src/Tools/isac/Knowledge/Test.thy
author Walther Neuper <neuper@ist.tugraz.at>
Wed, 08 Sep 2010 16:47:22 +0200
branchisac-update-Isa09-2
changeset 37991 028442673981
parent 37984 972a73d7c50b
child 37994 eb4c556a525b
permissions -rw-r--r--
tuned src + test

find . -type f -exec sed -i s/nadd_divide_distrib/add_divide_distrib/g {} \;
find . -type f -exec sed -i s/"\.thy\""/"\""/g {} \;
find . -type f -exec sed -i s/" indexname_ord"/" Term_Ord.indexname_ord"/g {} \;
find . -type f -exec sed -i s/"(string_of_cterm o cterm_of(sign_of thy))"/"(Syntax.string_of_term (thy2ctxt thy))"/g {} \;
find . -type f -exec sed -i s/" L_"/" L_L"/g {} \;
find . -type f -exec sed -i s/" L_:"/" L_L:"/g {} \;
find . -type f -exec sed -i s/"e_;"/"e_e;"/g {} \;
find . -type f -exec sed -i s/"v_)"/"v_v)"/g {} \;
find . -type f -exec sed -i s/"v_:"/"v_v:"/g {} \;
     1 (* some tests are based on specficially simple scripts etc.
     2    Author: Walther Neuper 2003
     3    (c) due to copyright terms
     4 *) 
     5 
     6 theory Test imports Atools + Rational + Root + Poly + 
     7  
     8 consts
     9 
    10 (*"cancel":: [real, real] => real    (infixl "'/'/'/" 70) ...divide 2002*)
    11 
    12   Expand'_binomtest
    13              :: "['y,  
    14 		    'y] => 'y"
    15                ("((Script Expand'_binomtest (_ =))//  
    16                    (_))" 9)
    17 
    18   Solve'_univar'_err
    19              :: "[bool,real,bool,  
    20 		    bool list] => bool list"
    21                ("((Script Solve'_univar'_err (_ _ _ =))//  
    22                    (_))" 9)
    23   
    24   Solve'_linear
    25              :: "[bool,real,  
    26 		    bool list] => bool list"
    27                ("((Script Solve'_linear (_ _ =))//  
    28                    (_))" 9)
    29 
    30 (*17.9.02 aus SqRoot.thy------------------------------vvv---*)
    31 
    32   "is'_root'_free" :: 'a => bool           ("is'_root'_free _" 10)
    33   "contains'_root" :: 'a => bool           ("contains'_root _" 10)
    34 
    35   Solve'_root'_equation 
    36              :: "[bool,real,  
    37 		    bool list] => bool list"
    38                ("((Script Solve'_root'_equation (_ _ =))//  
    39                    (_))" 9)
    40 
    41   Solve'_plain'_square 
    42              :: "[bool,real,  
    43 		    bool list] => bool list"
    44                ("((Script Solve'_plain'_square (_ _ =))//  
    45                    (_))" 9)
    46 
    47   Norm'_univar'_equation 
    48              :: "[bool,real,  
    49 		    bool] => bool"
    50                ("((Script Norm'_univar'_equation (_ _ =))//  
    51                    (_))" 9)
    52 
    53   STest'_simplify
    54              :: "['z,  
    55 		    'z] => 'z"
    56                ("((Script STest'_simplify (_ =))//  
    57                    (_))" 9)
    58 
    59 (*17.9.02 aus SqRoot.thy------------------------------^^^---*)  
    60 
    61 axioms (*TODO: prove as theorems*)
    62 
    63   radd_mult_distrib2:      "(k::real) * (m + n) = k * m + k * n"
    64   rdistr_right_assoc:      "(k::real) + l * n + m * n = k + (l + m) * n"
    65   rdistr_right_assoc_p:    "l * n + (m * n + (k::real)) = (l + m) * n + k"
    66   rdistr_div_right:        "((k::real) + l) / n = k / n + l / n"
    67   rcollect_right:
    68           "[| l is_const; m is_const |] ==> (l::real)*n + m*n = (l + m) * n"
    69   rcollect_one_left:
    70           "m is_const ==> (n::real) + m * n = (1 + m) * n"
    71   rcollect_one_left_assoc:
    72           "m is_const ==> (k::real) + n + m * n = k + (1 + m) * n"
    73   rcollect_one_left_assoc_p:
    74           "m is_const ==> n + (m * n + (k::real)) = (1 + m) * n + k"
    75 
    76   rtwo_of_the_same:        "a + a = 2 * a"
    77   rtwo_of_the_same_assoc:  "(x + a) + a = x + 2 * a"
    78   rtwo_of_the_same_assoc_p:"a + (a + x) = 2 * a + x"
    79 
    80   rcancel_den:             "not(a=0) ==> a * (b / a) = b"
    81   rcancel_const:           "[| a is_const; b is_const |] ==> a*(x/b) = a/b*x"
    82   rshift_nominator:        "(a::real) * b / c = a / c * b"
    83 
    84   exp_pow:                 "(a ^^^ b) ^^^ c = a ^^^ (b * c)"
    85   rsqare:                  "(a::real) * a = a ^^^ 2"
    86   power_1:                 "(a::real) ^^^ 1 = a"
    87   rbinom_power_2:          "((a::real) + b)^^^ 2 = a^^^ 2 + 2*a*b + b^^^ 2"
    88 
    89   rmult_1:                 "1 * k = (k::real)"
    90   rmult_1_right:           "k * 1 = (k::real)"
    91   rmult_0:                 "0 * k = (0::real)"
    92   rmult_0_right:           "k * 0 = (0::real)"
    93   radd_0:                  "0 + k = (k::real)"
    94   radd_0_right:            "k + 0 = (k::real)"
    95 
    96   radd_real_const_eq:
    97           "[| a is_const; c is_const; d is_const |] ==> a/d + c/d = (a+c)/(d::real)"
    98   radd_real_const:
    99           "[| a is_const; b is_const; c is_const; d is_const |] ==> a/b + c/d = (a*d + b*c)/(b*(d::real))"  
   100   
   101 (*for AC-operators*)
   102   radd_commute:            "(m::real) + (n::real) = n + m"
   103   radd_left_commute:       "(x::real) + (y + z) = y + (x + z)"
   104   radd_assoc:              "(m::real) + n + k = m + (n + k)"
   105   rmult_commute:           "(m::real) * n = n * m"
   106   rmult_left_commute:      "(x::real) * (y * z) = y * (x * z)"
   107   rmult_assoc:             "(m::real) * n * k = m * (n * k)"
   108 
   109 (*for equations: 'bdv' is a meta-constant*)
   110   risolate_bdv_add:       "((k::real) + bdv = m) = (bdv = m + (-1)*k)"
   111   risolate_bdv_mult_add:  "((k::real) + n*bdv = m) = (n*bdv = m + (-1)*k)"
   112   risolate_bdv_mult:      "((n::real) * bdv = m) = (bdv = m / n)"
   113 
   114   rnorm_equation_add:
   115       "~(b =!= 0) ==> (a = b) = (a + (-1)*b = 0)"
   116 
   117 (*17.9.02 aus SqRoot.thy------------------------------vvv---*) 
   118   root_ge0:            "0 <= a ==> 0 <= sqrt a"
   119   (*should be dropped with better simplification in eval_rls ...*)
   120   root_add_ge0:
   121 	"[| 0 <= a; 0 <= b |] ==> (0 <= sqrt a + sqrt b) = True"
   122   root_ge0_1:
   123 	"[| 0<=a; 0<=b; 0<=c |] ==> (0 <= a * sqrt b + sqrt c) = True"
   124   root_ge0_2:
   125 	"[| 0<=a; 0<=b; 0<=c |] ==> (0 <= sqrt a + b * sqrt c) = True"
   126 
   127 
   128   rroot_square_inv:         "(sqrt a)^^^ 2 = a"
   129   rroot_times_root:         "sqrt a * sqrt b = sqrt(a*b)"
   130   rroot_times_root_assoc:   "(a * sqrt b) * sqrt c = a * sqrt(b*c)"
   131   rroot_times_root_assoc_p: "sqrt b * (sqrt c * a)= sqrt(b*c) * a"
   132 
   133 
