doc-src/TutorialI/Datatype/document/Fundata.tex
author nipkow
Wed, 11 Oct 2000 10:44:42 +0200
changeset 10187 0376cccd9118
parent 10171 59d6633835fa
child 10420 ef006735bee8
permissions -rw-r--r--
*** empty log message ***
     1 %
     2 \begin{isabellebody}%
     3 \def\isabellecontext{Fundata}%
     4 \isacommand{datatype}\ {\isacharparenleft}{\isacharprime}a{\isacharcomma}{\isacharprime}i{\isacharparenright}bigtree\ {\isacharequal}\ Tip\ {\isacharbar}\ Branch\ {\isacharprime}a\ {\isachardoublequote}{\isacharprime}i\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a{\isacharcomma}{\isacharprime}i{\isacharparenright}bigtree{\isachardoublequote}%
     5 \begin{isamarkuptext}%
     6 \noindent
     7 Parameter \isa{{\isacharprime}a} is the type of values stored in
     8 the \isa{Branch}es of the tree, whereas \isa{{\isacharprime}i} is the index
     9 type over which the tree branches. If \isa{{\isacharprime}i} is instantiated to
    10 \isa{bool}, the result is a binary tree; if it is instantiated to
    11 \isa{nat}, we have an infinitely branching tree because each node
    12 has as many subtrees as there are natural numbers. How can we possibly
    13 write down such a tree? Using functional notation! For example, the term
    14 \begin{isabelle}%
    15 \ \ \ \ \ Branch\ {\isadigit{0}}\ {\isacharparenleft}{\isasymlambda}i{\isachardot}\ Branch\ i\ {\isacharparenleft}{\isasymlambda}n{\isachardot}\ Tip{\isacharparenright}{\isacharparenright}%
    16 \end{isabelle}
    17 of type \isa{{\isacharparenleft}nat{\isacharcomma}\ nat{\isacharparenright}\ bigtree} is the tree whose
    18 root is labeled with 0 and whose $i$th subtree is labeled with $i$ and
    19 has merely \isa{Tip}s as further subtrees.
    20 
    21 Function \isa{map{\isacharunderscore}bt} applies a function to all labels in a \isa{bigtree}:%
    22 \end{isamarkuptext}%
    23 \isacommand{consts}\ map{\isacharunderscore}bt\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a{\isacharcomma}{\isacharprime}i{\isacharparenright}bigtree\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b{\isacharcomma}{\isacharprime}i{\isacharparenright}bigtree{\isachardoublequote}\isanewline
    24 \isacommand{primrec}\isanewline
    25 {\isachardoublequote}map{\isacharunderscore}bt\ f\ Tip\ \ \ \ \ \ \ \ \ \ {\isacharequal}\ Tip{\isachardoublequote}\isanewline
    26 {\isachardoublequote}map{\isacharunderscore}bt\ f\ {\isacharparenleft}Branch\ a\ F{\isacharparenright}\ {\isacharequal}\ Branch\ {\isacharparenleft}f\ a{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}i{\isachardot}\ map{\isacharunderscore}bt\ f\ {\isacharparenleft}F\ i{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
    27 \begin{isamarkuptext}%
    28 \noindent This is a valid \isacommand{primrec} definition because the
    29 recursive calls of \isa{map{\isacharunderscore}bt} involve only subtrees obtained from
    30 \isa{F}, i.e.\ the left-hand side. Thus termination is assured.  The
    31 seasoned functional programmer might have written \isa{map{\isacharunderscore}bt\ f\ {\isasymcirc}\ F}
    32 instead of \isa{{\isasymlambda}i{\isachardot}\ map{\isacharunderscore}bt\ f\ {\isacharparenleft}F\ i{\isacharparenright}}, but the former is not accepted by
    33 Isabelle because the termination proof is not as obvious since
    34 \isa{map{\isacharunderscore}bt} is only partially applied.
    35 
    36 The following lemma has a canonical proof%
    37 \end{isamarkuptext}%
    38 \isacommand{lemma}\ {\isachardoublequote}map{\isacharunderscore}bt\ {\isacharparenleft}g\ o\ f{\isacharparenright}\ T\ {\isacharequal}\ map{\isacharunderscore}bt\ g\ {\isacharparenleft}map{\isacharunderscore}bt\ f\ T{\isacharparenright}{\isachardoublequote}\isanewline
    39 \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ T{\isacharcomma}\ simp{\isacharunderscore}all{\isacharparenright}\isanewline
    40 \isacommand{done}%
    41 \begin{isamarkuptext}%
    42 \noindent
    43 %apply(induct_tac T);
    44 %pr(latex xsymbols symbols)
    45 but it is worth taking a look at the proof state after the induction step
    46 to understand what the presence of the function type entails:
    47 \begin{isabelle}
    48 \ \isadigit{1}{\isachardot}\ map{\isacharunderscore}bt\ {\isacharparenleft}g\ {\isasymcirc}\ f{\isacharparenright}\ Tip\ {\isacharequal}\ map{\isacharunderscore}bt\ g\ {\isacharparenleft}map{\isacharunderscore}bt\ f\ Tip{\isacharparenright}\isanewline
    49 \ \isadigit{2}{\isachardot}\ {\isasymAnd}a\ F{\isachardot}\isanewline
    50 \ \ \ \ \ \ \ {\isasymforall}x{\isachardot}\ map{\isacharunderscore}bt\ {\isacharparenleft}g\ {\isasymcirc}\ f{\isacharparenright}\ {\isacharparenleft}F\ x{\isacharparenright}\ {\isacharequal}\ map{\isacharunderscore}bt\ g\ {\isacharparenleft}map{\isacharunderscore}bt\ f\ {\isacharparenleft}F\ x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\isanewline
    51 \ \ \ \ \ \ \ map{\isacharunderscore}bt\ {\isacharparenleft}g\ {\isasymcirc}\ f{\isacharparenright}\ {\isacharparenleft}Branch\ a\ F{\isacharparenright}\ {\isacharequal}\ map{\isacharunderscore}bt\ g\ {\isacharparenleft}map{\isacharunderscore}bt\ f\ {\isacharparenleft}Branch\ a\ F{\isacharparenright}{\isacharparenright}
    52 \end{isabelle}%
    53 \end{isamarkuptext}%
    54 \end{isabellebody}%
    55 %%% Local Variables:
    56 %%% mode: latex
    57 %%% TeX-master: "root"
    58 %%% End: