src/HOL/Old_Number_Theory/Euler.thy
author nipkow
Sun, 28 Nov 2010 15:20:51 +0100
changeset 41030 0a54cfc9add3
parent 38462 e9b4835a54ee
child 41789 1fa4725c4656
permissions -rw-r--r--
gave more standard finite set rules simp and intro attribute
     1 (*  Title:      HOL/Old_Number_Theory/Euler.thy
     2     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
     3 *)
     4 
     5 header {* Euler's criterion *}
     6 
     7 theory Euler
     8 imports Residues EvenOdd
     9 begin
    10 
    11 definition MultInvPair :: "int => int => int => int set"
    12   where "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
    13 
    14 definition SetS :: "int => int => int set set"
    15   where "SetS a p = MultInvPair a p ` SRStar p"
    16 
    17 
    18 subsection {* Property for MultInvPair *}
    19 
    20 lemma MultInvPair_prop1a:
    21   "[| zprime p; 2 < p; ~([a = 0](mod p));
    22       X \<in> (SetS a p); Y \<in> (SetS a p);
    23       ~((X \<inter> Y) = {}) |] ==> X = Y"
    24   apply (auto simp add: SetS_def)
    25   apply (drule StandardRes_SRStar_prop1a)+ defer 1
    26   apply (drule StandardRes_SRStar_prop1a)+
    27   apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym)
    28   apply (drule notE, rule MultInv_zcong_prop1, auto)[]
    29   apply (drule notE, rule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
    30   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
    31   apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
    32   apply (drule MultInv_zcong_prop1, auto)[]
    33   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
    34   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
    35   apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
    36   done
    37 
    38 lemma MultInvPair_prop1b:
    39   "[| zprime p; 2 < p; ~([a = 0](mod p));
    40       X \<in> (SetS a p); Y \<in> (SetS a p);
    41       X \<noteq> Y |] ==> X \<inter> Y = {}"
    42   apply (rule notnotD)
    43   apply (rule notI)
    44   apply (drule MultInvPair_prop1a, auto)
    45   done
    46 
    47 lemma MultInvPair_prop1c: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>  
    48     \<forall>X \<in> SetS a p. \<forall>Y \<in> SetS a p. X \<noteq> Y --> X\<inter>Y = {}"
    49   by (auto simp add: MultInvPair_prop1b)
    50 
    51 lemma MultInvPair_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
    52                           Union ( SetS a p) = SRStar p"
    53   apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4 
    54     SRStar_mult_prop2)
    55   apply (frule StandardRes_SRStar_prop3)
    56   apply (rule bexI, auto)
    57   done
    58 
    59 lemma MultInvPair_distinct: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
    60                                 ~([j = 0] (mod p)); 
    61                                 ~(QuadRes p a) |]  ==> 
    62                              ~([j = a * MultInv p j] (mod p))"
    63 proof
    64   assume "zprime p" and "2 < p" and "~([a = 0] (mod p))" and 
    65     "~([j = 0] (mod p))" and "~(QuadRes p a)"
    66   assume "[j = a * MultInv p j] (mod p)"
    67   then have "[j * j = (a * MultInv p j) * j] (mod p)"
    68     by (auto simp add: zcong_scalar)
    69   then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
    70     by (auto simp add: zmult_ac)
    71   have "[j * j = a] (mod p)"
    72     proof -
    73       from prems have b: "[MultInv p j * j = 1] (mod p)"
    74         by (simp add: MultInv_prop2a)
    75       from b a show ?thesis
    76         by (auto simp add: zcong_zmult_prop2)
    77     qed
    78   then have "[j^2 = a] (mod p)"
    79     by (metis  number_of_is_id power2_eq_square succ_bin_simps)
    80   with prems show False
    81     by (simp add: QuadRes_def)
    82 qed
    83 
    84 lemma MultInvPair_card_two: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
    85                                 ~(QuadRes p a); ~([j = 0] (mod p)) |]  ==> 
    86                              card (MultInvPair a p j) = 2"
    87   apply (auto simp add: MultInvPair_def)
    88   apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
    89   apply auto
    90   apply (metis MultInvPair_distinct Pls_def StandardRes_def aux number_of_is_id one_is_num_one)
    91   done
    92 
    93 
    94 subsection {* Properties of SetS *}
    95 
    96 lemma SetS_finite: "2 < p ==> finite (SetS a p)"
    97   by (auto simp add: SetS_def SRStar_finite [of p])
    98 
    99 lemma SetS_elems_finite: "\<forall>X \<in> SetS a p. finite X"
   100   by (auto simp add: SetS_def MultInvPair_def)
   101 
   102 lemma SetS_elems_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
   103                         ~(QuadRes p a) |]  ==>
   104                         \<forall>X \<in> SetS a p. card X = 2"
   105   apply (auto simp add: SetS_def)
   106   apply (frule StandardRes_SRStar_prop1a)
   107   apply (rule MultInvPair_card_two, auto)
   108   done
   109 
   110 lemma Union_SetS_finite: "2 < p ==> finite (Union (SetS a p))"
   111   by (auto simp add: SetS_finite SetS_elems_finite finite_Union)
   112 
   113 lemma card_setsum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set); 