   134 (*for root-equations*)
   135   square_equation_left:
   136           "[| 0 <= a; 0 <= b |] ==> (((sqrt a)=b)=(a=(b^^^ 2)))"
   137   square_equation_right:
   138           "[| 0 <= a; 0 <= b |] ==> ((a=(sqrt b))=((a^^^ 2)=b))"
   139   (*causes frequently non-termination:*)
   140   square_equation:  
   141           "[| 0 <= a; 0 <= b |] ==> ((a=b)=((a^^^ 2)=b^^^ 2))"
   142   
   143   risolate_root_add:        "(a+  sqrt c = d) = (  sqrt c = d + (-1)*a)"
   144   risolate_root_mult:       "(a+b*sqrt c = d) = (b*sqrt c = d + (-1)*a)"
   145   risolate_root_div:        "(a * sqrt c = d) = (  sqrt c = d / a)"
   146 
   147 (*for polynomial equations of degree 2; linear case in RatArith*)
   148   mult_square:		"(a*bdv^^^2 = b) = (bdv^^^2 = b / a)"
   149   constant_square:       "(a + bdv^^^2 = b) = (bdv^^^2 = b + -1*a)"
   150   constant_mult_square:  "(a + b*bdv^^^2 = c) = (b*bdv^^^2 = c + -1*a)"
   151 
   152   square_equality: 
   153 	     "0 <= a ==> (x^^^2 = a) = ((x=sqrt a) | (x=-1*sqrt a))"
   154   square_equality_0:
   155 	     "(x^^^2 = 0) = (x = 0)"
   156 
   157 (*isolate root on the LEFT hand side of the equation
   158   otherwise shuffling from left to right would not terminate*)  
   159 
   160   rroot_to_lhs:
   161           "is_root_free a ==> (a = sqrt b) = (a + (-1)*sqrt b = 0)"
   162   rroot_to_lhs_mult:
   163           "is_root_free a ==> (a = c*sqrt b) = (a + (-1)*c*sqrt b = 0)"
   164   rroot_to_lhs_add_mult:
   165           "is_root_free a ==> (a = d+c*sqrt b) = (a + (-1)*c*sqrt b = d)"
   166 (*17.9.02 aus SqRoot.thy------------------------------^^^---*)  
   167 
   168 ML {*
   169 val thy = @{theory};
   170 
   171 (** evaluation of numerals and predicates **)
   172 
   173 (*does a term contain a root ?*)
   174 fun eval_root_free (thmid:string) _ (t as (Const(op0,t0) $ arg)) thy = 
   175   if strip_thy op0 <> "is'_root'_free" 
   176     then raise error ("eval_root_free: wrong "^op0)
   177   else if const_in (strip_thy op0) arg
   178 	 then SOME (mk_thmid thmid "" 
   179 		    ((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   180 		    Trueprop $ (mk_equality (t, false_as_term)))
   181        else SOME (mk_thmid thmid "" 
   182 		  ((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   183 		  Trueprop $ (mk_equality (t, true_as_term)))
   184   | eval_root_free _ _ _ _ = NONE; 
   185 
   186 (*does a term contain a root ?*)
   187 fun eval_contains_root (thmid:string) _ 
   188 		       (t as (Const("Test.contains'_root",t0) $ arg)) thy = 
   189     if member op = (ids_of arg) "sqrt"
   190     then SOME (mk_thmid thmid "" 
   191 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   192 	       Trueprop $ (mk_equality (t, true_as_term)))
   193     else SOME (mk_thmid thmid "" 
   194 			((Syntax.string_of_term (thy2ctxt thy)) arg) "", 
   195 	       Trueprop $ (mk_equality (t, false_as_term)))
   196   | eval_contains_root _ _ _ _ = NONE; 
   197   
   198 calclist':= overwritel (!calclist', 
   199    [("is_root_free", ("Test.is'_root'_free", 
   200 		      eval_root_free"#is_root_free_e")),
   201     ("contains_root", ("Test.contains'_root",
   202 		       eval_contains_root"#contains_root_"))
   203     ]);
   204 
   205 (** term order **)
   206 fun Term_Ord.term_order (_:subst) tu = (term_ordI [] tu = LESS);
   207 
   208 (** rule sets GOON **)
   209 
   210 val testerls = 
   211   Rls {id = "testerls", preconds = [], rew_ord = ("termlessI",termlessI), 
   212       erls = e_rls, srls = Erls, 
   213       calc = [], 
   214       rules = [Thm ("refl",num_str @{thm refl}),
   215 	       Thm ("real_le_refl",num_str @{thm real_le_refl}),
   216 	       Thm ("radd_left_cancel_le",num_str @{thm radd_left_cancel_le}),
   217 	       Thm ("not_true",num_str @{thm not_true}),
   218 	       Thm ("not_false",num_str @{thm not_false}),
   219 	       Thm ("and_true",num_str @{thm and_true}),
   220 	       Thm ("and_false",num_str @{thm and_false}),
   221 	       Thm ("or_true",num_str @{thm or_true}),
   222 	       Thm ("or_false",num_str @{thm or_false}),
   223 	       Thm ("and_commute",num_str @{thm and_commute}),
   224 	       Thm ("or_commute",num_str @{thm or_commute}),
   225 
   226 	       Calc ("Atools.is'_const",eval_const "#is_const_"),
   227 	       Calc ("Tools.matches",eval_matches ""),
   228     
   229 	       Calc ("op +",eval_binop "#add_"),
   230 	       Calc ("op *",eval_binop "#mult_"),
   231 	       Calc ("Atools.pow" ,eval_binop "#power_"),
   232 		    
   233 	       Calc ("op <",eval_equ "#less_"),
   234 	       Calc ("op <=",eval_equ "#less_equal_"),
   235 	     	    
   236 	       Calc ("Atools.ident",eval_ident "#ident_")],
   237       scr = Script ((term_of o the o (parse thy)) 
   238       "empty_script")
   239       }:rls;      
   240 
   241 (*.for evaluation of conditions in rewrite rules.*)
   242 (*FIXXXXXXME 10.8.02: handle like _simplify*)
   243 val tval_rls =  
   244   Rls{id = "tval_rls", preconds = [], 
   245       rew_ord = ("sqrt_right",sqrt_right false (theory "Pure")), 
   246       erls=testerls,srls = e_rls, 
   247       calc=[],
   248       rules = [Thm ("refl",num_str @{thm refl}),
   249 	       Thm ("real_le_refl",num_str @{thm real_le_refl}),
   250 	       Thm ("radd_left_cancel_le",num_str @{thm radd_left_cancel_le}),
   251 	       Thm ("not_true",num_str @{thm not_true}),
   252 	       Thm ("not_false",num_str @{thm not_false}),
   253 	       Thm ("and_true",num_str @{thm and_true}),
   254 	       Thm ("and_false",num_str @{thm and_false}),
   255 	       Thm ("or_true",num_str @{thm or_true}),
   256 	       Thm ("or_false",num_str @{thm or_false}),
   257 	       Thm ("and_commute",num_str @{thm and_commute}),
   258 	       Thm ("or_commute",num_str @{or_commute}),
   259 
   260 	       Thm ("real_diff_minus",num_str @{thm real_diff_minus}),
   261 
   262 	       Thm ("root_ge0",num_str @{thm root_ge0}),
   263 	       Thm ("root_add_ge0",num_str @{thm root_add_ge0}),
   264 	       Thm ("root_ge0_1",num_str @{thm root_ge0_1}),
   265 	       Thm ("root_ge0_2",num_str @{thm root_ge0_2}),
   266 
   267 	       Calc ("Atools.is'_const",eval_const "#is_const_"),
   268 	       Calc ("Test.is'_root'_free",eval_root_free "#is_root_free_e"),
   269 	       Calc ("Tools.matches",eval_matches ""),
   270 	       Calc ("Test.contains'_root",
   271 		     eval_contains_root"#contains_root_"),
   272     
   273 	       Calc ("op +",eval_binop "#add_"),
   274 	       Calc ("op *",eval_binop "#mult_"),
   275 	       Calc ("NthRoot.sqrt",eval_sqrt "#sqrt_"),
   276 	       Calc ("Atools.pow" ,eval_binop "#power_"),
   277 		    
   278 	       Calc ("op <",eval_equ "#less_"),
   279 	       Calc ("op <=",eval_equ "#less_equal_"),
   280 	     	    
   281 	       Calc ("Atools.ident",eval_ident "#ident_")],
   282       scr = Script ((term_of o the o (parse thy)) 
   283       "empty_script")
   284       }:rls;      
   285 
   286 
   287 ruleset' := overwritelthy @{theory} (!ruleset',
   288   [("testerls", prep_rls testerls)
   289    ]);
   290 
   291 
   292 (*make () dissappear*)   
   293 val rearrange_assoc =
   294   Rls{id = "rearrange_assoc", preconds = [], 
   295       rew_ord = ("e_rew_ord",e_rew_ord), 
   296       erls = e_rls, srls = e_rls, calc = [], (*asm_thm=[],*)
   297       rules = 
   298       [Thm ("sym_add_assoc",num_str (@{thm add_assoc} RS @{thm sym})),
   299        Thm ("sym_rmult_assoc",num_str (@{thm rmult_assoc} RS @{thm sym}))],
   300       scr = Script ((term_of o the o (parse thy)) 
   301       "empty_script")
   302       }:rls;      
   303 
   304 val ac_plus_times =
   305   Rls{id = "ac_plus_times", preconds = [], rew_ord = ("term_order",term_order),
   306       erls = e_rls, srls = e_rls, calc = [], (*asm_thm=[],*)
   307       rules = 
   308       [Thm ("radd_commute",num_str @{thm radd_commute}),
   309        Thm ("radd_left_commute",num_str @{thm radd_left_commute}),
   310        Thm ("add_assoc",num_str @{thm add_assoc}),
   311        Thm ("rmult_commute",num_str @{thm rmult_commute}),
   312        Thm ("rmult_left_commute",num_str @{thm rmult_left_commute}),
   313        Thm ("rmult_assoc",num_str @{thm rmult_assoc})],
   314       scr = Script ((term_of o the o (parse thy)) 
   315       "empty_script")
   316       }:rls;      
   317 
   318 (*todo: replace by Rewrite("rnorm_equation_add",num_str @{thm rnorm_equation_add)*)
   319 val norm_equation =
   320   Rls{id = "norm_equation", preconds = [], rew_ord = ("e_rew_ord",e_rew_ord),
   321       erls = tval_rls, srls = e_rls, calc = [], (*asm_thm=[],*)
   322       rules = [Thm ("rnorm_equation_add",num_str @{thm rnorm_equation_add)
   323 	       ],
   324       scr = Script ((term_of o the o (parse thy)) 
   325       "empty_script")
   326       }:rls;      
   327 
   328 (** rule sets **)
   329 
   330 val STest_simplify =     (*   vv--- not changed to real by parse*)
   331   "Script STest_simplify (t_::'z) =                           " ^
   332   "(Repeat" ^
   333   "    ((Try (Repeat (Rewrite real_diff_minus False))) @@        " ^
   334   "     (Try (Repeat (Rewrite radd_mult_distrib2 False))) @@  " ^
   335   "     (Try (Repeat (Rewrite rdistr_right_assoc False))) @@  " ^
   336   "     (Try (Repeat (Rewrite rdistr_right_assoc_p False))) @@" ^
   337   "     (Try (Repeat (Rewrite rdistr_div_right False))) @@    " ^
   338   "     (Try (Repeat (Rewrite rbinom_power_2 False))) @@      " ^
   339 	
   340   "     (Try (Repeat (Rewrite radd_commute False))) @@        " ^
   341   "     (Try (Repeat (Rewrite radd_left_commute False))) @@   " ^
   342   "     (Try (Repeat (Rewrite add_assoc False))) @@          " ^
   343   "     (Try (Repeat (Rewrite rmult_commute False))) @@       " ^
   344   "     (Try (Repeat (Rewrite rmult_left_commute False))) @@  " ^
   345   "     (Try (Repeat (Rewrite rmult_assoc False))) @@         " ^
   346 	
   347   "     (Try (Repeat (Rewrite radd_real_const_eq False))) @@   " ^
   348   "     (Try (Repeat (Rewrite radd_real_const False))) @@   " ^
   349   "     (Try (Repeat (Calculate PLUS))) @@   " ^
   350   "     (Try (Repeat (Calculate TIMES))) @@   " ^
   351   "     (Try (Repeat (Calculate divide_))) @@" ^
   352   "     (Try (Repeat (Calculate POWER))) @@  " ^
   353 	
   354   "     (Try (Repeat (Rewrite rcollect_right False))) @@   " ^
   355   "     (Try (Repeat (Rewrite rcollect_one_left False))) @@   " ^
   356   "     (Try (Repeat (Rewrite rcollect_one_left_assoc False))) @@   " ^
   357   "     (Try (Repeat (Rewrite rcollect_one_left_assoc_p False))) @@   " ^
   358 	
   359   "     (Try (Repeat (Rewrite rshift_nominator False))) @@   " ^
   360   "     (Try (Repeat (Rewrite rcancel_den False))) @@   " ^
   361   "     (Try (Repeat (Rewrite rroot_square_inv False))) @@   " ^
   362   "     (Try (Repeat (Rewrite rroot_times_root False))) @@   " ^
   363   "     (Try (Repeat (Rewrite rroot_times_root_assoc_p False))) @@   " ^
   364   "     (Try (Repeat (Rewrite rsqare False))) @@   " ^
   365   "     (Try (Repeat (Rewrite power_1 False))) @@   " ^
   366   "     (Try (Repeat (Rewrite rtwo_of_the_same False))) @@   " ^
   367   "     (Try (Repeat (Rewrite rtwo_of_the_same_assoc_p False))) @@   " ^
   368 	
   369   "     (Try (Repeat (Rewrite rmult_1 False))) @@   " ^
   370   "     (Try (Repeat (Rewrite rmult_1_right False))) @@   " ^
   371   "     (Try (Repeat (Rewrite rmult_0 False))) @@   " ^
   372   "     (Try (Repeat (Rewrite rmult_0_right False))) @@   " ^
   373   "     (Try (Repeat (Rewrite radd_0 False))) @@   " ^
   374   "     (Try (Repeat (Rewrite radd_0_right False)))) " ^
   375   " t_)";
   376 
   377 
   378 (* expects * distributed over + *)
   379 val Test_simplify =
   380   Rls{id = "Test_simplify", preconds = [], 
   381       rew_ord = ("sqrt_right",sqrt_right false (theory "Pure")),
   382       erls = tval_rls, srls = e_rls, 
   383       calc=[(*since 040209 filled by prep_rls*)],
   384       (*asm_thm = [],*)
   385       rules = [
   386 	       Thm ("real_diff_minus",num_str @{thm real_diff_minus}),
   387 	       Thm ("radd_mult_distrib2",num_str @{thm radd_mult_distrib2}),
   388 	       Thm ("rdistr_right_assoc",num_str @{thm rdistr_right_assoc}),
   389 	       Thm ("rdistr_right_assoc_p",num_str @{thm rdistr_right_assoc_p}),
   390 	       Thm ("rdistr_div_right",num_str @{thm rdistr_div_right}),
   391 	       Thm ("rbinom_power_2",num_str @{thm rbinom_power_2}),	       
   392 
   393                Thm ("radd_commute",num_str @{thm radd_commute}), 
   394 	       Thm ("radd_left_commute",num_str @{thm radd_left_commute}),
   395 	       Thm ("add_assoc",num_str @{thm add_assoc}),
   396 	       Thm ("rmult_commute",num_str @{thm rmult_commute}),
   397 	       Thm ("rmult_left_commute",num_str @{thm rmult_left_commute}),
   398 	       Thm ("rmult_assoc",num_str @{thm rmult_assoc}),
   399 
   400 	       Thm ("radd_real_const_eq",num_str @{thm radd_real_const_eq}),
   401 	       Thm ("radd_real_const",num_str @{thm radd_real_const}),
   402 	       (* these 2 rules are invers to distr_div_right wrt. termination.
