> thm list
    18   val finish_cnf	: thm list -> thm list
    19   val make_nnf		: thm -> thm
    20   val make_nnf1		: thm -> thm
    21   val skolemize		: thm -> thm
    22   val make_clauses	: thm list -> thm list
    23   val make_horns	: thm list -> thm list
    24   val best_prolog_tac	: (thm -> int) -> thm list -> tactic
    25   val depth_prolog_tac	: thm list -> tactic
    26   val gocls		: thm list -> thm list
    27   val skolemize_prems_tac	: thm list -> int -> tactic
    28   val MESON		: (thm list -> tactic) -> int -> tactic
    29   val best_meson_tac	: (thm -> int) -> int -> tactic
    30   val safe_best_meson_tac	: int -> tactic
    31   val depth_meson_tac	: int -> tactic
    32   val prolog_step_tac'	: thm list -> int -> tactic
    33   val iter_deepen_prolog_tac	: thm list -> tactic
    34   val iter_deepen_meson_tac	: thm list -> int -> tactic
    35   val meson_tac		: int -> tactic
    36   val negate_head	: thm -> thm
    37   val select_literal	: int -> thm -> thm
    38   val skolemize_tac	: int -> tactic
    39   val make_clauses_tac	: int -> tactic
    40 end
    41 
    42 
    43 structure Meson =
    44 struct
    45 
    46 val not_conjD = thm "meson_not_conjD";
    47 val not_disjD = thm "meson_not_disjD";
    48 val not_notD = thm "meson_not_notD";
    49 val not_allD = thm "meson_not_allD";
    50 val not_exD = thm "meson_not_exD";
    51 val imp_to_disjD = thm "meson_imp_to_disjD";
    52 val not_impD = thm "meson_not_impD";
    53 val iff_to_disjD = thm "meson_iff_to_disjD";
    54 val not_iffD = thm "meson_not_iffD";
    55 val conj_exD1 = thm "meson_conj_exD1";
    56 val conj_exD2 = thm "meson_conj_exD2";
    57 val disj_exD = thm "meson_disj_exD";
    58 val disj_exD1 = thm "meson_disj_exD1";
    59 val disj_exD2 = thm "meson_disj_exD2";
    60 val disj_assoc = thm "meson_disj_assoc";
    61 val disj_comm = thm "meson_disj_comm";
    62 val disj_FalseD1 = thm "meson_disj_FalseD1";
    63 val disj_FalseD2 = thm "meson_disj_FalseD2";
    64 
    65 val depth_limit = ref 2000;
    66 
    67 (**** Operators for forward proof ****)
    68 
    69 
    70 (** First-order Resolution **)
    71 
    72 fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
    73 fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
    74 
    75 val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
    76 
    77 (*FIXME: currently does not "rename variables apart"*)
    78 fun first_order_resolve thA thB =
    79   let val thy = theory_of_thm thA
    80       val tmA = concl_of thA
    81       fun match pat = Pattern.first_order_match thy (pat,tmA) (tyenv0,tenv0)
    82       val Const("==>",_) $ tmB $ _ = prop_of thB
    83       val (tyenv,tenv) = match tmB
    84       val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
    85   in  thA RS (cterm_instantiate ct_pairs thB)  end
    86   handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);
    87 
    88 (*raises exception if no rules apply -- unlike RL*)
    89 fun tryres (th, rls) = 
    90   let fun tryall [] = raise THM("tryres", 0, th::rls)
    91         | tryall (rl::rls) = (th RS rl handle THM _ => tryall rls)
    92   in  tryall rls  end;
    93   
    94 (*Permits forward proof from rules that discharge assumptions*)
    95 fun forward_res nf st =
    96   case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
    97   of SOME(th,_) => th
    98    | NONE => raise THM("forward_res", 0, [st]);
    99 
   100 
   101 (*Are any of the logical connectives in "bs" present in the term?*)
   102 fun has_conns bs =
   103   let fun has (Const(a,_)) = false
   104         | has (Const("Trueprop",_) $ p) = has p
   105         | has (Const("Not",_) $ p) = has p
   106         | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
   107         | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
   108         | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
   109         | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
   110 	| has _ = false
   111   in  has  end;
   112   
   113 
   114 (**** Clause handling ****)
   115 
   116 fun literals (Const("Trueprop",_) $ P) = literals P
   117   | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
