src/Tools/isac/Knowledge/Diff.thy
author wneuper <walther.neuper@jku.at>
Tue, 27 Jul 2021 11:21:14 +0200
changeset 60340 0ee698b0a703
parent 60339 0d22a6bf1fc6
child 60341 59106f9e08cc
permissions -rw-r--r--
revert previous changeset
     1 (* differentiation over the reals
     2    author: Walther Neuper
     3    000516   
     4  *)
     5 
     6 theory Diff imports Calculus Trig LogExp Rational Root Poly Base_Tools begin
     7 
     8 ML \<open>
     9 @{term "sin x"}
    10 \<close>
    11 
    12 consts
    13 
    14   d_d           :: "[real, real]=> real"
    15 
    16   (*descriptions in the related problems*)
    17   derivativeEq  :: "bool => una"
    18 
    19   (*predicates*)
    20   primed        :: "'a => 'a" (*"primed A" -> "A'"*)
    21 
    22   (*the CAS-commands, eg. "Diff (2*x \<up> 3, x)", 
    23 			  "Differentiate (A = s * (a - s), s)"*)
    24   Diff           :: "[real * real] => real"
    25   Differentiate  :: "[bool * real] => bool"
    26 
    27   (*subproblem-name*)
    28   differentiate  :: "[char list * char list list * char list, real, real] => real"
    29                	   ("(differentiate (_)/ (_ _ ))" 9)
    30 
    31 text \<open>a variant of the derivatives defintion:
    32 
    33   d_d            :: "(real => real) => (real => real)"
    34 
    35   advantages:
    36 (1) no variable 'bdv' on the meta-level required
    37 (2) chain_rule "d_d (%x. (u (v x))) = (%x. (d_d u)) (v x) * d_d v"
    38 (3) and no specialized chain-rules required like
    39     diff_sin_chain "d_d bdv (sin u)    = cos u * d_d bdv u"
    40 
    41   disadvantage: d_d (%x. 1 + x^2) = ... differs from high-school notation
    42 \<close>
    43 
    44 axiomatization where (*stated as axioms, todo: prove as theorems
    45         'bdv' is a constant on the meta-level  *)
    46   diff_const:     "[| Not (bdv occurs_in a) |] ==> d_d bdv a = 0" and
    47   diff_var:       "d_d bdv bdv = 1" and
    48   diff_prod_const:"[| Not (bdv occurs_in u) |] ==>  
    49 					 d_d bdv (u * v) = u * d_d bdv v" and
    50 
    51   diff_sum:       "d_d bdv (u + v)     = d_d bdv u + d_d bdv v" and
    52   diff_dif:       "d_d bdv (u - v)     = d_d bdv u - d_d bdv v" and
    53   diff_prod:      "d_d bdv (u * v)     = d_d bdv u * v + u * d_d bdv v" and
    54   diff_quot:      "Not (v = 0) ==> (d_d bdv (u / v) =  
    55 	           (d_d bdv u * v - u * d_d bdv v) / v \<up> 2)" and
    56 
    57   diff_sin:       "d_d bdv (sin bdv)   = cos bdv" and
    58   diff_sin_chain: "d_d bdv (sin u)     = cos u * d_d bdv u" and
    59   diff_cos:       "d_d bdv (cos bdv)   = - sin bdv" and
    60   diff_cos_chain: "d_d bdv (cos u)     = - sin u * d_d bdv u" and
    61   diff_pow:       "d_d bdv (bdv \<up> n) = n * (bdv \<up> (n - 1))" and
    62   diff_pow_chain: "d_d bdv (u \<up> n)   = n * (u \<up> (n - 1)) * d_d bdv u" and
    63   diff_ln:        "d_d bdv (ln bdv)    = 1 / bdv" and
    64   diff_ln_chain:  "d_d bdv (ln u)      = d_d bdv u / u" and
    65   diff_exp:       "d_d bdv (exp bdv)   = exp bdv" and
    66   diff_exp_chain: "d_d bdv (exp u)     = exp u * d_d x u" and
    67 (*
    68   diff_sqrt      "d_d bdv (sqrt bdv)  = 1 / (2 * sqrt bdv)"
    69   diff_sqrt_chain"d_d bdv (sqrt u)    = d_d bdv u / (2 * sqrt u)"
    70 *)
    71   (*...*)
    72 
    73   frac_conv:       "[| bdv occurs_in b; 0 < n |] ==>  
    74 		    a / (b \<up> n) = a * b \<up> (-n)" and
    75   frac_sym_conv:   "n < 0 ==> a * b \<up> n = a / b \<up> (-n)" and
    76 
    77   sqrt_conv_bdv:   "sqrt bdv = bdv \<up> (1 / 2)" and
    78   sqrt_conv_bdv_n: "sqrt (bdv \<up> n) = bdv \<up> (n / 2)" and