   403 		  thus they MUST be done IMMEDIATELY before calc *)
   404 	       Calc ("op +", eval_binop "#add_"), 
   405 	       Calc ("op *", eval_binop "#mult_"),
   406 	       Calc ("HOL.divide", eval_cancel "#divide_e"),
   407 	       Calc ("Atools.pow", eval_binop "#power_"),
   408 
   409 	       Thm ("rcollect_right",num_str @{thm rcollect_right}),
   410 	       Thm ("rcollect_one_left",num_str @{thm rcollect_one_left}),
   411 	       Thm ("rcollect_one_left_assoc",num_str @{thm rcollect_one_left_assoc}),
   412 	       Thm ("rcollect_one_left_assoc_p",num_str @{thm rcollect_one_left_assoc_p}),
   413 
   414 	       Thm ("rshift_nominator",num_str @{thm rshift_nominator}),
   415 	       Thm ("rcancel_den",num_str @{thm rcancel_den}),
   416 	       Thm ("rroot_square_inv",num_str @{thm rroot_square_inv}),
   417 	       Thm ("rroot_times_root",num_str @{thm rroot_times_root}),
   418 	       Thm ("rroot_times_root_assoc_p",num_str @{thm rroot_times_root_assoc_p}),
   419 	       Thm ("rsqare",num_str @{thm rsqare}),
   420 	       Thm ("power_1",num_str @{power_1}),
   421 	       Thm ("rtwo_of_the_same",num_str @{thm rtwo_of_the_same}),
   422 	       Thm ("rtwo_of_the_same_assoc_p",num_str @{thm rtwo_of_the_same_assoc_p}),
   423 
   424 	       Thm ("rmult_1",num_str @{thm rmult_1}),
   425 	       Thm ("rmult_1_right",num_str @{thm rmult_1_right}),
   426 	       Thm ("rmult_0",num_str @{thm rmult_0}),
   427 	       Thm ("rmult_0_right",num_str @{thm rmult_0_right}),
   428 	       Thm ("radd_0",num_str @{thm radd_0}),
   429 	       Thm ("radd_0_right",num_str @{thm radd_0_right})
   430 	       ],
   431       scr = Script ((term_of o the o (parse thy)) "empty_script")
   432 		    (*since 040209 filled by prep_rls: STest_simplify*)
   433       }:rls;      
   434 
   435 
   436 
   437 
   438 
   439 (** rule sets **)
   440 
   441 
   442 
   443 (*isolate the root in a root-equation*)
   444 val isolate_root =
   445   Rls{id = "isolate_root", preconds = [], rew_ord = ("e_rew_ord",e_rew_ord), 
   446       erls=tval_rls,srls = e_rls, calc=[],(*asm_thm = [], *)
   447       rules = [Thm ("rroot_to_lhs",num_str @{thm rroot_to_lhs}),
   448 	       Thm ("rroot_to_lhs_mult",num_str @{thm rroot_to_lhs_mult}),
   449 	       Thm ("rroot_to_lhs_add_mult",num_str @{thm rroot_to_lhs_add_mult}),
   450 	       Thm ("risolate_root_add",num_str @{thm risolate_root_add}),
   451 	       Thm ("risolate_root_mult",num_str @{thm risolate_root_mult}),
   452 	       Thm ("risolate_root_div",num_str @{thm risolate_root_div})       ],
   453       scr = Script ((term_of o the o (parse thy)) 
   454       "empty_script")
   455       }:rls;
   456 
   457 (*isolate the bound variable in an equation; 'bdv' is a meta-constant*)
   458 val isolate_bdv =
   459     Rls{id = "isolate_bdv", preconds = [], rew_ord = ("e_rew_ord",e_rew_ord),
   460 	erls=tval_rls,srls = e_rls, calc=[],(*asm_thm = [], *)
   461 	rules = 
   462 	[Thm ("risolate_bdv_add",num_str @{thm risolate_bdv_add}),
   463 	 Thm ("risolate_bdv_mult_add",num_str @{thm risolate_bdv_mult_add}),
   464 	 Thm ("risolate_bdv_mult",num_str @{thm risolate_bdv_mult}),
   465 	 Thm ("mult_square",num_str @{mult_square}),
   466 	 Thm ("constant_square",num_str @{constant_square}),
   467 	 Thm ("constant_mult_square",num_str @{constant_mult_square})
   468 	 ],
   469 	scr = Script ((term_of o the o (parse thy)) 
   470 			  "empty_script")
   471 	}:rls;      
   472 
   473 
   474 
   475 
   476 (* association list for calculate_, calculate
   477    "op +" etc. not usable in scripts *)
   478 val calclist = 
   479     [
   480      (*as Tools.ML*)
   481      ("Vars"    ,("Tools.Vars"    ,eval_var "#Vars_")),
   482      ("matches",("Tools.matches",eval_matches "#matches_")),
   483      ("lhs"    ,("Tools.lhs"    ,eval_lhs "")),
   484      (*aus Atools.ML*)
   485      ("PLUS"    ,("op +"        ,eval_binop "#add_")),
   486      ("TIMES"   ,("op *"        ,eval_binop "#mult_")),
   487      ("DIVIDE" ,("HOL.divide"  ,eval_cancel "#divide_e")),
   488      ("POWER"  ,("Atools.pow"  ,eval_binop "#power_")),
   489      ("is_const",("Atools.is'_const",eval_const "#is_const_")),
   490      ("le"      ,("op <"        ,eval_equ "#less_")),
   491      ("leq"     ,("op <="       ,eval_equ "#less_equal_")),
   492      ("ident"   ,("Atools.ident",eval_ident "#ident_")),
   493      (*von hier (ehem.SqRoot*)
   494      ("sqrt"    ,("NthRoot.sqrt"   ,eval_sqrt "#sqrt_")),
   495      ("Test.is_root_free",("is'_root'_free", eval_root_free"#is_root_free_e")),
   496      ("Test.contains_root",("contains'_root",
   497 			    eval_contains_root"#contains_root_"))
   498      ];
   499 
   500 ruleset' := overwritelthy @{theory} (!ruleset',
   501   [("Test_simplify", prep_rls Test_simplify),
   502    ("tval_rls", prep_rls tval_rls),
   503    ("isolate_root", prep_rls isolate_root),
   504    ("isolate_bdv", prep_rls isolate_bdv),
   505    ("matches", 
   506     prep_rls (append_rls "matches" testerls 
   507 			 [Calc ("Tools.matches",eval_matches "#matches_")]))
   508    ]);
   509 
   510 (** problem types **)
   511 store_pbt
   512  (prep_pbt thy "pbl_test" [] e_pblID
   513  (["test"],
   514   [],
   515   e_rls, NONE, []));
   516 store_pbt
   517  (prep_pbt thy "pbl_test_equ" [] e_pblID
   518  (["equation","test"],
   519   [("#Given" ,["equality e_e","solveFor v_v"]),
   520    ("#Where" ,["matches (?a = ?b) e_e"]),
   521    ("#Find"  ,["solutions v_i"])
   522   ],
   523   assoc_rls "matches",
   524   SOME "solve (e_e::bool, v_v)", []));
   525 
   526 store_pbt
   527  (prep_pbt thy "pbl_test_uni" [] e_pblID
   528  (["univariate","equation","test"],
   529   [("#Given" ,["equality e_e","solveFor v_v"]),
   530    ("#Where" ,["matches (?a = ?b) e_e"]),
   531    ("#Find"  ,["solutions v_i"])
   532   ],
   533   assoc_rls "matches",
   534   SOME "solve (e_e::bool, v_v)", []));
   535 
   536 store_pbt
   537  (prep_pbt thy "pbl_test_uni_lin" [] e_pblID
   538  (["linear","univariate","equation","test"],
   539   [("#Given" ,["equality e_e","solveFor v_v"]),
   540    ("#Where" ,["(matches (   v_v = 0) e_e) | (matches (   ?b*v_ = 0) e_e) |" ^
   541 	       "(matches (?a+v_ = 0) e_e) | (matches (?a+?b*v_ = 0) e_e)  "]),
   542    ("#Find"  ,["solutions v_i"])
   543   ],
   544   assoc_rls "matches", 
   545   SOME "solve (e_e::bool, v_v)", [["Test","solve_linear"]]));
   546 
   547 (*25.8.01 ------
   548 store_pbt
   549  (prep_pbt thy
   550  (["thy"],
   551   [("#Given" ,"boolTestGiven g_"),
   552    ("#Find"  ,"boolTestFind f_")
   553   ],
   554   []));
   555 
   556 store_pbt
   557  (prep_pbt thy
   558  (["testeq","thy"],
   559   [("#Given" ,"boolTestGiven g_"),
   560    ("#Find"  ,"boolTestFind f_")
   561   ],
   562   []));
   563 
   564 
   565 val ttt = (term_of o the o (parse (theory "Isac"))) "(matches (   v_v = 0) e_e)";
   566 
   567  ------ 25.8.01*)
   568 
   569 
   570 (** methods **)
   571 store_met
   572  (prep_met (theory "Diff") "met_test" [] e_metID
   573  (["Test"],
   574    [],
   575    {rew_ord'="tless_true",rls'=Atools_erls,calc = [], srls = e_rls, prls=e_rls,
   576     crls=Atools_erls, nrls=e_rls(*,
   577     asm_rls=[],asm_thm=[]*)}, "empty_script"));
   578 (*
   579 store_met
   580  (prep_met (theory "Script")
   581  (e_metID,(*empty method*)
   582    [],
   583    {rew_ord'="e_rew_ord",rls'=tval_rls,srls=e_rls,prls=e_rls,calc=[],
   584     asm_rls=[],asm_thm=[]},