   118   | literals (Const("Not",_) $ P) = [(false,P)]
   119   | literals P = [(true,P)];
   120 
   121 (*number of literals in a term*)
   122 val nliterals = length o literals;
   123 
   124 
   125 (*** Tautology Checking ***)
   126 
   127 fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
   128       signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
   129   | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
   130   | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
   131   
   132 fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
   133 
   134 (*Literals like X=X are tautologous*)
   135 fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
   136   | taut_poslit (Const("True",_)) = true
   137   | taut_poslit _ = false;
   138 
   139 fun is_taut th =
   140   let val (poslits,neglits) = signed_lits th
   141   in  exists taut_poslit poslits
   142       orelse
   143       exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
   144   end
   145   handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
   146 
   147 
   148 (*** To remove trivial negated equality literals from clauses ***)
   149 
   150 (*They are typically functional reflexivity axioms and are the converses of
   151   injectivity equivalences*)
   152   
   153 val not_refl_disj_D = thm"meson_not_refl_disj_D";
   154 
   155 (*Is either term a Var that does not properly occur in the other term?*)
   156 fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
   157   | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
   158   | eliminable _ = false;
   159 
   160 fun refl_clause_aux 0 th = th
   161   | refl_clause_aux n th =
   162        case HOLogic.dest_Trueprop (concl_of th) of
   163 	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
   164             refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
   165 	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
   166 	    if eliminable(t,u) 
   167 	    then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
   168 	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
   169 	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
   170 	| _ => (*not a disjunction*) th;
   171 
   172 fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
   173       notequal_lits_count P + notequal_lits_count Q
   174   | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
   175   | notequal_lits_count _ = 0;
   176 
   177 (*Simplify a clause by applying reflexivity to its negated equality literals*)
   178 fun refl_clause th = 
   179   let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
   180   in  zero_var_indexes (refl_clause_aux neqs th)  end
   181   handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
   182 
   183 
   184 (*** The basic CNF transformation ***)
   185 
   186 (*Estimate the number of clauses in order to detect infeasible theorems*)
   187 fun nclauses (Const("Trueprop",_) $ t) = nclauses t
   188   | nclauses (Const("op &",_) $ t $ u) = nclauses t + nclauses u
   189   | nclauses (Const("Ex", _) $ Abs (_,_,t)) = nclauses t
   190   | nclauses (Const("All",_) $ Abs (_,_,t)) = nclauses t
   191   | nclauses (Const("op |",_) $ t $ u) = nclauses t * nclauses u
   192   | nclauses _ = 1; (* literal *)
   193 
   194 (*Replaces universally quantified variables by FREE variables -- because
   195   assumptions may not contain scheme variables.  Later, call "generalize". *)
   196 fun freeze_spec th =
   197   let val newname = gensym "mes_"
   198       val spec' = read_instantiate [("x", newname)] spec
   199   in  th RS spec'  end;
   200 
   201 (*Used with METAHYPS below. There is one assumption, which gets bound to prem
   202   and then normalized via function nf. The normal form is given to resolve_tac,
   203   presumably to instantiate a Boolean variable.*)
   204 fun resop nf [prem] = resolve_tac (nf prem) 1;
   205 
   206 val has_meta_conn = 
   207     exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
   208 
   209 fun apply_skolem_ths (th, rls) = 
   210   let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
   211         | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
   212   in  tryall rls  end;
