src/HOL/Tools/ATP/atp_proof_reconstruct.ML
author blanchet
Mon, 23 Jan 2012 17:40:32 +0100
changeset 47148 0b8b73b49848
parent 46758 src/HOL/Tools/ATP/atp_reconstruct.ML@bfb5234a70ba
child 47168 cac402c486b0
permissions -rw-r--r--
renamed two files to make room for a new file
     1 (*  Title:      HOL/Tools/ATP/atp_proof_reconstruct.ML
     2     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     3     Author:     Claire Quigley, Cambridge University Computer Laboratory
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 
     6 Proof reconstruction from ATP proofs.
     7 *)
     8 
     9 signature ATP_PROOF_RECONSTRUCT =
    10 sig
    11   type ('a, 'b) ho_term = ('a, 'b) ATP_Problem.ho_term
    12   type ('a, 'b, 'c) formula = ('a, 'b, 'c) ATP_Problem.formula
    13   type 'a proof = 'a ATP_Proof.proof
    14   type locality = ATP_Problem_Generate.locality
    15 
    16   datatype reconstructor =
    17     Metis of string * string |
    18     SMT
    19 
    20   datatype play =
    21     Played of reconstructor * Time.time |
    22     Trust_Playable of reconstructor * Time.time option |
    23     Failed_to_Play of reconstructor
    24 
    25   type minimize_command = string list -> string
    26   type one_line_params =
    27     play * string * (string * locality) list * minimize_command * int * int
    28   type isar_params =
    29     bool * int * string Symtab.table * (string * locality) list vector
    30     * int Symtab.table * string proof * thm
    31 
    32   val metisN : string
    33   val smtN : string
    34   val full_typesN : string
    35   val partial_typesN : string
    36   val no_typesN : string
    37   val really_full_type_enc : string
    38   val full_type_enc : string
    39   val partial_type_enc : string
    40   val no_type_enc : string
    41   val full_type_encs : string list
    42   val partial_type_encs : string list
    43   val metis_default_lam_trans : string
    44   val metis_call : string -> string -> string
    45   val string_for_reconstructor : reconstructor -> string
    46   val used_facts_in_atp_proof :
    47     Proof.context -> (string * locality) list vector -> string proof
    48     -> (string * locality) list
    49   val lam_trans_from_atp_proof : string proof -> string -> string
    50   val is_typed_helper_used_in_atp_proof : string proof -> bool
    51   val used_facts_in_unsound_atp_proof :
    52     Proof.context -> (string * locality) list vector -> 'a proof
    53     -> string list option
    54   val unalias_type_enc : string -> string list
    55   val one_line_proof_text : one_line_params -> string
    56   val make_tvar : string -> typ
    57   val make_tfree : Proof.context -> string -> typ
    58   val term_from_atp :
    59     Proof.context -> bool -> int Symtab.table -> typ option
    60     -> (string, string) ho_term -> term
    61   val prop_from_atp :
    62     Proof.context -> bool -> int Symtab.table
    63     -> (string, string, (string, string) ho_term) formula -> term
    64   val isar_proof_text :
    65     Proof.context -> bool -> isar_params -> one_line_params -> string
    66   val proof_text :
    67     Proof.context -> bool -> isar_params -> one_line_params -> string
    68 end;
    69 
    70 structure ATP_Proof_Reconstruct : ATP_PROOF_RECONSTRUCT =
    71 struct
    72 
    73 open ATP_Util
    74 open ATP_Problem
    75 open ATP_Proof
    76 open ATP_Problem_Generate
    77 
    78 structure String_Redirect = ATP_Proof_Redirect(
    79     type key = step_name
    80     val ord = fn ((s, _ : string list), (s', _)) => fast_string_ord (s, s')
    81     val string_of = fst)
    82 
    83 open String_Redirect
    84 
    85 datatype reconstructor =
    86   Metis of string * string |
    87   SMT
    88 
    89 datatype play =
    90   Played of reconstructor * Time.time |
    91   Trust_Playable of reconstructor * Time.time option |
    92   Failed_to_Play of reconstructor
    93 
    94 type minimize_command = string list -> string
    95 type one_line_params =
    96   play * string * (string * locality) list * minimize_command * int * int
    97 type isar_params =
    98   bool * int * string Symtab.table * (string * locality) list vector
    99   * int Symtab.table * string proof * thm
   100 
   101 val metisN = "metis"
   102 val smtN = "smt"
   103 
   104 val full_typesN = "full_types"
   105 val partial_typesN = "partial_types"
   106 val no_typesN = "no_types"
   107 
   108 val really_full_type_enc = "mono_tags"
   109 val full_type_enc = "poly_guards_query"
   110 val partial_type_enc = "poly_args"
   111 val no_type_enc = "erased"
   112 
   113 val full_type_encs = [full_type_enc, really_full_type_enc]
   114 val partial_type_encs = partial_type_enc :: full_type_encs
   115 
   116 val type_enc_aliases =
   117   [(full_typesN, full_type_encs),
   118    (partial_typesN, partial_type_encs),
   119    (no_typesN, [no_type_enc])]
   120 
   121 fun unalias_type_enc s =
   122   AList.lookup (op =) type_enc_aliases s |> the_default [s]
   123 
   124 val metis_default_lam_trans = combinatorsN