    79 (*Ambiguous input\<^here> produces 3 parse trees -----------------------------\\*)
    80   sqrt_conv:       "bdv occurs_in u ==> sqrt u = u \<up> (1 / 2)" and
    81 (*Ambiguous input\<^here> produces 3 parse trees -----------------------------//*)
    82   sqrt_sym_conv:   "u \<up> (a / 2) = sqrt (u \<up> a)" and
    83 
    84   root_conv:       "bdv occurs_in u ==> nroot n u = u \<up> (1 / n)" and
    85   root_sym_conv:   "u \<up> (a / b) = nroot b (u \<up> a)" and
    86 
    87   realpow_pow_bdv: "(bdv \<up> b) \<up> c = bdv \<up> (b * c)"
    88 
    89 ML \<open>
    90 val thy = @{theory};
    91 
    92 (** eval functions **)
    93 
    94 fun primed (Const (id, T)) = Const (id ^ "'", T)
    95   | primed (Free (id, T)) = Free (id ^ "'", T)
    96   | primed t = raise ERROR ("primed called with arg = '"^ UnparseC.term t ^"'");
    97 
    98 (*("primed", ("Diff.primed", eval_primed "#primed"))*)
    99 fun eval_primed _ _ (p as (Const (\<^const_name>\<open>Diff.primed\<close>,_) $ t)) _ =
   100     SOME ((UnparseC.term p) ^ " = " ^ UnparseC.term (primed t),
   101 	  HOLogic.Trueprop $ (TermC.mk_equality (p, primed t)))
   102   | eval_primed _ _ _ _ = NONE;
   103 \<close>
   104 
   105 calculation primed = \<open>eval_primed "#primed"\<close>
   106 
   107 ML \<open>
   108 (** rulesets **)
   109 
   110 (*.converts a term such that differentiation works optimally.*)
   111 val diff_conv =   
   112     Rule_Def.Repeat {id="diff_conv", 
   113 	 preconds = [], 
   114 	 rew_ord = ("termlessI",termlessI), 
   115 	 erls = Rule_Set.append_rules "erls_diff_conv" Rule_Set.empty 
   116 			   [\<^rule_eval>\<open>Prog_Expr.occurs_in\<close> (Prog_Expr.eval_occurs_in ""),
   117 			    \<^rule_thm>\<open>not_true\<close>,
   118 			    \<^rule_thm>\<open>not_false\<close>,
   119 			    \<^rule_eval>\<open>less\<close> (Prog_Expr.eval_equ "#less_"),
   120 			    \<^rule_thm>\<open>and_true\<close>,
   121 			    \<^rule_thm>\<open>and_false\<close>
   122 			    ], 
   123 	 srls = Rule_Set.Empty, calc = [], errpatts = [],
   124 	 rules =
   125   [\<^rule_thm>\<open>frac_conv\<close>,
   126      (*"?bdv occurs_in ?b \<Longrightarrow> 0 < ?n \<Longrightarrow> ?a / ?b \<up> ?n = ?a * ?b \<up> - ?n"*)
   127 		   \<^rule_thm>\<open>sqrt_conv_bdv\<close>,
   128 		     (*"sqrt ?bdv = ?bdv \<up> (1 / 2)"*)
   129 		   \<^rule_thm>\<open>sqrt_conv_bdv_n\<close>,
   130 		     (*"sqrt (?bdv \<up> ?n) = ?bdv \<up> (?n / 2)"*)
   131 		   \<^rule_thm>\<open>sqrt_conv\<close>,
   132 		     (*"?bdv occurs_in ?u \<Longrightarrow> sqrt ?u = ?u \<up> (1 / 2)"*)
   133 		   \<^rule_thm>\<open>root_conv\<close>,
   134 		     (*"?bdv occurs_in ?u \<Longrightarrow> nroot ?n ?u = ?u \<up> (1 / ?n)"*)
   135 		   \<^rule_thm>\<open>realpow_pow_bdv\<close>,
   136 		     (* "(?bdv \<up> ?b) \<up> ?c = ?bdv \<up> (?b * ?c)"*)
   137 		   \<^rule_eval>\<open>times\<close> (**)(eval_binop "#mult_"),
   138 		   \<^rule_thm>\<open>rat_mult\<close>,
   139 		     (*a / b * (c / d) = a * c / (b * d)*)
   140 		   \<^rule_thm>\<open>times_divide_eq_right\<close>,
   141 		     (*?x * (?y / ?z) = ?x * ?y / ?z*)
   142 		   \<^rule_thm>\<open>times_divide_eq_left\<close>
   143 		     (*?y / ?z * ?x = ?y * ?x / ?z*)
   144 		 ],
   145 	 scr = Rule.Empty_Prog};
   146 \<close>
   147 ML \<open>
   148 (*.beautifies a term after differentiation.*)
   149 val diff_sym_conv =   
   150     Rule_Def.Repeat {id="diff_sym_conv", 
   151 	 preconds = [], 
   152 	 rew_ord = ("termlessI",termlessI), 
   153 	 erls = Rule_Set.append_rules "erls_diff_sym_conv" Rule_Set.empty 
   154 			   [\<^rule_eval>\<open>less\<close> (Prog_Expr.eval_equ "#less_"), 
   155 
   156            Rule.Eval ("Prog_Expr.matches", Prog_Expr.eval_matches "#matches_"),
   157 	   Rule.Eval ("Prog_Expr.is_atom", Prog_Expr.eval_is_atom "#is_atom_"),
   158 	   Rule.Eval ("Orderings.ord_class.less", Prog_Expr.eval_equ "#less_"),
   159 	   Rule.Thm ("not_false",  @{thm not_false}),
   160 	   Rule.Thm ("not_true",  @{thm not_true})], 
   161 	 srls = Rule_Set.Empty, calc = [], errpatts = [],
   162 	 rules = [\<^rule_thm>\<open>frac_sym_conv\<close>,
   163 		  \<^rule_thm>\<open>sqrt_sym_conv\<close>,
   164 		  \<^rule_thm>\<open>root_sym_conv\<close>,
   165 		  \<^rule_thm_sym>\<open>real_mult_minus1\<close>,
   166       (*- ?z = "-1 * ?z"*)
   167 		  \<^rule_thm>\<open>rat_mult\<close>,
   168 		  (*a / b * (c / d) = a * c / (b * d)*)
   169 		  \<^rule_thm>\<open>times_divide_eq_right\<close>,
   170 		  (*?x * (?y / ?z) = ?x * ?y / ?z*)
   171 		  \<^rule_thm>\<open>times_divide_eq_left\<close>,
   172 		  (*?y / ?z * ?x = ?y * ?x / ?z*)
   173 		  \<^rule_eval>\<open>times\<close> (**)(eval_binop "#mult_")
   174 		 ],
   175 	 scr = Rule.Empty_Prog};
   176 
   177 (*..*)
   178 val srls_diff = 
   179     Rule_Def.Repeat {id="srls_differentiate..", 
   180 	 preconds = [], 
   181 	 rew_ord = ("termlessI",termlessI), 
   182 	 erls = Rule_Set.empty, 
   183 	 srls = Rule_Set.Empty, calc = [], errpatts = [],
   184 	 rules = [\<^rule_eval>\<open>Prog_Expr.lhs\<close> (Prog_Expr.eval_lhs "eval_lhs_"),
   185 		  \<^rule_eval>\<open>Prog_Expr.rhs\<close> (Prog_Expr.eval_rhs "eval_rhs_"),
   186 		  \<^rule_eval>\<open>Diff.primed\<close> (eval_primed "Diff.primed")
   187 		  ],
   188 	 scr = Rule.Empty_Prog};
   189 \<close>
   190 ML \<open>
   191 (*..*)
   192 val erls_diff = 
   193     Rule_Set.append_rules "erls_differentiate.." Rule_Set.empty
   194                [\<^rule_thm>\<open>not_true\<close>,
   195 		\<^rule_thm>\<open>not_false\<close>,
   196 		
   197 		\<^rule_eval>\<open>Prog_Expr.ident\<close> (Prog_Expr.eval_ident "#ident_"),
   198 		\<^rule_eval>\<open>Prog_Expr.is_atom\<close> (Prog_Expr.eval_is_atom "#is_atom_"),
   199 		\<^rule_eval>\<open>Prog_Expr.occurs_in\<close> (Prog_Expr.eval_occurs_in ""),
   200 		\<^rule_eval>\<open>Prog_Expr.is_const\<close> (Prog_Expr.eval_const "#is_const_")
   201 		];
   202 
   203 (*.rules for differentiation, _no_ simplification.*)
   204 val diff_rules =
   205     Rule_Def.Repeat {id="diff_rules", preconds = [], rew_ord = ("termlessI",termlessI), 
   206 	 erls = erls_diff, srls = Rule_Set.Empty, calc = [], errpatts = [],
   207 	 rules = [\<^rule_thm>\<open>diff_sum\<close>,
   208 		  \<^rule_thm>\<open>diff_dif\<close>,
   209 		  \<^rule_thm>\<open>diff_prod_const\<close>,
   210 		  \<^rule_thm>\<open>diff_prod\<close>,
   211 		  \<^rule_thm>\<open>diff_quot\<close>,
   212 		  \<^rule_thm>\<open>diff_sin\<close>,
   213 		  \<^rule_thm>\<open>diff_sin_chain\<close>,
   214 		  \<^rule_thm>\<open>diff_cos\<close>,
   215 		  \<^rule_thm>\<open>diff_cos_chain\<close>,
   216 		  \<^rule_thm>\<open>diff_pow\<close>,
   217 		  \<^rule_thm>\<open>diff_pow_chain\<close>,
   218 		  \<^rule_thm>\<open>diff_ln\<close>,
   219 		  \<^rule_thm>\<open>diff_ln_chain\<close>,
   220 		  \<^rule_thm>\<open>diff_exp\<close>,
   221 		  \<^rule_thm>\<open>diff_exp_chain\<close>,
   222 (*
   223 		  \<^rule_thm>\<open>diff_sqrt\<close>,
   224 		  \<^rule_thm>\<open>diff_sqrt_chain\<close>,
   225 *)
   226 		  \<^rule_thm>\<open>diff_const\<close>,
   227 		  \<^rule_thm>\<open>diff_var\<close>
   228 		  ],
   229 	 scr = Rule.Empty_Prog};
   230 \<close>
   231 ML \<open>
   232 (*.normalisation for checking user-input.*)
   233 val norm_diff = 
   234   Rule_Def.Repeat
   235     {id="norm_diff", preconds = [], rew_ord = ("termlessI",termlessI), 
   236      erls = Rule_Set.Empty, srls = Rule_Set.Empty, calc = [], errpatts = [],
   237      rules = [Rule.Rls_ diff_rules, Rule.Rls_ norm_Poly ],
   238      scr = Rule.Empty_Prog};
   239 \<close>
   240 rule_set_knowledge
   241   erls_diff = \<open>prep_rls' erls_diff\<close> and
   242   diff_rules = \<open>prep_rls' diff_rules\<close> and
   243   norm_diff = \<open>prep_rls' norm_diff\<close> and
   244   diff_conv = \<open>prep_rls' diff_conv\<close> and
   245   diff_sym_conv = \<open>prep_rls' diff_sym_conv\<close>
   246 
   247 
   248 (** problems **)
   249 
   250 problem pbl_fun : "function" = \<open>Rule_Set.empty\<close>
   251 
   252 problem pbl_fun_deriv : "derivative_of/function" =
   253   \<open>Rule_Set.append_rules "empty" Rule_Set.empty []\<close>
   254   Method: "diff/differentiate_on_R" "diff/after_simplification"
   255   CAS: "Diff (f_f, v_v)"
   256   Given: "functionTerm f_f" "differentiateFor v_v"
   257   Find: "derivative f_f'"
   258 
   259 problem pbl_fun_deriv_nam :
   260   "named/derivative_of/function" (*here "named" is used differently from Integration"*) =
   261   \<open>Rule_Set.append_rules "empty" Rule_Set.empty []\<close>
   262   Method: "diff/differentiate_equality"
   263   CAS: "Differentiate (f_f, v_v)"
   264   Given: "functionEq f_f" "differentiateFor v_v"
   265   Find: "derivativeEq f_f'"
   266 
   267 ML \<open>
   268 (** CAS-commands **)
   269 
   270 (*.handle cas-input like "Diff (a * x^3 + b, x)".*)
   271 (* val (t, pairl) = strip_comb (str2term "Diff (a * x^3 + b, x)");
   272    val [Const (\<^const_name>\<open>Pair\<close>, _) $ t $ bdv] = pairl;
   273    *)
   274 fun argl2dtss [Const (\<^const_name>\<open>Pair\<close>, _) $ t $ bdv] =
   275     [((Thm.term_of o the o (TermC.parse \<^theory>)) "functionTerm", [t]),
   276      ((Thm.term_of o the o (TermC.parse \<^theory>)) "differentiateFor", [bdv]),
   277      ((Thm.term_of o the o (TermC.parse \<^theory>)) "derivative", 
   278       [(Thm.term_of o the o (TermC.parse \<^theory>)) "f_f'"])
   279      ]
   280   | argl2dtss _ = raise ERROR "Diff.ML: wrong argument for argl2dtss";
   281 \<close>
   282 
   283 method met_diff : "diff" =
   284   \<open>{rew_ord'="tless_true",rls'=Atools_erls,calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
   285     crls = Atools_erls, errpats = [], nrls = norm_diff}\<close>
   286 
   287 partial_function (tailrec) differentiate_on_R :: "real \<Rightarrow> real \<Rightarrow> real"
   288   where
   289 "differentiate_on_R f_f v_v = (
   290   let
   291     f_f' = Take (d_d v_v f_f)
   292   in (
   293     (Try (Rewrite_Set_Inst [(''bdv'',v_v)] ''diff_conv'')) #> (
   294     Repeat (
   295       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sum'')) Or
   296       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_prod_const'')) Or
   297       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_prod'')) Or
   298       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_quot'')) Or
   299       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sin'')) Or
   300       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sin_chain'')) Or
   301       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_cos'')) Or
   302       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_cos_chain'')) Or
   303       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_pow'')) Or
   304       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_pow_chain'')) Or