   114     \<forall>X \<in> S. card X = n |] ==> setsum card S = setsum (%x. n) S"
   115   by (induct set: finite) auto
   116 
   117 lemma SetS_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> 
   118                   int(card(SetS a p)) = (p - 1) div 2"
   119 proof -
   120   assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
   121   then have "(p - 1) = 2 * int(card(SetS a p))"
   122   proof -
   123     have "p - 1 = int(card(Union (SetS a p)))"
   124       by (auto simp add: prems MultInvPair_prop2 SRStar_card)
   125     also have "... = int (setsum card (SetS a p))"
   126       by (auto simp add: prems SetS_finite SetS_elems_finite
   127                          MultInvPair_prop1c [of p a] card_Union_disjoint)
   128     also have "... = int(setsum (%x.2) (SetS a p))"
   129       using prems
   130       by (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite 
   131         card_setsum_aux simp del: setsum_constant)
   132     also have "... = 2 * int(card( SetS a p))"
   133       by (auto simp add: prems SetS_finite setsum_const2)
   134     finally show ?thesis .
   135   qed
   136   from this show ?thesis
   137     by auto
   138 qed
   139 
   140 lemma SetS_setprod_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p));
   141                               ~(QuadRes p a); x \<in> (SetS a p) |] ==> 
   142                           [\<Prod>x = a] (mod p)"
   143   apply (auto simp add: SetS_def MultInvPair_def)
   144   apply (frule StandardRes_SRStar_prop1a)
   145   apply (subgoal_tac "StandardRes p x \<noteq> StandardRes p (a * MultInv p x)")
   146   apply (auto simp add: StandardRes_prop2 MultInvPair_distinct)
   147   apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in 
   148     StandardRes_prop4)
   149   apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)")
   150   apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and
   151                    b = "x * (a * MultInv p x)" and
   152                    c = "a * (x * MultInv p x)" in  zcong_trans, force)
   153   apply (frule_tac p = p and x = x in MultInv_prop2, auto)
   154 apply (metis StandardRes_SRStar_prop3 mult_1_right mult_commute zcong_sym zcong_zmult_prop1)
   155   apply (auto simp add: zmult_ac)
   156   done
   157 
   158 lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"
   159   by arith
   160 
   161 lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
   162   by auto
   163 
   164 lemma d22set_induct_old: "(\<And>a::int. 1 < a \<longrightarrow> P (a - 1) \<Longrightarrow> P a) \<Longrightarrow> P x"
   165 using d22set.induct by blast
   166 
   167 lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
   168   apply (induct p rule: d22set_induct_old)
   169   apply auto
   170   apply (simp add: SRStar_def d22set.simps)
   171   apply (simp add: SRStar_def d22set.simps, clarify)
   172   apply (frule aux1)
   173   apply (frule aux2, auto)
   174   apply (simp_all add: SRStar_def)
   175   apply (simp add: d22set.simps)
   176   apply (frule d22set_le)
   177   apply (frule d22set_g_1, auto)
   178   done
   179 
   180 lemma Union_SetS_setprod_prop1: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
   181                                  [\<Prod>(Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
   182 proof -
   183   assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
   184   then have "[\<Prod>(Union (SetS a p)) = 
   185       setprod (setprod (%x. x)) (SetS a p)] (mod p)"
   186     by (auto simp add: SetS_finite SetS_elems_finite
   187                        MultInvPair_prop1c setprod_Union_disjoint)
   188   also have "[setprod (setprod (%x. x)) (SetS a p) = 
   189       setprod (%x. a) (SetS a p)] (mod p)"
   190     by (rule setprod_same_function_zcong)
   191       (auto simp add: prems SetS_setprod_prop SetS_finite)
   192   also (zcong_trans) have "[setprod (%x. a) (SetS a p) = 
   193       a^(card (SetS a p))] (mod p)"
   194     by (auto simp add: prems SetS_finite setprod_constant)
   195   finally (zcong_trans) show ?thesis
   196     apply (rule zcong_trans)
   197     apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
   198     apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
   199     apply (auto simp add: prems SetS_card)
   200     done
   201 qed
   202 
   203 lemma Union_SetS_setprod_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
   204                                     \<Prod>(Union (SetS a p)) = zfact (p - 1)"
   205 proof -
   206   assume "zprime p" and "2 < p" and "~([a = 0](mod p))"
   207   then have "\<Prod>(Union (SetS a p)) = \<Prod>(SRStar p)"
   208     by (auto simp add: MultInvPair_prop2)
   209   also have "... = \<Prod>({1} \<union> (d22set (p - 1)))"
   210     by (auto simp add: prems SRStar_d22set_prop)
   211   also have "... = zfact(p - 1)"
   212   proof -
   213     have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
   214       by (metis d22set_fin d22set_g_1 linorder_neq_iff)
   215     then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
   216       by auto
   217     then show ?thesis
   218       by (auto simp add: d22set_prod_zfact)
   219   qed
   220   finally show ?thesis .