   125 
   126 fun metis_call type_enc lam_trans =
   127   let
   128     val type_enc =
   129       case AList.find (fn (enc, encs) => enc = hd encs) type_enc_aliases
   130                       type_enc of
   131         [alias] => alias
   132       | _ => type_enc
   133     val opts = [] |> type_enc <> partial_typesN ? cons type_enc
   134                   |> lam_trans <> metis_default_lam_trans ? cons lam_trans
   135   in metisN ^ (if null opts then "" else " (" ^ commas opts ^ ")") end
   136 
   137 fun string_for_reconstructor (Metis (type_enc, lam_trans)) =
   138     metis_call type_enc lam_trans
   139   | string_for_reconstructor SMT = smtN
   140 
   141 fun find_first_in_list_vector vec key =
   142   Vector.foldl (fn (ps, NONE) => AList.lookup (op =) ps key
   143                  | (_, value) => value) NONE vec
   144 
   145 val unprefix_fact_number = space_implode "_" o tl o space_explode "_"
   146 
   147 fun resolve_one_named_fact fact_names s =
   148   case try (unprefix fact_prefix) s of
   149     SOME s' =>
   150     let val s' = s' |> unprefix_fact_number |> unascii_of in
   151       s' |> find_first_in_list_vector fact_names |> Option.map (pair s')
   152     end
   153   | NONE => NONE
   154 fun resolve_fact fact_names = map_filter (resolve_one_named_fact fact_names)
   155 fun is_fact fact_names = not o null o resolve_fact fact_names
   156 
   157 fun resolve_one_named_conjecture s =
   158   case try (unprefix conjecture_prefix) s of
   159     SOME s' => Int.fromString s'
   160   | NONE => NONE
   161 
   162 val resolve_conjecture = map_filter resolve_one_named_conjecture
   163 val is_conjecture = not o null o resolve_conjecture
   164 
   165 fun is_axiom_used_in_proof pred =
   166   exists (fn Inference ((_, ss), _, _, []) => exists pred ss | _ => false)
   167 
   168 val is_combinator_def = String.isPrefix (helper_prefix ^ combinator_prefix)
   169 
   170 val ascii_of_lam_fact_prefix = ascii_of lam_fact_prefix
   171 
   172 (* overapproximation (good enough) *)
   173 fun is_lam_lifted s =
   174   String.isPrefix fact_prefix s andalso
   175   String.isSubstring ascii_of_lam_fact_prefix s
   176 
   177 fun lam_trans_from_atp_proof atp_proof default =
   178   if is_axiom_used_in_proof is_combinator_def atp_proof then combinatorsN
   179   else if is_axiom_used_in_proof is_lam_lifted atp_proof then lam_liftingN
   180   else default
   181 
   182 val is_typed_helper_name =
   183   String.isPrefix helper_prefix andf String.isSuffix typed_helper_suffix
   184 fun is_typed_helper_used_in_atp_proof atp_proof =
   185   is_axiom_used_in_proof is_typed_helper_name atp_proof
   186 
   187 val leo2_ext = "extcnf_equal_neg"
   188 val isa_ext = Thm.get_name_hint @{thm ext}
   189 val isa_short_ext = Long_Name.base_name isa_ext
   190 
   191 fun ext_name ctxt =
   192   if Thm.eq_thm_prop (@{thm ext},
   193          singleton (Attrib.eval_thms ctxt) (Facts.named isa_short_ext, [])) then
   194     isa_short_ext
   195   else
   196     isa_ext
   197 
   198 fun add_fact _ fact_names (Inference ((_, ss), _, _, [])) =
   199     union (op =) (resolve_fact fact_names ss)
   200   | add_fact ctxt _ (Inference (_, _, rule, _)) =
   201     if rule = leo2_ext then insert (op =) (ext_name ctxt, General) else I
   202   | add_fact _ _ _ = I
   203 
   204 fun used_facts_in_atp_proof ctxt fact_names atp_proof =
   205   if null atp_proof then Vector.foldl (uncurry (union (op =))) [] fact_names
   206   else fold (add_fact ctxt fact_names) atp_proof []
   207 
   208 (* (quasi-)underapproximation of the truth *)
   209 fun is_locality_global Local = false
   210   | is_locality_global Assum = false
   211   | is_locality_global Chained = false
   212   | is_locality_global _ = true
   213 
   214 fun used_facts_in_unsound_atp_proof _ _ [] = NONE
   215   | used_facts_in_unsound_atp_proof ctxt fact_names atp_proof =
   216     let
   217       val used_facts = used_facts_in_atp_proof ctxt fact_names atp_proof
   218     in
   219       if forall (is_locality_global o snd) used_facts andalso
   220          not (is_axiom_used_in_proof (is_conjecture o single) atp_proof) then
   221         SOME (map fst used_facts)
   222       else
   223         NONE
   224     end
   225 
   226 
   227 (** Soft-core proof reconstruction: one-liners **)
   228 
   229 fun string_for_label (s, num) = s ^ string_of_int num
   230 
   231 fun show_time NONE = ""
   232   | show_time (SOME ext_time) = " (" ^ string_from_ext_time ext_time ^ ")"
   233 
   234 fun apply_on_subgoal _ 1 = "by "
   235   | apply_on_subgoal 1 _ = "apply "
   236   | apply_on_subgoal i n =
   237     "prefer " ^ string_of_int i ^ " " ^ apply_on_subgoal 1 n
   238 fun command_call name [] =
   239     name |> not (Lexicon.is_identifier name) ? enclose "(" ")"
   240   | command_call name args = "(" ^ name ^ " " ^ space_implode " " args ^ ")"
   241 fun try_command_line banner time command =
   242   banner ^ ": " ^ Markup.markup Isabelle_Markup.sendback command ^ show_time time ^ "."
   243 fun using_labels [] = ""
   244   | using_labels ls =
   245     "using " ^ space_implode " " (map string_for_label ls) ^ " "
   246 fun reconstructor_command reconstr i n (ls, ss) =
   247   using_labels ls ^ apply_on_subgoal i n ^
   248   command_call (string_for_reconstructor reconstr) ss
   249 fun minimize_line _ [] = ""
   250   | minimize_line minimize_command ss =
   251     case minimize_command ss of
   252       "" => ""
   253     | command => "\nTo minimize: " ^ Markup.markup Isabelle_Markup.sendback command ^ "."
   254 
   255 val split_used_facts =
   256   List.partition (curry (op =) Chained o snd)
   257   #> pairself (sort_distinct (string_ord o pairself fst))
   258 
   259 fun one_line_proof_text (preplay, banner, used_facts, minimize_command,
   260                          subgoal, subgoal_count) =
   261   let
   262     val (chained, extra) = split_used_facts used_facts
   263     val (failed, reconstr, ext_time) =
   264       case preplay of
   265         Played (reconstr, time) => (false, reconstr, (SOME (false, time)))
   266       | Trust_Playable (reconstr, time) =>
   267         (false, reconstr,
   268          case time of
   269            NONE => NONE
   270          | SOME time =>
   271            if time = Time.zeroTime then NONE else SOME (true, time))
   272       | Failed_to_Play reconstr => (true, reconstr, NONE)
   273     val try_line =
   274       ([], map fst extra)
   275       |> reconstructor_command reconstr subgoal subgoal_count
   276       |> (if failed then enclose "One-line proof reconstruction failed: " "."
   277           else try_command_line banner ext_time)
   278   in try_line ^ minimize_line minimize_command (map fst (extra @ chained)) end
   279 
   280 (** Hard-core proof reconstruction: structured Isar proofs **)
   281 
   282 fun forall_of v t = HOLogic.all_const (fastype_of v) $ lambda v t
   283 fun exists_of v t = HOLogic.exists_const (fastype_of v) $ lambda v t
   284 
   285 fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS)
   286 fun make_tfree ctxt w =
   287   let val ww = "'" ^ w in
   288     TFree (ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))
   289   end
   290 
   291 val indent_size = 2
   292 val no_label = ("", ~1)
   293 
   294 val raw_prefix = "x"
   295 val assum_prefix = "a"
   296 val have_prefix = "f"
   297 
   298 fun raw_label_for_name (num, ss) =
   299   case resolve_conjecture ss of
   300     [j] => (conjecture_prefix, j)
   301   | _ => case Int.fromString num of
   302            SOME j => (raw_prefix, j)
   303          | NONE => (raw_prefix ^ num, 0)
   304 
   305 (**** INTERPRETATION OF TSTP SYNTAX TREES ****)
   306 
   307 exception HO_TERM of (string, string) ho_term list
   308 exception FORMULA of (string, string, (string, string) ho_term) formula list
   309 exception SAME of unit
   310 
   311 (* Type variables are given the basic sort "HOL.type". Some will later be
   312    constrained by information from type literals, or by type inference. *)
   313 fun typ_from_atp ctxt (u as ATerm (a, us)) =
   314   let val Ts = map (typ_from_atp ctxt) us in
   315     case unprefix_and_unascii type_const_prefix a of
   316       SOME b => Type (invert_const b, Ts)
   317     | NONE =>
   318       if not (null us) then
   319         raise HO_TERM [u]  (* only "tconst"s have type arguments *)
   320       else case unprefix_and_unascii tfree_prefix a of
   321         SOME b => make_tfree ctxt b
   322       | NONE =>
   323         (* Could be an Isabelle variable or a variable from the ATP, say "X1"
   324            or "_5018". Sometimes variables from the ATP are indistinguishable
   325            from Isabelle variables, which forces us to use a type parameter in
   326            all cases. *)
   327         (a |> perhaps (unprefix_and_unascii tvar_prefix), HOLogic.typeS)
   328         |> Type_Infer.param 0
   329   end
   330 
   331 (* Type class literal applied to a type. Returns triple of polarity, class,
   332    type. *)
   333 fun type_constraint_from_term ctxt (u as ATerm (a, us)) =
   334   case (unprefix_and_unascii class_prefix a, map (typ_from_atp ctxt) us) of
   335     (SOME b, [T]) => (b, T)
   336   | _ => raise HO_TERM [u]
   337 
   338 (* Accumulate type constraints in a formula: negative type literals. *)
   339 fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
   340 fun add_type_constraint false (cl, TFree (a ,_)) = add_var ((a, ~1), cl)
   341   | add_type_constraint false (cl, TVar (ix, _)) = add_var (ix, cl)
   342   | add_type_constraint _ _ = I
   343 
   344 fun repair_variable_name f s =
   345   let
   346     fun subscript_name s n = s ^ nat_subscript n
   347     val s = String.map f s
   348   in
   349     case space_explode "_" s of
   350       [_] => (case take_suffix Char.isDigit (String.explode s) of
   351                 (cs1 as _ :: _, cs2 as _ :: _) =>
   352                 subscript_name (String.implode cs1)
   353                                (the (Int.fromString (String.implode cs2)))
   354               | (_, _) => s)
   355     | [s1, s2] => (case Int.fromString s2 of
   356                      SOME n => subscript_name s1 n
   357                    | NONE => s)
   358     | _ => s
   359   end
   360 
   361 (* The number of type arguments of a constant, zero if it's monomorphic. For
   362    (instances of) Skolem pseudoconstants, this information is encoded in the
   363    constant name. *)
   364 fun num_type_args thy s =
   365   if String.isPrefix skolem_const_prefix s then
   366     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
   367   else if String.isPrefix lam_lifted_prefix s then
   368     if String.isPrefix lam_lifted_poly_prefix s then 2 else 0
   369   else
   370     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
   371 
   372 fun slack_fastype_of t = fastype_of t handle TERM _ => HOLogic.typeT
   373 
   374 (* First-order translation. No types are known for variables. "HOLogic.typeT"
   375    should allow them to be inferred. *)
   376 fun term_from_atp ctxt textual sym_tab =
   377   let
   378     val thy = Proof_Context.theory_of ctxt
   379     (* For Metis, we use 1 rather than 0 because variable references in clauses
   380        may otherwise conflict with variable constraints in the goal. At least,
   381        type inference often fails otherwise. See also "axiom_inference" in
   382        "Metis_Reconstruct". *)
   383     val var_index = if textual then 0 else 1
   384     fun do_term extra_ts opt_T u =
   385       case u of
   386         ATerm (s, us) =>
   387         if String.isPrefix simple_type_prefix s then
   388           @{const True} (* ignore TPTP type information *)
   389         else if s = tptp_equal then
   390           let val ts = map (do_term [] NONE) us in
   391             if textual andalso length ts = 2 andalso
   392               hd ts aconv List.last ts then
   393               (* Vampire is keen on producing these. *)
   394               @{const True}
   395             else
   396               list_comb (Const (@{const_name HOL.eq}, HOLogic.typeT), ts)
   397           end
   398         else case unprefix_and_unascii const_prefix s of
   399           SOME s' =>
   400           let
   401             val ((s', s''), mangled_us) =
   402               s' |> unmangled_const |>> `invert_const
   403           in
   404             if s' = type_tag_name then
   405               case mangled_us @ us of
   406                 [typ_u, term_u] =>
   407                 do_term extra_ts (SOME (typ_from_atp ctxt typ_u)) term_u
   408               | _ => raise HO_TERM us
   409             else if s' = predicator_name then
   410               do_term [] (SOME @{typ bool}) (hd us)
   411             else if s' = app_op_name then
   412               let val extra_t = do_term [] NONE (List.last us) in
   413                 do_term (extra_t :: extra_ts)
   414                         (case opt_T of
   415                            SOME T => SOME (slack_fastype_of extra_t --> T)
   416                          | NONE => NONE)
   417                         (nth us (length us - 2))
   418               end
   419             else if s' = type_guard_name then
   420               @{const True} (* ignore type predicates *)
   421             else
   422               let
   423                 val new_skolem = String.isPrefix new_skolem_const_prefix s''
   424                 val num_ty_args =
   425                   length us - the_default 0 (Symtab.lookup sym_tab s)
   426                 val (type_us, term_us) =
   427                   chop num_ty_args us |>> append mangled_us
   428                 val term_ts = map (do_term [] NONE) term_us
   429                 val T =
   430                   (if not (null type_us) andalso
   431                       num_type_args thy s' = length type_us then
   432                      let val Ts = type_us |> map (typ_from_atp ctxt) in
   433                        if new_skolem then
   434                          SOME (Type_Infer.paramify_vars (tl Ts ---> hd Ts))
   435                        else if textual then
   436                          try (Sign.const_instance thy) (s', Ts)
   437                        else
   438                          NONE
   439                      end
   440                    else
   441                      NONE)
   442                   |> (fn SOME T => T
   443                        | NONE => map slack_fastype_of term_ts --->
   444                                  (case opt_T of
   445                                     SOME T => T
   446                                   | NONE => HOLogic.typeT))
   447                 val t =
   448                   if new_skolem then
   449                     Var ((new_skolem_var_name_from_const s'', var_index), T)
   450                   else
   451                     Const (unproxify_const s', T)
   452               in list_comb (t, term_ts @ extra_ts) end
   453           end
   454         | NONE => (* a free or schematic variable *)
   455           let
   456             val term_ts = map (do_term [] NONE) us
   457             val ts = term_ts @ extra_ts
   458             val T =
   459               case opt_T of
   460                 SOME T => map slack_fastype_of term_ts ---> T
   461               | NONE => map slack_fastype_of ts ---> HOLogic.typeT
   462             val t =
   463               case unprefix_and_unascii fixed_var_prefix s of
   464                 SOME s => Free (s, T)
   465               | NONE =>
   466                 case unprefix_and_unascii schematic_var_prefix s of
   467                   SOME s => Var ((s, var_index), T)
   468                 | NONE =>
   469                   Var ((s |> textual ? repair_variable_name Char.toLower,
   470                         var_index), T)
   471           in list_comb (t, ts) end
   472   in do_term [] end
   473 
   474 fun term_from_atom ctxt textual sym_tab pos (u as ATerm (s, _)) =
   475   if String.isPrefix class_prefix s then
   476     add_type_constraint pos (type_constraint_from_term ctxt u)
   477     #> pair @{const True}
   478   else
   479     pair (term_from_atp ctxt textual sym_tab (SOME @{typ bool}) u)
   480 
   481 val combinator_table =
   482   [(@{const_name Meson.COMBI}, @{thm Meson.COMBI_def_raw}),
   483    (@{const_name Meson.COMBK}, @{thm Meson.COMBK_def_raw}),
   484    (@{const_name Meson.COMBB}, @{thm Meson.COMBB_def_raw}),
   485    (@{const_name Meson.COMBC}, @{thm Meson.COMBC_def_raw}),
   486    (@{const_name Meson.COMBS}, @{thm Meson.COMBS_def_raw})]
   487 
   488 fun uncombine_term thy =
   489   let
   490     fun aux (t1 $ t2) = betapply (pairself aux (t1, t2))
   491       | aux (Abs (s, T, t')) = Abs (s, T, aux t')
   492       | aux (t as Const (x as (s, _))) =
   493         (case AList.lookup (op =) combinator_table s of
   494            SOME thm => thm |> prop_of |> specialize_type thy x
   495                            |> Logic.dest_equals |> snd
   496          | NONE => t)
   497       | aux t = t
   498   in aux end
   499 
   500 (* Update schematic type variables with detected sort constraints. It's not
   501    totally clear whether this code is necessary. *)
   502 fun repair_tvar_sorts (t, tvar_tab) =
   503   let
   504     fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
   505       | do_type (TVar (xi, s)) =
   506         TVar (xi, the_default s (Vartab.lookup tvar_tab xi))
   507       | do_type (TFree z) = TFree z
   508     fun do_term (Const (a, T)) = Const (a, do_type T)
   509       | do_term (Free (a, T)) = Free (a, do_type T)
   510       | do_term (Var (xi, T)) = Var (xi, do_type T)
   511       | do_term (t as Bound _) = t
   512       | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
   513       | do_term (t1 $ t2) = do_term t1 $ do_term t2
   514   in t |> not (Vartab.is_empty tvar_tab) ? do_term end
   515 
   516 fun quantify_over_var quant_of var_s t =
   517   let
   518     val vars = [] |> Term.add_vars t |> filter (fn ((s, _), _) => s = var_s)
   519                   |> map Var
   520   in fold_rev quant_of vars t end
   521 
   522 (* Interpret an ATP formula as a HOL term, extracting sort constraints as they
   523    appear in the formula. *)
   524 fun prop_from_atp ctxt textual sym_tab phi =
   525   let
   526     fun do_formula pos phi =
   527       case phi of
   528         AQuant (_, [], phi) => do_formula pos phi
   529       | AQuant (q, (s, _) :: xs, phi') =>
   530         do_formula pos (AQuant (q, xs, phi'))
   531         (* FIXME: TFF *)
   532         #>> quantify_over_var (case q of
   533                                  AForall => forall_of
   534                                | AExists => exists_of)
   535                               (s |> textual ? repair_variable_name Char.toLower)
   536       | AConn (ANot, [phi']) => do_formula (not pos) phi' #>> s_not
   537       | AConn (c, [phi1, phi2]) =>
   538         do_formula (pos |> c = AImplies ? not) phi1
   539         ##>> do_formula pos phi2
   540         #>> (case c of
   541                AAnd => s_conj
   542              | AOr => s_disj
   543              | AImplies => s_imp
   544              | AIff => s_iff
   545              | ANot => raise Fail "impossible connective")
   546       | AAtom tm => term_from_atom ctxt textual sym_tab pos tm
   547       | _ => raise FORMULA [phi]
   548   in repair_tvar_sorts (do_formula true phi Vartab.empty) end
   549 
   550 fun infer_formula_types ctxt =
   551   Type.constraint HOLogic.boolT
   552   #> Syntax.check_term
   553          (Proof_Context.set_mode Proof_Context.mode_schematic ctxt)
   554 
   555 fun uncombined_etc_prop_from_atp ctxt textual sym_tab =
   556   let val thy = Proof_Context.theory_of ctxt in
   557     prop_from_atp ctxt textual sym_tab
   558     #> textual ? uncombine_term thy #> infer_formula_types ctxt
   559   end
   560 
   561 (**** Translation of TSTP files to Isar proofs ****)
   562 
   563 fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
   564   | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
   565 
   566 fun decode_line sym_tab (Definition (name, phi1, phi2)) ctxt =
   567     let
   568       val thy = Proof_Context.theory_of ctxt
   569       val t1 = prop_from_atp ctxt true sym_tab phi1
   570       val vars = snd (strip_comb t1)
   571       val frees = map unvarify_term vars
   572       val unvarify_args = subst_atomic (vars ~~ frees)
   573       val t2 = prop_from_atp ctxt true sym_tab phi2
   574       val (t1, t2) =
   575         HOLogic.eq_const HOLogic.typeT $ t1 $ t2
   576         |> unvarify_args |> uncombine_term thy |> infer_formula_types ctxt
   577         |> HOLogic.dest_eq
   578     in
   579       (Definition (name, t1, t2),
   580        fold Variable.declare_term (maps Misc_Legacy.term_frees [t1, t2]) ctxt)
   581     end
   582   | decode_line sym_tab (Inference (name, u, rule, deps)) ctxt =
   583     let val t = u |> uncombined_etc_prop_from_atp ctxt true sym_tab in
   584       (Inference (name, t, rule, deps),
   585        fold Variable.declare_term (Misc_Legacy.term_frees t) ctxt)
   586     end
   587 fun decode_lines ctxt sym_tab lines =
   588   fst (fold_map (decode_line sym_tab) lines ctxt)
   589 
   590 fun is_same_inference _ (Definition _) = false
   591   | is_same_inference t (Inference (_, t', _, _)) = t aconv t'
   592 
   593 (* No "real" literals means only type information (tfree_tcs, clsrel, or
   594    clsarity). *)
   595 val is_only_type_information = curry (op aconv) @{term True}
   596 
   597 fun replace_one_dependency (old, new) dep =
   598   if is_same_atp_step dep old then new else [dep]
   599 fun replace_dependencies_in_line _ (line as Definition _) = line
   600   | replace_dependencies_in_line p (Inference (name, t, rule, deps)) =
   601     Inference (name, t, rule,
   602                fold (union (op =) o replace_one_dependency p) deps [])
   603 
   604 (* Discard facts; consolidate adjacent lines that prove the same formula, since