   585    "Undef"));*)
   586 store_met
   587  (prep_met thy "met_test_solvelin" [] e_metID
   588  (["Test","solve_linear"]:metID,
   589   [("#Given" ,["equality e_e","solveFor v_v"]),
   590     ("#Where" ,["matches (?a = ?b) e_e"]),
   591     ("#Find"  ,["solutions v_i"])
   592     ],
   593    {rew_ord'="e_rew_ord",rls'=tval_rls,srls=e_rls,
   594     prls=assoc_rls "matches",
   595     calc=[],
   596     crls=tval_rls, nrls=Test_simplify},
   597  "Script Solve_linear (e_e::bool) (v_v::real)=             " ^
   598  "(let e_e =" ^
   599  "  Repeat" ^
   600  "    (((Rewrite_Set_Inst [(bdv,v_v::real)] isolate_bdv False) @@" ^
   601  "      (Rewrite_Set Test_simplify False))) e_e" ^
   602  " in [e_::bool])"
   603  )
   604 (*, prep_met thy (*test for equations*)
   605  (["Test","testeq"]:metID,
   606   [("#Given" ,["boolTestGiven g_"]),
   607    ("#Find"  ,["boolTestFind f_"])
   608     ],
   609   {rew_ord'="e_rew_ord",rls'="tval_rls",asm_rls=[],
   610    asm_thm=[("square_equation_left","")]},
   611  "Script Testeq (eq_::bool) =                                         " ^
   612    "Repeat                                                            " ^
   613    " (let e_e = Try (Repeat (Rewrite rroot_square_inv False eq_));      " ^
   614    "      e_e = Try (Repeat (Rewrite square_equation_left True e_e)); " ^
   615    "      e_e = Try (Repeat (Rewrite rmult_0 False e_e))                " ^
   616    "   in e_e) Until (is_root_free e_e)" (*deleted*)
   617  )
   618 , ---------27.4.02*)
   619 );
   620 
   621 
   622 
   623 
   624 ruleset' := overwritelthy @{theory} (!ruleset',
   625   [("norm_equation", prep_rls norm_equation),
   626    ("ac_plus_times", prep_rls ac_plus_times),
   627    ("rearrange_assoc", prep_rls rearrange_assoc)
   628    ]);
   629 
   630 
   631 fun bin_o (Const (op_,(Type ("fun",
   632 	   [Type (s2,[]),Type ("fun",
   633 	    [Type (s4,tl4),Type (s5,tl5)])])))) = 
   634     if (s2=s4)andalso(s4=s5)then[op_]else[]
   635     | bin_o _                                   = [];
   636 
   637 fun bin_op (t1 $ t2) = union op = (bin_op t1) (bin_op t2)
   638   | bin_op t         =  bin_o t;
   639 fun is_bin_op t = ((bin_op t)<>[]);
   640 
   641 fun bin_op_arg1 ((Const (op_,(Type ("fun",
   642 	   [Type (s2,[]),Type ("fun",
   643 	    [Type (s4,tl4),Type (s5,tl5)])]))))$ arg1 $ arg2) = 
   644     arg1;
   645 fun bin_op_arg2 ((Const (op_,(Type ("fun",
   646 	   [Type (s2,[]),Type ("fun",
   647 	    [Type (s4,tl4),Type (s5,tl5)])]))))$ arg1 $ arg2) = 
   648     arg2;
   649 
   650 
   651 exception NO_EQUATION_TERM;
   652 fun is_equation ((Const ("op =",(Type ("fun",
   653 		 [Type (_,[]),Type ("fun",
   654 		  [Type (_,[]),Type ("bool",[])])])))) $ _ $ _) 
   655                   = true
   656   | is_equation _ = false;
   657 fun equ_lhs ((Const ("op =",(Type ("fun",
   658 		 [Type (_,[]),Type ("fun",
   659 		  [Type (_,[]),Type ("bool",[])])])))) $ l $ r) 
   660               = l
   661   | equ_lhs _ = raise NO_EQUATION_TERM;
   662 fun equ_rhs ((Const ("op =",(Type ("fun",
   663 		 [Type (_,[]),Type ("fun",
   664 		  [Type (_,[]),Type ("bool",[])])])))) $ l $ r) 
   665               = r
   666   | equ_rhs _ = raise NO_EQUATION_TERM;
   667 
   668 
   669 fun atom (Const (_,Type (_,[])))           = true
   670   | atom (Free  (_,Type (_,[])))           = true
   671   | atom (Var   (_,Type (_,[])))           = true
   672 (*| atom (_     (_,"?DUMMY"   ))           = true ..ML-error *)
   673   | atom((Const ("Bin.integ_of_bin",_)) $ _) = true
   674   | atom _                                 = false;
   675 
   676 fun varids (Const  (s,Type (_,[])))         = [strip_thy s]
   677   | varids (Free   (s,Type (_,[])))         = if is_no s then []
   678 					      else [strip_thy s]
   679   | varids (Var((s,_),Type (_,[])))         = [strip_thy s]
   680 (*| varids (_      (s,"?DUMMY"   ))         =   ..ML-error *)
   681   | varids((Const ("Bin.integ_of_bin",_)) $ _)= [](*8.01: superfluous?*)
   682   | varids (Abs(a,T,t)) = union op = [a] (varids t)
   683   | varids (t1 $ t2) = union op = (varids t1) (varids t2)
   684   | varids _         = [];
   685 (*> val t = term_of (hd (parse Diophant.thy "x"));
   686 val t = Free ("x","?DUMMY") : term
   687 > varids t;
   688 val it = [] : string list          [] !!! *)
   689 
   690 
   691 fun bin_ops_only ((Const op_) $ t1 $ t2) = 
   692     if(is_bin_op (Const op_))
   693     then(bin_ops_only t1)andalso(bin_ops_only t2)
   694     else false
   695   | bin_ops_only t =
   696     if atom t then true else bin_ops_only t;
   697 
   698 fun polynomial opl t bdVar = (* bdVar TODO *)
   699     subset op = (bin_op t, opl) andalso (bin_ops_only t);
   700 
   701 fun poly_equ opl bdVar t = is_equation t (* bdVar TODO *) 
   702     andalso polynomial opl (equ_lhs t) bdVar 
   703     andalso polynomial opl (equ_rhs t) bdVar
   704     andalso (subset op = (varids bdVar, varids (equ_lhs t)) orelse
   705              subset op = (varids bdVar, varids (equ_lhs t)));
   706 
   707 (*fun max is =
   708     let fun max_ m [] = m 
   709 	  | max_ m (i::is) = if m<i then max_ i is else max_ m is;
   710     in max_ (hd is) is end;
   711 > max [1,5,3,7,4,2];
   712 val it = 7 : int  *)
   713 
   714 fun max (a,b) = if a < b then b else a;
   715 
   716 fun degree addl mul bdVar t =
   717 let
   718 fun deg _ _ v (Const  (s,Type (_,[])))         = if v=strip_thy s then 1 else 0
   719   | deg _ _ v (Free   (s,Type (_,[])))         = if v=strip_thy s then 1 else 0
   720   | deg _ _ v (Var((s,_),Type (_,[])))         = if v=strip_thy s then 1 else 0
   721 (*| deg _ _ v (_     (s,"?DUMMY"   ))          =   ..ML-error *) 
   722   | deg _ _ v((Const ("Bin.integ_of_bin",_)) $ _ )= 0 
   723   | deg addl mul v (h $ t1 $ t2) =
   724     if subset op = (bin_op h, addl)
   725     then max (deg addl mul v t1  ,deg addl mul v t2)
   726     else (*mul!*)(deg addl mul v t1)+(deg addl mul v t2)
   727 in if polynomial (addl @ [mul]) t bdVar
   728    then SOME (deg addl mul (id_of bdVar) t) else (NONE:int option)
   729 end;
   730 fun degree_ addl mul bdVar t = (* do not export *)
   731     let fun opt (SOME i)= i
   732 	  | opt  NONE   = 0
   733 in opt (degree addl mul bdVar t) end;
   734 
   735 
   736 fun linear addl mul t bdVar = (degree_ addl mul bdVar t)<2;
   737 
   738 fun linear_equ addl mul bdVar t =
   739     if is_equation t 
   740     then let val degl = degree_ addl mul bdVar (equ_lhs t);
   741 	     val degr = degree_ addl mul bdVar (equ_rhs t)
   742 	 in if (degl>0 orelse degr>0)andalso max(degl,degr)<2
   743 		then true else false
   744 	 end
   745     else false;
   746 (* strip_thy op_  before *)
   747 fun is_div_op (dv,(Const (op_,(Type ("fun",
   748 	   [Type (s2,[]),Type ("fun",
   749 	    [Type (s4,tl4),Type (s5,tl5)])])))) )= (dv = strip_thy op_)
   750   | is_div_op _ = false;
   751 
   752 fun is_denom bdVar div_op t =
   753     let fun is bool[v]dv (Const  (s,Type(_,[])))= bool andalso(if v=strip_thy s then true else false)
   754 	  | is bool[v]dv (Free   (s,Type(_,[])))= bool andalso(if v=strip_thy s then true else false) 
   755 	  | is bool[v]dv (Var((s,_),Type(_,[])))= bool andalso(if v=strip_thy s then true else false)
   756 	  | is bool[v]dv((Const ("Bin.integ_of_bin",_)) $ _) = false
   757 	  | is bool[v]dv (h$n$d) = 
   758 	      if is_div_op(dv,h) 
   759 	      then (is false[v]dv n)orelse(is true[v]dv d)
   760 	      else (is bool [v]dv n)orelse(is bool[v]dv d)
   761 in is false (varids bdVar) (strip_thy div_op) t end;
   762 
   763 
   764 fun rational t div_op bdVar = 
   765     is_denom bdVar div_op t andalso bin_ops_only t;
   766 
   767 
   768 
   769 (** problem types **)
   770 
   771 store_pbt
   772  (prep_pbt thy "pbl_test_uni_plain2" [] e_pblID
   773  (["plain_square","univariate","equation","test"],
   774   [("#Given" ,["equality e_e","solveFor v_v"]),
   775    ("#Where" ,["(matches (?a + ?b*v_ ^^^2 = 0) e_e) |" ^
   776 	       "(matches (     ?b*v_ ^^^2 = 0) e_e) |" ^
   777 	       "(matches (?a +    v_v ^^^2 = 0) e_e) |" ^
   778 	       "(matches (        v_v ^^^2 = 0) e_e)"]),
   779    ("#Find"  ,["solutions v_i"])
   780   ],
   781   assoc_rls "matches", 
   782   SOME "solve (e_e::bool, v_v)", [["Test","solve_plain_square"]]));
   783 (*
   784  val e_e = (term_of o the o (parse thy)) "e_::bool";
   785  val ve = (term_of o the o (parse thy)) "4 + 3*x^^^2 = 0";
   786  val env = [(e_,ve)];
   787 
   788  val pre = (term_of o the o (parse thy))
   789 	      "(matches (a + b*v_ ^^^2 = 0, e_e::bool)) |" ^
   790 	      "(matches (    b*v_ ^^^2 = 0, e_e::bool)) |" ^
   791 	      "(matches (a +   v_v ^^^2 = 0, e_e::bool)) |" ^
   792 	      "(matches (      v_v ^^^2 = 0, e_e::bool))";
   793  val prei = subst_atomic env pre;
   794  val cpre = (cterm_of thy) prei;
   795 
   796  val SOME (ct,_) = rewrite_set_ thy false tval_rls cpre;
   797 val ct = "True | False | False | False" : cterm 
   798 
   799 > val SOME (ct,_) = rewrite_ thy sqrt_right tval_rls false or_false ct;
   800 > val SOME (ct,_) = rewrite_ thy sqrt_right tval_rls false or_false ct;
   801 > val SOME (ct,_) = rewrite_ thy sqrt_right tval_rls false or_false ct;
   802 val ct = "True" : cterm
   803 
   804 *)
   805 
   806 store_pbt
   807  (prep_pbt thy "pbl_test_uni_poly" [] e_pblID
   808  (["polynomial","univariate","equation","test"],
   809   [("#Given" ,["equality (v_ ^^^2 + p_ * v_v + q__ = 0)","solveFor v_v"]),
   810    ("#Where" ,["False"]),
   811    ("#Find"  ,["solutions v_i"]) 
   812   ],
   813   e_rls, SOME "solve (e_e::bool, v_v)", []));
   814 
   815 store_pbt
   816  (prep_pbt thy "pbl_test_uni_poly_deg2" [] e_pblID
   817  (["degree_two","polynomial","univariate","equation","test"],
   818   [("#Given" ,["equality (v_ ^^^2 + p_ * v_v + q__ = 0)","solveFor v_v"]),
   819    ("#Find"  ,["solutions v_i"]) 
   820   ],
   821   e_rls, SOME "solve (v_ ^^^2 + p_ * v_v + q__ = 0, v_v)", []));
   822 
   823 store_pbt
   824  (prep_pbt thy "pbl_test_uni_poly_deg2_pq" [] e_pblID
   825  (["pq_formula","degree_two","polynomial","univariate","equation","test"],
   826   [("#Given" ,["equality (v_ ^^^2 + p_ * v_v + q__ = 0)","solveFor v_v"]),
   827    ("#Find"  ,["solutions v_i"]) 
   828   ],
   829   e_rls, SOME "solve (v_ ^^^2 + p_ * v_v + q__ = 0, v_v)", []));
   830 
   831 store_pbt
   832  (prep_pbt thy "pbl_test_uni_poly_deg2_abc" [] e_pblID
   833  (["abc_formula","degree_two","polynomial","univariate","equation","test"],
   834   [("#Given" ,["equality (a_ * x ^^^2 + b_ * x + c_ = 0)","solveFor v_v"]),
   835    ("#Find"  ,["solutions v_i"]) 
   836   ],
   837   e_rls, SOME "solve (a_ * x ^^^2 + b_ * x + c_ = 0, v_v)", []));
   838 
   839 store_pbt
   840  (prep_pbt thy "pbl_test_uni_root" [] e_pblID
   841  (["squareroot","univariate","equation","test"],
   842   [("#Given" ,["equality e_e","solveFor v_v"]),
   843    ("#Where" ,["contains_root (e_e::bool)"]),
   844    ("#Find"  ,["solutions v_i"]) 
   845   ],
   846   append_rls "contains_root" e_rls [Calc ("Test.contains'_root",
   847 			  eval_contains_root "#contains_root_")], 
   848   SOME "solve (e_e::bool, v_v)", [["Test","square_equation"]]));
   849 
   850 store_pbt
   851  (prep_pbt thy "pbl_test_uni_norm" [] e_pblID
   852  (["normalize","univariate","equation","test"],
   853   [("#Given" ,["equality e_e","solveFor v_v"]),
   854    ("#Where" ,[]),
   855    ("#Find"  ,["solutions v_i"]) 
   856   ],
   857   e_rls, SOME "solve (e_e::bool, v_v)", [["Test","norm_univar_equation"]]));
   858 
   859 store_pbt
   860  (prep_pbt thy "pbl_test_uni_roottest" [] e_pblID
   861  (["sqroot-test","univariate","equation","test"],
   862   [("#Given" ,["equality e_e","solveFor v_v"]),
   863    (*("#Where" ,["contains_root (e_e::bool)"]),*)
   864    ("#Find"  ,["solutions v_i"]) 
   865   ],
   866   e_rls, SOME "solve (e_e::bool, v_v)", []));
   867 
   868 (*
   869 (#ppc o get_pbt) ["sqroot-test","univariate","equation"];
   870   *)
   871 
   872 
   873 store_met
   874  (prep_met thy  "met_test_sqrt" [] e_metID
   875 (*root-equation, version for tests before 8.01.01*)
   876  (["Test","sqrt-equ-test"]:metID,
   877   [("#Given" ,["equality e_e","solveFor v_v"]),
   878    ("#Where" ,["contains_root (e_e::bool)"]),
   879    ("#Find"  ,["solutions v_i"])
   880    ],
   881   {rew_ord'="e_rew_ord",rls'=tval_rls,
   882    srls =append_rls "srls_contains_root" e_rls 
   883 		    [Calc ("Test.contains'_root",eval_contains_root "")],
   884    prls =append_rls "prls_contains_root" e_rls 
   885 		    [Calc ("Test.contains'_root",eval_contains_root "")],
   886    calc=[],
   887    crls=tval_rls, nrls=e_rls(*,asm_rls=[],
   888    asm_thm=[("square_equation_left",""),
   889 	    ("square_equation_right","")]*)},
   890  "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
   891  "(let e_e = " ^
   892  "   ((While (contains_root e_e) Do" ^
   893  "      ((Rewrite square_equation_left True) @@" ^
   894  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
   895  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
   896  "       (Try (Rewrite_Set isolate_root False)) @@" ^
   897  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
   898  "    (Try (Rewrite_Set norm_equation False)) @@" ^
   899  "    (Try (Rewrite_Set Test_simplify False)) @@" ^
   900  "    (Rewrite_Set_Inst [(bdv,v_v::real)] isolate_bdv False) @@" ^
   901  "    (Try (Rewrite_Set Test_simplify False)))" ^
   902  "   e_e" ^
   903  " in [e_::bool])"
   904   ));
   905 
   906 store_met
   907  (prep_met thy  "met_test_sqrt2" [] e_metID
   908 (*root-equation ... for test-*.sml until 8.01*)
   909  (["Test","squ-equ-test2"]:metID,
   910   [("#Given" ,["equality e_e","solveFor v_v"]),
   911    ("#Find"  ,["solutions v_i"])
   912    ],
   913   {rew_ord'="e_rew_ord",rls'=tval_rls,
   914    srls = append_rls "srls_contains_root" e_rls 
   915 		     [Calc ("Test.contains'_root",eval_contains_root"")],
   916    prls=e_rls,calc=[],
   917    crls=tval_rls, nrls=e_rls(*,asm_rls=[],
   918    asm_thm=[("square_equation_left",""),
   919 	    ("square_equation_right","")]*)},
   920  "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
   921  "(let e_e = " ^
   922  "   ((While (contains_root e_e) Do" ^
   923  "      ((Rewrite square_equation_left True) @@" ^
   924  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
   925  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
   926  "       (Try (Rewrite_Set isolate_root False)) @@" ^
   927  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
   928  "    (Try (Rewrite_Set norm_equation False)) @@" ^
   929  "    (Try (Rewrite_Set Test_simplify False)) @@" ^
   930  "    (Rewrite_Set_Inst [(bdv,v_v::real)] isolate_bdv False) @@" ^
   931  "    (Try (Rewrite_Set Test_simplify False)))" ^
   932  "   e_e;" ^
   933  "  (L_::bool list) = Tac subproblem_equation_dummy;          " ^
   934  "  L_L = Tac solve_equation_dummy                             " ^
   935  "  in Check_elementwise L_L {(v_v::real). Assumptions})"
   936   ));
   937 
   938 store_met
   939  (prep_met thy "met_test_squ_sub" [] e_metID
   940 (*tests subproblem fixed linear*)
   941  (["Test","squ-equ-test-subpbl1"]:metID,
   942   [("#Given" ,["equality e_e","solveFor v_v"]),
   943    ("#Find"  ,["solutions v_i"])
   944    ],
   945   {rew_ord'="e_rew_ord",rls'=tval_rls,srls=e_rls,prls=e_rls,calc=[],
   946     crls=tval_rls, nrls=Test_simplify},
   947   "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
   948    " (let e_e = ((Try (Rewrite_Set norm_equation False)) @@              " ^
   949    "            (Try (Rewrite_Set Test_simplify False))) e_e;              " ^
   950    "(L_::bool list) = (SubProblem (Test_,[linear,univariate,equation,test]," ^
   951    "                    [Test,solve_linear]) [BOOL e_e, REAL v_])" ^
   952    "in Check_elementwise L_L {(v_v::real). Assumptions})"
   953   ));
   954 
   955 store_met
   956  (prep_met thy "met_test_squ_sub2" [] e_metID
   957  (*tests subproblem fixed degree 2*)
   958  (["Test","squ-equ-test-subpbl2"]:metID,
   959   [("#Given" ,["equality e_e","solveFor v_v"]),
   960    ("#Find"  ,["solutions v_i"])
   961    ],
   962   {rew_ord'="e_rew_ord",rls'=tval_rls,srls=e_rls,prls=e_rls,calc=[],
   963     crls=tval_rls, nrls=e_rls(*,
   964    asm_rls=[],asm_thm=[("square_equation_left",""),
   965 	    ("square_equation_right","")]*)},
   966    "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
   967    " (let e_e = Try (Rewrite_Set norm_equation False) e_e;              " ^
   968    "(L_::bool list) = (SubProblem (Test_,[linear,univariate,equation,test]," ^
   969    "                    [Test,solve_by_pq_formula]) [BOOL e_e, REAL v_])" ^
   970    "in Check_elementwise L_L {(v_v::real). Assumptions})"
   971    )); 
   972 
   973 store_met
   974  (prep_met thy "met_test_squ_nonterm" [] e_metID
   975  (*root-equation: see foils..., but notTerminating*)
   976  (["Test","square_equation...notTerminating"]:metID,
   977   [("#Given" ,["equality e_e","solveFor v_v"]),
   978    ("#Find"  ,["solutions v_i"])
   979    ],
   980   {rew_ord'="e_rew_ord",rls'=tval_rls,
   981    srls = append_rls "srls_contains_root" e_rls 
   982 		     [Calc ("Test.contains'_root",eval_contains_root"")],
   983    prls=e_rls,calc=[],
   984     crls=tval_rls, nrls=e_rls(*,asm_rls=[],
   985    asm_thm=[("square_equation_left",""),
   986 	    ("square_equation_right","")]*)},
   987  "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
   988  "(let e_e = " ^
   989  "   ((While (contains_root e_e) Do" ^
   990  "      ((Rewrite square_equation_left True) @@" ^
   991  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
   992  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
   993  "       (Try (Rewrite_Set isolate_root False)) @@" ^
   994  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
   995  "    (Try (Rewrite_Set norm_equation False)) @@" ^
   996  "    (Try (Rewrite_Set Test_simplify False)))" ^
   997  "   e_e;" ^
   998  "  (L_::bool list) =                                        " ^
   999  "    (SubProblem (Test_,[linear,univariate,equation,test]," ^
  1000  "                 [Test,solve_linear]) [BOOL e_e, REAL v_])" ^
  1001  "in Check_elementwise L_L {(v_v::real). Assumptions})"
  1002   ));
  1003 
  1004 store_met
  1005  (prep_met thy  "met_test_eq1" [] e_metID
  1006 (*root-equation1:*)
  1007  (["Test","square_equation1"]:metID,
  1008    [("#Given" ,["equality e_e","solveFor v_v"]),
  1009     ("#Find"  ,["solutions v_i"])
  1010     ],
  1011    {rew_ord'="e_rew_ord",rls'=tval_rls,
  1012    srls = append_rls "srls_contains_root" e_rls 
  1013 		     [Calc ("Test.contains'_root",eval_contains_root"")],
  1014    prls=e_rls,calc=[],
  1015     crls=tval_rls, nrls=e_rls(*,asm_rls=[],
  1016    asm_thm=[("square_equation_left",""),
  1017 	    ("square_equation_right","")]*)},
  1018  "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
  1019  "(let e_e = " ^
  1020  "   ((While (contains_root e_e) Do" ^
  1021  "      ((Rewrite square_equation_left True) @@" ^
  1022  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
  1023  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
  1024  "       (Try (Rewrite_Set isolate_root False)) @@" ^
  1025  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
  1026  "    (Try (Rewrite_Set norm_equation False)) @@" ^
  1027  "    (Try (Rewrite_Set Test_simplify False)))" ^
  1028  "   e_e;" ^
  1029  "  (L_::bool list) = (SubProblem (Test_,[linear,univariate,equation,test]," ^
  1030  "                    [Test,solve_linear]) [BOOL e_e, REAL v_])" ^
  1031  "  in Check_elementwise L_L {(v_v::real). Assumptions})"
  1032   ));
  1033 
  1034 store_met
  1035  (prep_met thy "met_test_squ2" [] e_metID
  1036  (*root-equation2*)
  1037  (["Test","square_equation2"]:metID,
  1038    [("#Given" ,["equality e_e","solveFor v_v"]),
  1039     ("#Find"  ,["solutions v_i"])
  1040     ],
  1041    {rew_ord'="e_rew_ord",rls'=tval_rls,
  1042    srls = append_rls "srls_contains_root" e_rls 
  1043 		     [Calc ("Test.contains'_root",eval_contains_root"")],
  1044    prls=e_rls,calc=[],
  1045     crls=tval_rls, nrls=e_rls(*,asm_rls=[],
  1046    asm_thm=[("square_equation_left",""),
  1047 	    ("square_equation_right","")]*)},
  1048  "Script Solve_root_equation (e_e::bool) (v_v::real)  =  " ^
  1049  "(let e_e = " ^
  1050  "   ((While (contains_root e_e) Do" ^
  1051  "      (((Rewrite square_equation_left True) Or " ^
  1052  "        (Rewrite square_equation_right True)) @@" ^
  1053  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
  1054  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
  1055  "       (Try (Rewrite_Set isolate_root False)) @@" ^
  1056  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
  1057  "    (Try (Rewrite_Set norm_equation False)) @@" ^
  1058  "    (Try (Rewrite_Set Test_simplify False)))" ^
  1059  "   e_e;" ^
  1060  "  (L_::bool list) = (SubProblem (Test_,[plain_square,univariate,equation,test]," ^
  1061  "                    [Test,solve_plain_square]) [BOOL e_e, REAL v_])" ^
  1062  "  in Check_elementwise L_L {(v_v::real). Assumptions})"
  1063   ));
  1064 
  1065 store_met
  1066  (prep_met thy "met_test_squeq" [] e_metID
  1067  (*root-equation*)
  1068  (["Test","square_equation"]:metID,
  1069    [("#Given" ,["equality e_e","solveFor v_v"]),
  1070     ("#Find"  ,["solutions v_i"])
  1071     ],
  1072    {rew_ord'="e_rew_ord",rls'=tval_rls,
  1073    srls = append_rls "srls_contains_root" e_rls 
  1074 		     [Calc ("Test.contains'_root",eval_contains_root"")],
  1075    prls=e_rls,calc=[],
  1076     crls=tval_rls, nrls=e_rls(*,asm_rls=[],
  1077    asm_thm=[("square_equation_left",""),
  1078 	    ("square_equation_right","")]*)},
  1079  "Script Solve_root_equation (e_e::bool) (v_v::real) =  " ^
  1080  "(let e_e = " ^
  1081  "   ((While (contains_root e_e) Do" ^
  1082  "      (((Rewrite square_equation_left True) Or" ^
  1083  "        (Rewrite square_equation_right True)) @@" ^
  1084  "       (Try (Rewrite_Set Test_simplify False)) @@" ^
  1085  "       (Try (Rewrite_Set rearrange_assoc False)) @@" ^
  1086  "       (Try (Rewrite_Set isolate_root False)) @@" ^
  1087  "       (Try (Rewrite_Set Test_simplify False)))) @@" ^
  1088  "    (Try (Rewrite_Set norm_equation False)) @@" ^
  1089  "    (Try (Rewrite_Set Test_simplify False)))" ^