   305       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_ln'')) Or
   306       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_ln_chain'')) Or
   307       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_exp'')) Or
   308       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_exp_chain'')) Or
   309       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_const'')) Or
   310       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_var'')) Or
   311       (Repeat (Rewrite_Set ''make_polynomial'')))) #> (
   312     Try (Rewrite_Set_Inst [(''bdv'',v_v)] ''diff_sym_conv''))
   313     ) f_f')"
   314 
   315 method met_diff_onR : "diff/differentiate_on_R" =
   316   \<open>{rew_ord'="tless_true", rls' = erls_diff, calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
   317     crls = Atools_erls, errpats = [], nrls = norm_diff}\<close>
   318   Program: differentiate_on_R.simps
   319   Given: "functionTerm f_f" "differentiateFor v_v"
   320   Find: "derivative f_f'"
   321 
   322 partial_function (tailrec) differentiateX :: "real \<Rightarrow> real \<Rightarrow> real"
   323   where
   324 "differentiateX f_f v_v = (
   325   let
   326     f_f' = Take (d_d v_v f_f)
   327   in (
   328     Repeat (
   329       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sum'')) Or
   330       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_prod_const'' )) Or
   331       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_prod'')) Or
   332       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_quot'')) Or
   333       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sin'')) Or
   334       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_sin_chain'')) Or
   335       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_cos'')) Or
   336       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_cos_chain'')) Or
   337       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_pow'')) Or
   338       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_pow_chain'')) Or
   339       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_ln'')) Or
   340       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_ln_chain'')) Or
   341       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_exp'')) Or
   342       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_exp_chain'')) Or
   343       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_const'')) Or
   344       (Repeat (Rewrite_Inst [(''bdv'',v_v)] ''diff_var'')) Or
   345       (Repeat (Rewrite_Set ''make_polynomial'')))
   346     ) f_f')"
   347 
   348 method met_diff_simpl : "diff/diff_simpl" =
   349   \<open>{rew_ord'="tless_true", rls' = erls_diff, calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
   350     crls = Atools_erls, errpats = [], nrls = norm_diff}\<close>
   351   Program: differentiateX.simps
   352   Given: "functionTerm f_f" " differentiateFor v_v"
   353   Find: "derivative f_f'"
   354 
   355 partial_function (tailrec) differentiate_equality :: "bool \<Rightarrow> real \<Rightarrow> bool"
   356   where
   357 "differentiate_equality f_f v_v = (
   358   let
   359     f_f' = Take ((primed (lhs f_f)) = d_d v_v (rhs f_f))
   360   in (
   361     (Try (Rewrite_Set_Inst [(''bdv'',v_v)] ''diff_conv'' )) #> (
   362     Repeat (
   363       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_sum'')) Or
   364       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_dif''        )) Or
   365       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_prod_const'')) Or
   366       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_prod'')) Or