   605    they differ only in type information.*)
   606 fun add_line _ (line as Definition _) lines = line :: lines
   607   | add_line fact_names (Inference (name as (_, ss), t, rule, [])) lines =
   608     (* No dependencies: fact, conjecture, or (for Vampire) internal facts or
   609        definitions. *)
   610     if is_fact fact_names ss then
   611       (* Facts are not proof lines. *)
   612       if is_only_type_information t then
   613         map (replace_dependencies_in_line (name, [])) lines
   614       (* Is there a repetition? If so, replace later line by earlier one. *)
   615       else case take_prefix (not o is_same_inference t) lines of
   616         (_, []) => lines (* no repetition of proof line *)
   617       | (pre, Inference (name', _, _, _) :: post) =>
   618         pre @ map (replace_dependencies_in_line (name', [name])) post
   619       | _ => raise Fail "unexpected inference"
   620     else if is_conjecture ss then
   621       Inference (name, s_not t, rule, []) :: lines
   622     else
   623       map (replace_dependencies_in_line (name, [])) lines
   624   | add_line _ (Inference (name, t, rule, deps)) lines =
   625     (* Type information will be deleted later; skip repetition test. *)
   626     if is_only_type_information t then
   627       Inference (name, t, rule, deps) :: lines
   628     (* Is there a repetition? If so, replace later line by earlier one. *)
   629     else case take_prefix (not o is_same_inference t) lines of
   630       (* FIXME: Doesn't this code risk conflating proofs involving different
   631          types? *)
   632        (_, []) => Inference (name, t, rule, deps) :: lines
   633      | (pre, Inference (name', t', rule, _) :: post) =>
   634        Inference (name, t', rule, deps) ::
   635        pre @ map (replace_dependencies_in_line (name', [name])) post
   636      | _ => raise Fail "unexpected inference"
   637 
   638 (* Recursively delete empty lines (type information) from the proof. *)
   639 fun add_nontrivial_line (line as Inference (name, t, _, [])) lines =
   640     if is_only_type_information t then delete_dependency name lines
   641     else line :: lines
   642   | add_nontrivial_line line lines = line :: lines
   643 and delete_dependency name lines =
   644   fold_rev add_nontrivial_line
   645            (map (replace_dependencies_in_line (name, [])) lines) []
   646 
   647 (* ATPs sometimes reuse free variable names in the strangest ways. Removing
   648    offending lines often does the trick. *)
   649 fun is_bad_free frees (Free x) = not (member (op =) frees x)
   650   | is_bad_free _ _ = false
   651 
   652 fun add_desired_line _ _ _ (line as Definition (name, _, _)) (j, lines) =
   653     (j, line :: map (replace_dependencies_in_line (name, [])) lines)
   654   | add_desired_line isar_shrink_factor fact_names frees
   655                      (Inference (name as (_, ss), t, rule, deps)) (j, lines) =
   656     (j + 1,
   657      if is_fact fact_names ss orelse
   658         is_conjecture ss orelse
   659         (* the last line must be kept *)
   660         j = 0 orelse
   661         (not (is_only_type_information t) andalso
   662          null (Term.add_tvars t []) andalso
   663          not (exists_subterm (is_bad_free frees) t) andalso
   664          length deps >= 2 andalso j mod isar_shrink_factor = 0 andalso
   665          (* kill next to last line, which usually results in a trivial step *)
   666          j <> 1) then
   667        Inference (name, t, rule, deps) :: lines  (* keep line *)
   668      else
   669        map (replace_dependencies_in_line (name, deps)) lines)  (* drop line *)
   670 
   671 (** Isar proof construction and manipulation **)
   672 
   673 type label = string * int
   674 type facts = label list * string list
   675 
   676 datatype isar_qualifier = Show | Then | Moreover | Ultimately
   677 
   678 datatype isar_step =
   679   Fix of (string * typ) list |
   680   Let of term * term |
   681   Assume of label * term |
   682   Prove of isar_qualifier list * label * term * byline
   683 and byline =
   684   By_Metis of facts |
   685   Case_Split of isar_step list list * facts
   686 
   687 fun add_fact_from_dependency fact_names (name as (_, ss)) =
   688   if is_fact fact_names ss then
   689     apsnd (union (op =) (map fst (resolve_fact fact_names ss)))
   690   else
   691     apfst (insert (op =) (raw_label_for_name name))
   692 
   693 fun repair_name "$true" = "c_True"
   694   | repair_name "$false" = "c_False"
   695   | repair_name "$$e" = tptp_equal (* seen in Vampire proofs *)
   696   | repair_name s =
   697     if is_tptp_equal s orelse
   698        (* seen in Vampire proofs *)
   699        (String.isPrefix "sQ" s andalso String.isSuffix "_eqProxy" s) then
   700       tptp_equal
   701     else
   702       s
   703 
   704 (* FIXME: Still needed? Try with SPASS proofs perhaps. *)
   705 val kill_duplicate_assumptions_in_proof =
   706   let
   707     fun relabel_facts subst =
   708       apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
   709     fun do_step (step as Assume (l, t)) (proof, subst, assums) =
   710         (case AList.lookup (op aconv) assums t of
   711            SOME l' => (proof, (l, l') :: subst, assums)
   712          | NONE => (step :: proof, subst, (t, l) :: assums))
   713       | do_step (Prove (qs, l, t, by)) (proof, subst, assums) =
   714         (Prove (qs, l, t,
   715                 case by of
   716                   By_Metis facts => By_Metis (relabel_facts subst facts)
   717                 | Case_Split (proofs, facts) =>
   718                   Case_Split (map do_proof proofs,