   213   
   214 (*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
   215   Strips universal quantifiers and breaks up conjunctions.
   216   Eliminates existential quantifiers using skoths: Skolemization theorems.*)
   217 fun cnf skoths (th,ths) =
   218   let fun cnf_aux (th,ths) =
   219   	if has_meta_conn (prop_of th) then ths (*meta-level: ignore*)
   220         else if not (has_conns ["All","Ex","op &"] (prop_of th))  
   221 	then th::ths (*no work to do, terminate*)
   222 	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
   223 	    Const ("op &", _) => (*conjunction*)
   224 		cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
   225 	  | Const ("All", _) => (*universal quantifier*)
   226 	        cnf_aux (freeze_spec th,  ths)
   227 	  | Const ("Ex", _) => 
   228 	      (*existential quantifier: Insert Skolem functions*)
   229 	      cnf_aux (apply_skolem_ths (th,skoths), ths)
   230 	  | Const ("op |", _) => (*disjunction*)
   231 	      let val tac =
   232 		  (METAHYPS (resop cnf_nil) 1) THEN
   233 		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
   234 	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
   235 	  | _ => (*no work to do*) th::ths 
   236       and cnf_nil th = cnf_aux (th,[])
   237   in 
   238     if nclauses (concl_of th) > 20 
   239     then (Output.debug ("cnf is ignoring: " ^ string_of_thm th); ths)
   240     else cnf_aux (th,ths)
   241   end;
   242 
   243 (*Convert all suitable free variables to schematic variables, 
   244   but don't discharge assumptions.*)
   245 fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
   246 
   247 fun make_cnf skoths th = cnf skoths (th, []);
   248 
   249 (*Generalization, removal of redundant equalities, removal of tautologies.*)
   250 fun finish_cnf ths = filter (not o is_taut) (map (refl_clause o generalize) ths);
   251 
   252 
   253 (**** Removal of duplicate literals ****)
   254 
   255 (*Forward proof, passing extra assumptions as theorems to the tactic*)
   256 fun forward_res2 nf hyps st =
   257   case Seq.pull
   258 	(REPEAT
   259 	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
   260 	 st)
   261   of SOME(th,_) => th
   262    | NONE => raise THM("forward_res2", 0, [st]);
   263 
   264 (*Remove duplicates in P|Q by assuming ~P in Q
   265   rls (initially []) accumulates assumptions of the form P==>False*)
   266 fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
   267     handle THM _ => tryres(th,rls)
   268     handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
   269 			   [disj_FalseD1, disj_FalseD2, asm_rl])
   270     handle THM _ => th;
   271 
   272 (*Remove duplicate literals, if there are any*)
   273 fun nodups th =
   274     if null(findrep(literals(prop_of th))) then th
   275     else nodups_aux [] th;
   276 
   277 
   278 (**** Generation of contrapositives ****)
   279 
   280 (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
   281 fun assoc_right th = assoc_right (th RS disj_assoc)
   282 	handle THM _ => th;
   283 
   284 (*Must check for negative literal first!*)
   285 val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
   286 
   287 (*For ordinary resolution. *)
   288 val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
   289 
   290 (*Create a goal or support clause, conclusing False*)
   291 fun make_goal th =   (*Must check for negative literal first!*)
   292     make_goal (tryres(th, clause_rules))
   293   handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
   294 
   295 (*Sort clauses by number of literals*)
   296 fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
   297 
   298 fun sort_clauses ths = sort (make_ord fewerlits) ths;
   299 
   300 (*True if the given type contains bool anywhere*)
   301 fun has_bool (Type("bool",_)) = true
   302   | has_bool (Type(_, Ts)) = exists has_bool Ts
   303   | has_bool _ = false;
   304   
   305 (*Is the string the name of a connective? Really only | and Not can remain, 
   306   since this code expects to be called on a clause form.*)  
   307 val is_conn = member (op =)