   367       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_quot'')) Or
   368       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_sin'')) Or
   369       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_sin_chain'')) Or
   370       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_cos'')) Or
   371       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_cos_chain'')) Or
   372       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_pow'')) Or
   373       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_pow_chain'')) Or
   374       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_ln'')) Or
   375       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_ln_chain'')) Or
   376       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_exp'')) Or
   377       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_exp_chain'')) Or
   378       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_const'')) Or
   379       (Repeat (Rewrite_Inst [(''bdv'', v_v)] ''diff_var'')) Or
   380       (Repeat (Rewrite_Set ''make_polynomial'')))) #> (
   381     Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''diff_sym_conv'' ))
   382     ) f_f')"
   383 
   384 method met_diff_equ : "diff/differentiate_equality" =
   385   \<open>{rew_ord'="tless_true", rls' = erls_diff, calc = [], srls = srls_diff, prls=Rule_Set.empty,
   386     crls=Atools_erls, errpats = [], nrls = norm_diff}\<close>
   387   Program: differentiate_equality.simps
   388   Given: "functionEq f_f" "differentiateFor v_v"
   389   Find: "derivativeEq f_f'"
   390 
   391 partial_function (tailrec) simplify_derivative :: "real \<Rightarrow> real \<Rightarrow> real"
   392   where
   393 "simplify_derivative term bound_variable = (
   394   let
   395    term' = Take (d_d bound_variable term)
   396   in (
   397     (Try (Rewrite_Set ''norm_Rational'')) #>
   398     (Try (Rewrite_Set_Inst [(''bdv'', bound_variable)] ''diff_conv'')) #>
   399     (Try (Rewrite_Set_Inst [(''bdv'', bound_variable)] ''norm_diff'')) #>
   400     (Try (Rewrite_Set_Inst [(''bdv'', bound_variable)] ''diff_sym_conv'')) #>
   401     (Try (Rewrite_Set ''norm_Rational''))
   402     ) term')"
   403 
   404 method met_diff_after_simp : "diff/after_simplification" =
   405   \<open>{rew_ord'="tless_true", rls' = Rule_Set.empty, calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
   406     crls=Atools_erls, errpats = [], nrls = norm_Rational}\<close>
   407   Program: simplify_derivative.simps
   408   Given: "functionTerm term" "differentiateFor bound_variable"
   409   Find: "derivative term'"
   410 
   411 cas Diff = \<open>argl2dtss\<close>
   412   Problem: "derivative_of/function"
   413 
   414 ML \<open>
   415 
   416 (*.handle cas-input like "Differentiate (A = s * (a - s), s)".*)
   417 (* val (t, pairl) = strip_comb (str2term "Differentiate (A = s * (a - s), s)");
   418    val [Const (\<^const_name>\<open>Pair\<close>, _) $ t $ bdv] = pairl;
   419    *)
   420 fun argl2dtss [Const (\<^const_name>\<open>Pair\<close>, _) $ t $ bdv] =
   421     [((Thm.term_of o the o (TermC.parse \<^theory>)) "functionEq", [t]),
   422      ((Thm.term_of o the o (TermC.parse \<^theory>)) "differentiateFor", [bdv]),
   423      ((Thm.term_of o the o (TermC.parse \<^theory>)) "derivativeEq", 
   424       [(Thm.term_of o the o (TermC.parse \<^theory>)) "f_f'::bool"])
   425      ]
   426   | argl2dtss _ = raise ERROR "Diff.ML: wrong argument for argl2dtss";
   427 \<close>
   428 cas Differentiate = \<open>argl2dtss\<close>
   429   Problem: "named/derivative_of/function"
   430 ML \<open>
   431 \<close> ML \<open>
   432 \<close>
   433 end