   719                               relabel_facts subst facts)) ::
   720          proof, subst, assums)
   721       | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
   722     and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
   723   in do_proof end
   724 
   725 fun used_labels_of_step (Prove (_, _, _, by)) =
   726     (case by of
   727        By_Metis (ls, _) => ls
   728      | Case_Split (proofs, (ls, _)) =>
   729        fold (union (op =) o used_labels_of) proofs ls)
   730   | used_labels_of_step _ = []
   731 and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
   732 
   733 fun kill_useless_labels_in_proof proof =
   734   let
   735     val used_ls = used_labels_of proof
   736     fun do_label l = if member (op =) used_ls l then l else no_label
   737     fun do_step (Assume (l, t)) = Assume (do_label l, t)
   738       | do_step (Prove (qs, l, t, by)) =
   739         Prove (qs, do_label l, t,
   740                case by of
   741                  Case_Split (proofs, facts) =>
   742                  Case_Split (map (map do_step) proofs, facts)
   743                | _ => by)
   744       | do_step step = step
   745   in map do_step proof end
   746 
   747 fun prefix_for_depth n = replicate_string (n + 1)
   748 
   749 val relabel_proof =
   750   let
   751     fun aux _ _ _ [] = []
   752       | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
   753         if l = no_label then
   754           Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
   755         else
   756           let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
   757             Assume (l', t) ::
   758             aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
   759           end
   760       | aux subst depth (next_assum, next_fact)
   761             (Prove (qs, l, t, by) :: proof) =
   762         let
   763           val (l', subst, next_fact) =
   764             if l = no_label then
   765               (l, subst, next_fact)
   766             else
   767               let
   768                 val l' = (prefix_for_depth depth have_prefix, next_fact)
   769               in (l', (l, l') :: subst, next_fact + 1) end
   770           val relabel_facts =
   771             apfst (maps (the_list o AList.lookup (op =) subst))
   772           val by =
   773             case by of
   774               By_Metis facts => By_Metis (relabel_facts facts)
   775             | Case_Split (proofs, facts) =>
   776               Case_Split (map (aux subst (depth + 1) (1, 1)) proofs,
   777                           relabel_facts facts)
   778         in
   779           Prove (qs, l', t, by) :: aux subst depth (next_assum, next_fact) proof
   780         end
   781       | aux subst depth nextp (step :: proof) =
   782         step :: aux subst depth nextp proof
   783   in aux [] 0 (1, 1) end
   784 
   785 fun string_for_proof ctxt0 type_enc lam_trans i n =
   786   let
   787     val ctxt =
   788       ctxt0 |> Config.put show_free_types false
   789             |> Config.put show_types true
   790             |> Config.put show_sorts true
   791     fun fix_print_mode f x =
   792       Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
   793                                (print_mode_value ())) f x
   794     fun do_indent ind = replicate_string (ind * indent_size) " "
   795     fun do_free (s, T) =
   796       maybe_quote s ^ " :: " ^
   797       maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
   798     fun do_label l = if l = no_label then "" else string_for_label l ^ ": "
   799     fun do_have qs =
   800       (if member (op =) qs Moreover then "moreover " else "") ^
   801       (if member (op =) qs Ultimately then "ultimately " else "") ^
   802       (if member (op =) qs Then then
   803          if member (op =) qs Show then "thus" else "hence"
   804        else
   805          if member (op =) qs Show then "show" else "have")
   806     val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
   807     val reconstr = Metis (type_enc, lam_trans)
   808     fun do_facts (ls, ss) =
   809       reconstructor_command reconstr 1 1
   810           (ls |> sort_distinct (prod_ord string_ord int_ord),
   811            ss |> sort_distinct string_ord)
   812     and do_step ind (Fix xs) =
   813         do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
   814       | do_step ind (Let (t1, t2)) =
   815         do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
   816       | do_step ind (Assume (l, t)) =
   817         do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
   818       | do_step ind (Prove (qs, l, t, By_Metis facts)) =
   819         do_indent ind ^ do_have qs ^ " " ^
   820         do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
   821       | do_step ind (Prove (qs, l, t, Case_Split (proofs, facts))) =
   822         implode (map (prefix (do_indent ind ^ "moreover\n") o do_block ind)
   823                      proofs) ^
   824         do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
   825         do_facts facts ^ "\n"
   826     and do_steps prefix suffix ind steps =
   827       let val s = implode (map (do_step ind) steps) in
   828         replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
   829         String.extract (s, ind * indent_size,
   830                         SOME (size s - ind * indent_size - 1)) ^
   831         suffix ^ "\n"
   832       end
   833     and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
   834     (* One-step proofs are pointless; better use the Metis one-liner
   835        directly. *)
   836     and do_proof [Prove (_, _, _, By_Metis _)] = ""