   308     ["Trueprop", "op &", "op |", "op -->", "Not", 
   309      "All", "Ex", "Ball", "Bex"];
   310 
   311 (*True if the term contains a function--not a logical connective--where the type 
   312   of any argument contains bool.*)
   313 val has_bool_arg_const = 
   314     exists_Const
   315       (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
   316       
   317 (*Raises an exception if any Vars in the theorem mention type bool; they
   318   could cause make_horn to loop! Also rejects functions whose arguments are 
   319   Booleans or other functions.*)
   320 fun is_fol_term t =
   321     not (exists (has_bool o fastype_of) (term_vars t)  orelse
   322 	 not (Term.is_first_order ["all","All","Ex"] t) orelse
   323 	 has_bool_arg_const t  orelse  
   324 	 has_meta_conn t);
   325 
   326 (*Create a meta-level Horn clause*)
   327 fun make_horn crules th = make_horn crules (tryres(th,crules))
   328 			  handle THM _ => th;
   329 
   330 (*Generate Horn clauses for all contrapositives of a clause. The input, th,
   331   is a HOL disjunction.*)
   332 fun add_contras crules (th,hcs) =
   333   let fun rots (0,th) = hcs
   334 	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
   335 			rots(k-1, assoc_right (th RS disj_comm))
   336   in case nliterals(prop_of th) of
   337 	1 => th::hcs
   338       | n => rots(n, assoc_right th)
   339   end;
   340 
   341 (*Use "theorem naming" to label the clauses*)
   342 fun name_thms label =
   343     let fun name1 (th, (k,ths)) =
   344 	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
   345 
   346     in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
   347 
   348 (*Is the given disjunction an all-negative support clause?*)
   349 fun is_negative th = forall (not o #1) (literals (prop_of th));
   350 
   351 val neg_clauses = List.filter is_negative;
   352 
   353 
   354 (***** MESON PROOF PROCEDURE *****)
   355 
   356 fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
   357 	   As) = rhyps(phi, A::As)
   358   | rhyps (_, As) = As;
   359 
   360 (** Detecting repeated assumptions in a subgoal **)
   361 
   362 (*The stringtree detects repeated assumptions.*)
   363 fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
   364 
   365 (*detects repetitions in a list of terms*)
   366 fun has_reps [] = false
   367   | has_reps [_] = false
   368   | has_reps [t,u] = (t aconv u)
   369   | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
   370 		  handle Net.INSERT => true;
   371 
   372 (*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
   373 fun TRYING_eq_assume_tac 0 st = Seq.single st
   374   | TRYING_eq_assume_tac i st =
   375        TRYING_eq_assume_tac (i-1) (eq_assumption i st)
   376        handle THM _ => TRYING_eq_assume_tac (i-1) st;
   377 
   378 fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
   379 
   380 (*Loop checking: FAIL if trying to prove the same thing twice
   381   -- if *ANY* subgoal has repeated literals*)
   382 fun check_tac st =
   383   if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
   384   then  Seq.empty  else  Seq.single st;
   385 
   386 
   387 (* net_resolve_tac actually made it slower... *)
   388 fun prolog_step_tac horns i =
   389     (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
   390     TRYALL_eq_assume_tac;
   391 
   392 (*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
   393 fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
   394 
   395 fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
   396 
   397 
   398 (*Negation Normal Form*)
   399 val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
   400                not_impD, not_iffD, not_allD, not_exD, not_notD];
   401 
   402 fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
   403     handle THM _ =>
   404         forward_res make_nnf1
   405            (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
   406     handle THM _ => th;
   407 
   408 (*The simplification removes defined quantifiers and occurrences of True and False. 