   221 qed
   222 
   223 lemma zfact_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
   224                    [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
   225   apply (frule Union_SetS_setprod_prop1) 
   226   apply (auto simp add: Union_SetS_setprod_prop2)
   227   done
   228 
   229 text {* \medskip Prove the first part of Euler's Criterion: *}
   230 
   231 lemma Euler_part1: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
   232     ~(QuadRes p x) |] ==> 
   233       [x^(nat (((p) - 1) div 2)) = -1](mod p)"
   234   by (metis Wilson_Russ number_of_is_id zcong_sym zcong_trans zfact_prop)
   235 
   236 text {* \medskip Prove another part of Euler Criterion: *}
   237 
   238 lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"
   239 proof -
   240   assume "0 < p"
   241   then have "a ^ (nat p) =  a ^ (1 + (nat p - 1))"
   242     by (auto simp add: diff_add_assoc)
   243   also have "... = (a ^ 1) * a ^ (nat(p) - 1)"
   244     by (simp only: zpower_zadd_distrib)
   245   also have "... = a * a ^ (nat(p) - 1)"
   246     by auto
   247   finally show ?thesis .
   248 qed
   249 
   250 lemma aux_2: "[| (2::int) < p; p \<in> zOdd |] ==> 0 < ((p - 1) div 2)"
   251 proof -
   252   assume "2 < p" and "p \<in> zOdd"
   253   then have "(p - 1):zEven"
   254     by (auto simp add: zEven_def zOdd_def)
   255   then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"
   256     by (auto simp add: even_div_2_prop2)
   257   with `2 < p` have "1 < (p - 1)"
   258     by auto
   259   then have " 1 < (2 * ((p - 1) div 2))"
   260     by (auto simp add: aux_1)
   261   then have "0 < (2 * ((p - 1) div 2)) div 2"
   262     by auto
   263   then show ?thesis by auto
   264 qed
   265 
   266 lemma Euler_part2:
   267     "[| 2 < p; zprime p; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"
   268   apply (frule zprime_zOdd_eq_grt_2)
   269   apply (frule aux_2, auto)
   270   apply (frule_tac a = a in aux_1, auto)
   271   apply (frule zcong_zmult_prop1, auto)
   272   done
   273 
   274 text {* \medskip Prove the final part of Euler's Criterion: *}
   275 
   276 lemma aux__1: "[| ~([x = 0] (mod p)); [y ^ 2 = x] (mod p)|] ==> ~(p dvd y)"
   277   by (metis dvdI power2_eq_square zcong_sym zcong_trans zcong_zero_equiv_div dvd_trans)
   278 
   279 lemma aux__2: "2 * nat((p - 1) div 2) =  nat (2 * ((p - 1) div 2))"
   280   by (auto simp add: nat_mult_distrib)
   281 
   282 lemma Euler_part3: "[| 2 < p; zprime p; ~([x = 0](mod p)); QuadRes p x |] ==> 
   283                       [x^(nat (((p) - 1) div 2)) = 1](mod p)"
   284   apply (subgoal_tac "p \<in> zOdd")
   285   apply (auto simp add: QuadRes_def)
   286    prefer 2 
   287    apply (metis number_of_is_id numeral_1_eq_1 zprime_zOdd_eq_grt_2)
   288   apply (frule aux__1, auto)
   289   apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
   290   apply (auto simp add: zpower_zpower) 
   291   apply (rule zcong_trans)
   292   apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
   293   apply (metis Little_Fermat even_div_2_prop2 mult_Bit0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2)
   294   done
   295 
   296 
   297 text {* \medskip Finally show Euler's Criterion: *}
   298 
   299 theorem Euler_Criterion: "[| 2 < p; zprime p |] ==> [(Legendre a p) =
   300     a^(nat (((p) - 1) div 2))] (mod p)"
   301   apply (auto simp add: Legendre_def Euler_part2)
   302   apply (frule Euler_part3, auto simp add: zcong_sym)[]
   303   apply (frule Euler_part1, auto simp add: zcong_sym)[]
   304   done
   305 
   306 end