   837       | do_proof proof =
   838         (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
   839         do_indent 0 ^ "proof -\n" ^ do_steps "" "" 1 proof ^ do_indent 0 ^
   840         (if n <> 1 then "next" else "qed")
   841   in do_proof end
   842 
   843 fun isar_proof_text ctxt isar_proof_requested
   844         (debug, isar_shrink_factor, pool, fact_names, sym_tab, atp_proof, goal)
   845         (one_line_params as (_, _, _, _, subgoal, subgoal_count)) =
   846   let
   847     val isar_shrink_factor =
   848       (if isar_proof_requested then 1 else 2) * isar_shrink_factor
   849     val (params, hyp_ts, concl_t) = strip_subgoal ctxt goal subgoal
   850     val frees = fold Term.add_frees (concl_t :: hyp_ts) []
   851     val one_line_proof = one_line_proof_text one_line_params
   852     val type_enc =
   853       if is_typed_helper_used_in_atp_proof atp_proof then full_typesN
   854       else partial_typesN
   855     val lam_trans = lam_trans_from_atp_proof atp_proof metis_default_lam_trans
   856 
   857     fun isar_proof_of () =
   858       let
   859         val atp_proof =
   860           atp_proof
   861           |> clean_up_atp_proof_dependencies
   862           |> nasty_atp_proof pool
   863           |> map_term_names_in_atp_proof repair_name
   864           |> decode_lines ctxt sym_tab
   865           |> rpair [] |-> fold_rev (add_line fact_names)
   866           |> rpair [] |-> fold_rev add_nontrivial_line
   867           |> rpair (0, [])
   868           |-> fold_rev (add_desired_line isar_shrink_factor fact_names frees)
   869           |> snd
   870         val conj_name = conjecture_prefix ^ string_of_int (length hyp_ts)
   871         val conjs =
   872           atp_proof
   873           |> map_filter (fn Inference (name as (_, ss), _, _, []) =>
   874                             if member (op =) ss conj_name then SOME name else NONE
   875                           | _ => NONE)
   876         fun dep_of_step (Definition _) = NONE
   877           | dep_of_step (Inference (name, _, _, from)) = SOME (from, name)
   878         val ref_graph = atp_proof |> map_filter dep_of_step |> make_ref_graph
   879         val axioms = axioms_of_ref_graph ref_graph conjs
   880         val tainted = tainted_atoms_of_ref_graph ref_graph conjs
   881         val props =
   882           Symtab.empty
   883           |> fold (fn Definition _ => I (* FIXME *)
   884                     | Inference ((s, _), t, _, _) =>
   885                       Symtab.update_new (s,
   886                           t |> member (op = o apsnd fst) tainted s ? s_not))
   887                   atp_proof
   888         (* FIXME: add "fold_rev forall_of (map Var (Term.add_vars t []))"? *)
   889         fun prop_of_clause c =
   890           fold (curry s_disj) (map_filter (Symtab.lookup props o fst) c)
   891                @{term False}
   892         fun label_of_clause c = (space_implode "___" (map fst c), 0)
   893         fun maybe_show outer c =
   894           (outer andalso length c = 1 andalso subset (op =) (c, conjs))
   895           ? cons Show
   896         fun do_have outer qs (gamma, c) =
   897           Prove (maybe_show outer c qs, label_of_clause c, prop_of_clause c,
   898                  By_Metis (fold (add_fact_from_dependency fact_names
   899                                  o the_single) gamma ([], [])))
   900         fun do_inf outer (Have z) = do_have outer [] z
   901           | do_inf outer (Hence z) = do_have outer [Then] z
   902           | do_inf outer (Cases cases) =
   903             let val c = succedent_of_cases cases in
   904               Prove (maybe_show outer c [Ultimately], label_of_clause c,
   905                      prop_of_clause c,
   906                      Case_Split (map (do_case false) cases, ([], [])))
   907             end
   908         and do_case outer (c, infs) =
   909           Assume (label_of_clause c, prop_of_clause c) ::
   910           map (do_inf outer) infs
   911         val isar_proof =
   912           (if null params then [] else [Fix params]) @
   913           (ref_graph
   914            |> redirect_graph axioms tainted
   915            |> chain_direct_proof
   916            |> map (do_inf true)
   917            |> kill_duplicate_assumptions_in_proof
   918            |> kill_useless_labels_in_proof
   919            |> relabel_proof)
   920           |> string_for_proof ctxt type_enc lam_trans subgoal subgoal_count
   921       in
   922         case isar_proof of
   923           "" =>
   924           if isar_proof_requested then
   925             "\nNo structured proof available (proof too short)."
   926           else
   927             ""
   928         | _ =>
   929           "\n\n" ^ (if isar_proof_requested then "Structured proof"
   930                     else "Perhaps this will work") ^
   931           ":\n" ^ Markup.markup Isabelle_Markup.sendback isar_proof
   932       end
   933     val isar_proof =
   934       if debug then
   935         isar_proof_of ()
   936       else case try isar_proof_of () of
   937         SOME s => s
   938       | NONE => if isar_proof_requested then
   939                   "\nWarning: The Isar proof construction failed."
   940                 else
   941                   ""
   942   in one_line_proof ^ isar_proof end
   943 
   944 fun proof_text ctxt isar_proof isar_params
   945                (one_line_params as (preplay, _, _, _, _, _)) =
   946   (if case preplay of Failed_to_Play _ => true | _ => isar_proof then
   947      isar_proof_text ctxt isar_proof isar_params
   948    else
   949      one_line_proof_text) one_line_params
   950 
   951 end;