   409   nnf_ss also includes the one-point simprocs,
   410   which are needed to avoid the various one-point theorems from generating junk clauses.*)
   411 val nnf_simps =
   412      [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True, 
   413       if_False, if_cancel, if_eq_cancel, cases_simp];
   414 val nnf_extra_simps =
   415       thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
   416 
   417 val nnf_ss =
   418     HOL_basic_ss addsimps nnf_extra_simps 
   419                  addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
   420 
   421 fun make_nnf th = th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
   422                      |> simplify nnf_ss  (*But this doesn't simplify premises...*)
   423                      |> make_nnf1
   424 
   425 (*Pull existential quantifiers to front. This accomplishes Skolemization for
   426   clauses that arise from a subgoal.*)
   427 fun skolemize th =
   428   if not (has_conns ["Ex"] (prop_of th)) then th
   429   else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
   430                               disj_exD, disj_exD1, disj_exD2])))
   431     handle THM _ =>
   432         skolemize (forward_res skolemize
   433                    (tryres (th, [conj_forward, disj_forward, all_forward])))
   434     handle THM _ => forward_res skolemize (th RS ex_forward);
   435 
   436 
   437 (*Make clauses from a list of theorems, previously Skolemized and put into nnf.
   438   The resulting clauses are HOL disjunctions.*)
   439 fun make_clauses ths =
   440     (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
   441 
   442 (*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
   443 fun make_horns ths =
   444     name_thms "Horn#"
   445       (distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
   446 
   447 (*Could simply use nprems_of, which would count remaining subgoals -- no
   448   discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
   449 
   450 fun best_prolog_tac sizef horns =
   451     BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
   452 
   453 fun depth_prolog_tac horns =
   454     DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
   455 
   456 (*Return all negative clauses, as possible goal clauses*)
   457 fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
   458 
   459 fun skolemize_prems_tac prems =
   460     cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
   461     REPEAT o (etac exE);
   462 
   463 (*Expand all definitions (presumably of Skolem functions) in a proof state.*)
   464 fun expand_defs_tac st =
   465   let val defs = filter (can dest_equals) (#hyps (crep_thm st))
   466   in  PRIMITIVE (LocalDefs.def_export false defs) st  end;
   467 
   468 (*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
   469 fun MESON cltac i st = 
   470   SELECT_GOAL
   471     (EVERY [rtac ccontr 1,
   472 	    METAHYPS (fn negs =>
   473 		      EVERY1 [skolemize_prems_tac negs,
   474 			      METAHYPS (cltac o make_clauses)]) 1,
   475             expand_defs_tac]) i st
   476   handle THM _ => no_tac st;	(*probably from make_meta_clause, not first-order*)		      
   477 
   478 (** Best-first search versions **)
   479 
   480 (*ths is a list of additional clauses (HOL disjunctions) to use.*)
   481 fun best_meson_tac sizef =
   482   MESON (fn cls =>
   483          THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
   484                          (has_fewer_prems 1, sizef)
   485                          (prolog_step_tac (make_horns cls) 1));
   486 
   487 (*First, breaks the goal into independent units*)
   488 val safe_best_meson_tac =
   489      SELECT_GOAL (TRY Safe_tac THEN
   490                   TRYALL (best_meson_tac size_of_subgoals));
   491 
   492 (** Depth-first search version **)
   493 
   494 val depth_meson_tac =
   495      MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
   496                              depth_prolog_tac (make_horns cls)]);
   497 
   498 
   499 (** Iterative deepening version **)
   500 
   501 (*This version does only one inference per call;
   502   having only one eq_assume_tac speeds it up!*)
   503 fun prolog_step_tac' horns =
   504     let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
   505             take_prefix Thm.no_prems horns
   506         val nrtac = net_resolve_tac horns
   507     in  fn i => eq_assume_tac i ORELSE
   508                 match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
   509                 ((assume_tac i APPEND nrtac i) THEN check_tac)
   510     end;
   511 
   512 fun iter_deepen_prolog_tac horns =
   513     ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
   514 
   515 fun iter_deepen_meson_tac ths =
   516   MESON (fn cls =>
   517            case (gocls (cls@ths)) of
   518            	[] => no_tac  (*no goal clauses*)
   519               | goes => 
   520 		 (THEN_ITER_DEEPEN (resolve_tac goes 1)
   521 				   (has_fewer_prems 1)
   522 				   (prolog_step_tac' (make_horns (cls@ths)))));
   523 
   524 fun meson_claset_tac ths cs =
   525   SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
   526 
   527 val meson_tac = CLASET' (meson_claset_tac []);
   528 
   529 
   530 (**** Code to support ordinary resolution, rather than Model Elimination ****)
   531 
   532 (*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
   533   with no contrapositives, for ordinary resolution.*)
   534 
   535 (*Rules to convert the head literal into a negated assumption. If the head
   536   literal is already negated, then using notEfalse instead of notEfalse'
   537   prevents a double negation.*)
   538 val notEfalse = read_instantiate [("R","False")] notE;
   539 val notEfalse' = rotate_prems 1 notEfalse;
   540 
   541 fun negated_asm_of_head th = 
   542     th RS notEfalse handle THM _ => th RS notEfalse';
   543 
   544 (*Converting one clause*)
   545 fun make_meta_clause th = 
   546   if is_fol_term (prop_of th) 
   547   then negated_asm_of_head (make_horn resolution_clause_rules th)
   548   else raise THM("make_meta_clause", 0, [th]);
   549 
   550 fun make_meta_clauses ths =
   551     name_thms "MClause#"
   552       (distinct Drule.eq_thm_prop (map make_meta_clause ths));
   553 
   554 (*Permute a rule's premises to move the i-th premise to the last position.*)
   555 fun make_last i th =
   556   let val n = nprems_of th 
   557   in  if 1 <= i andalso i <= n 
   558       then Thm.permute_prems (i-1) 1 th
   559       else raise THM("select_literal", i, [th])
   560   end;
   561 
   562 (*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
   563   double-negations.*)
   564 val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
   565 
   566 (*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
   567 fun select_literal i cl = negate_head (make_last i cl);
   568 
   569 
   570 (*Top-level Skolemization. Allows part of the conversion to clauses to be
   571   expressed as a tactic (or Isar method).  Each assumption of the selected 
   572   goal is converted to NNF and then its existential quantifiers are pulled
   573   to the front. Finally, all existential quantifiers are eliminated, 
   574   leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
   575   might generate many subgoals.*)
   576 
   577 fun skolemize_tac i st = 
   578   let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
   579   in 
   580      EVERY' [METAHYPS
   581 	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
   582                          THEN REPEAT (etac exE 1))),
   583             REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
   584   end
   585   handle Subscript => Seq.empty;
   586 
   587 (*Top-level conversion to meta-level clauses. Each clause has  
   588   leading !!-bound universal variables, to express generality. To get 
   589   disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
   590 val make_clauses_tac = 
   591   SUBGOAL
   592     (fn (prop,_) =>
   593      let val ts = Logic.strip_assums_hyp prop
   594      in EVERY1 
   595 	 [METAHYPS
   596 	    (fn hyps => 
   597               (Method.insert_tac
   598                 (map forall_intr_vars 
   599                   (make_meta_clauses (make_clauses hyps))) 1)),
   600 	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
   601      end);
   602      
   603      
   604 (*** setup the special skoklemization methods ***)
   605 
   606 (*No CHANGED_PROP here, since these always appear in the preamble*)
   607 
   608 val skolemize_meth = Method.SIMPLE_METHOD' HEADGOAL skolemize_tac;
   609 
   610 val make_clauses_meth = Method.SIMPLE_METHOD' HEADGOAL make_clauses_tac;
   611 
   612 val skolemize_setup =
   613   Method.add_methods
   614     [("skolemize", Method.no_args skolemize_meth, 
   615       "Skolemization into existential quantifiers"),
   616      ("make_clauses", Method.no_args make_clauses_meth, 
   617       "Conversion to !!-quantified meta-level clauses")];
   618 
   619 end;
   620 
   621 structure BasicMeson: BASIC_MESON = Meson;
   622 open BasicMeson;