  1090  "   e_e;" ^
  1091  "  (L_::bool list) = (SubProblem (Test_,[univariate,equation,test]," ^
  1092  "                    [no_met]) [BOOL e_e, REAL v_])" ^
  1093  "  in Check_elementwise L_L {(v_v::real). Assumptions})"
  1094   ) ); (*#######*)
  1095 
  1096 store_met
  1097  (prep_met thy "met_test_eq_plain" [] e_metID
  1098  (*solve_plain_square*)
  1099  (["Test","solve_plain_square"]:metID,
  1100    [("#Given",["equality e_e","solveFor v_v"]),
  1101    ("#Where" ,["(matches (?a + ?b*v_ ^^^2 = 0) e_e) |" ^
  1102 	       "(matches (     ?b*v_ ^^^2 = 0) e_e) |" ^
  1103 	       "(matches (?a +    v_v ^^^2 = 0) e_e) |" ^
  1104 	       "(matches (        v_v ^^^2 = 0) e_e)"]), 
  1105    ("#Find"  ,["solutions v_i"]) 
  1106    ],
  1107    {rew_ord'="e_rew_ord",rls'=tval_rls,calc=[],srls=e_rls,
  1108     prls = assoc_rls "matches",
  1109     crls=tval_rls, nrls=e_rls(*,
  1110     asm_rls=[],asm_thm=[]*)},
  1111   "Script Solve_plain_square (e_e::bool) (v_v::real) =           " ^
  1112    " (let e_e = ((Try (Rewrite_Set isolate_bdv False)) @@         " ^
  1113    "            (Try (Rewrite_Set Test_simplify False)) @@     " ^
  1114    "            ((Rewrite square_equality_0 False) Or        " ^
  1115    "             (Rewrite square_equality True)) @@            " ^
  1116    "            (Try (Rewrite_Set tval_rls False))) e_e             " ^
  1117    "  in ((Or_to_List e_e)::bool list))"
  1118  ));
  1119 
  1120 store_met
  1121  (prep_met thy "met_test_norm_univ" [] e_metID
  1122  (["Test","norm_univar_equation"]:metID,
  1123    [("#Given",["equality e_e","solveFor v_v"]),
  1124    ("#Where" ,[]), 
  1125    ("#Find"  ,["solutions v_i"]) 
  1126    ],
  1127    {rew_ord'="e_rew_ord",rls'=tval_rls,srls = e_rls,prls=e_rls,
  1128    calc=[],
  1129     crls=tval_rls, nrls=e_rls(*,asm_rls=[],asm_thm=[]*)},
  1130   "Script Norm_univar_equation (e_e::bool) (v_v::real) =      " ^
  1131    " (let e_e = ((Try (Rewrite rnorm_equation_add False)) @@   " ^
  1132    "            (Try (Rewrite_Set Test_simplify False))) e_e   " ^
  1133    "  in (SubProblem (Test_,[univariate,equation,test],         " ^
  1134    "                    [no_met]) [BOOL e_e, REAL v_]))"
  1135  ));
  1136 
  1137 
  1138 
  1139 (*17.9.02 aus SqRoot.ML------------------------------^^^---*)  
  1140 
  1141 (*8.4.03  aus Poly.ML--------------------------------vvv---
  1142   make_polynomial  ---> make_poly
  1143   ^-- for user          ^-- for systest _ONLY_*)  
  1144 
  1145 local (*. for make_polytest .*)
  1146 
  1147 open Term;  (* for type order = EQUAL | LESS | GREATER *)
  1148 
  1149 fun pr_ord EQUAL = "EQUAL"
  1150   | pr_ord LESS  = "LESS"
  1151   | pr_ord GREATER = "GREATER";
  1152 
  1153 fun dest_hd' (Const (a, T)) =                          (* ~ term.ML *)
  1154   (case a of
  1155      "Atools.pow" => ((("|||||||||||||", 0), T), 0)           (*WN greatest *)
  1156    | _ => (((a, 0), T), 0))
  1157   | dest_hd' (Free (a, T)) = (((a, 0), T), 1)
  1158   | dest_hd' (Var v) = (v, 2)
  1159   | dest_hd' (Bound i) = ((("", i), dummyT), 3)
  1160   | dest_hd' (Abs (_, T, _)) = ((("", 0), T), 4);
  1161 (* RL *)
  1162 fun get_order_pow (t $ (Free(order,_))) = 
  1163     	(case int_of_str (order) of
  1164 	             SOME d => d
  1165 		   | NONE   => 0)
  1166   | get_order_pow _ = 0;
  1167 
  1168 fun size_of_term' (Const(str,_) $ t) =
  1169   if "Atools.pow"=str then 1000 + size_of_term' t else 1 + size_of_term' t(*WN*)
  1170   | size_of_term' (Abs (_,_,body)) = 1 + size_of_term' body
  1171   | size_of_term' (f$t) = size_of_term' f  +  size_of_term' t
  1172   | size_of_term' _ = 1;
  1173 
  1174 fun Term_Ord.term_ord' pr thy (Abs (_, T, t), Abs(_, U, u)) =       (* ~ term.ML *)
  1175       (case Term_Ord.term_ord' pr thy (t, u) of EQUAL => Term_Ord.typ_ord (T, U) | ord => ord)
  1176   | Term_Ord.term_ord' pr thy (t, u) =
  1177       (if pr then 
  1178 	 let
  1179 	   val (f, ts) = strip_comb t and (g, us) = strip_comb u;
  1180 	   val _=writeln("t= f@ts= " ^ "" ^
  1181 	      ((Syntax.string_of_term (thy2ctxt thy)) f)^ "\" @ " ^ "[" ^
  1182 	      (commas(map(Syntax.string_of_term (thy2ctxt thy)) ts)) ^ "]""");
  1183 	   val _=writeln("u= g@us= " ^ "" ^
  1184 	      ((Syntax.string_of_term (thy2ctxt thy)) g) ^ "\" @ " ^ "[" ^
  1185 	      (commas(map(Syntax.string_of_term (thy2ctxt thy)) us))^"]""");
  1186 	   val _=writeln("size_of_term(t,u)= ("^
  1187 	      (string_of_int(size_of_term' t)) ^ ", " ^
  1188 	      (string_of_int(size_of_term' u)) ^ ")");
  1189 	   val _=writeln("hd_ord(f,g)      = " ^ ((pr_ord o hd_ord)(f,g)));
  1190 	   val _=writeln("terms_ord(ts,us) = " ^
  1191 			   ((pr_ord o terms_ord str false)(ts,us)));
  1192 	   val _=writeln("-------");
  1193 	 in () end
  1194        else ();
  1195 	 case int_ord (size_of_term' t, size_of_term' u) of
  1196 	   EQUAL =>
  1197 	     let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
  1198 	       (case hd_ord (f, g) of EQUAL => (terms_ord str pr) (ts, us) 
  1199 	     | ord => ord)
  1200 	     end
  1201 	 | ord => ord)
  1202 and hd_ord (f, g) =                                        (* ~ term.ML *)
  1203   prod_ord (prod_ord Term_Ord.indexname_ord Term_Ord.typ_ord) int_ord (dest_hd' f, dest_hd' g)
  1204 and terms_ord str pr (ts, us) = 
  1205     list_ord (term_ord' pr (assoc_thy "Isac"))(ts, us);
  1206 in
  1207 
  1208 fun ord_make_polytest (pr:bool) thy (_:subst) tu = 
  1209     (term_ord' pr thy(***) tu = LESS );
  1210 
  1211 end;(*local*)
  1212 
  1213 rew_ord' := overwritel (!rew_ord',
  1214 [("termlessI", termlessI),
  1215  ("ord_make_polytest", ord_make_polytest false thy)
  1216  ]);
  1217 
  1218 (*WN060510 this was a preparation for prep_rls ...
  1219 val scr_make_polytest = 
  1220 "Script Expand_binomtest t_ =" ^
  1221 "(Repeat                       " ^
  1222 "((Try (Repeat (Rewrite real_diff_minus         False))) @@ " ^ 
  1223 
  1224 " (Try (Repeat (Rewrite left_distrib   False))) @@ " ^	 
  1225 " (Try (Repeat (Rewrite right_distrib  False))) @@ " ^	
  1226 " (Try (Repeat (Rewrite left_diff_distrib  False))) @@ " ^	
  1227 " (Try (Repeat (Rewrite right_diff_distrib False))) @@ " ^	
  1228 
  1229 " (Try (Repeat (Rewrite mult_1_left             False))) @@ " ^		   
  1230 " (Try (Repeat (Rewrite mult_zero_left             False))) @@ " ^		   
  1231 " (Try (Repeat (Rewrite add_0_left      False))) @@ " ^	 
  1232 
  1233 " (Try (Repeat (Rewrite real_mult_commute       False))) @@ " ^		
  1234 " (Try (Repeat (Rewrite real_mult_left_commute  False))) @@ " ^	
  1235 " (Try (Repeat (Rewrite real_mult_assoc         False))) @@ " ^		
  1236 " (Try (Repeat (Rewrite add_commute        False))) @@ " ^		
  1237 " (Try (Repeat (Rewrite add_left_commute   False))) @@ " ^	 
  1238 " (Try (Repeat (Rewrite add_assoc          False))) @@ " ^	 
  1239 
  1240 " (Try (Repeat (Rewrite sym_realpow_twoI        False))) @@ " ^	 
  1241 " (Try (Repeat (Rewrite realpow_plus_1          False))) @@ " ^	 
  1242 " (Try (Repeat (Rewrite sym_real_mult_2         False))) @@ " ^		
  1243 " (Try (Repeat (Rewrite real_mult_2_assoc       False))) @@ " ^		
  1244 
  1245 " (Try (Repeat (Rewrite real_num_collect        False))) @@ " ^		
  1246 " (Try (Repeat (Rewrite real_num_collect_assoc  False))) @@ " ^	
  1247 
  1248 " (Try (Repeat (Rewrite real_one_collect        False))) @@ " ^		
  1249 " (Try (Repeat (Rewrite real_one_collect_assoc  False))) @@ " ^   
  1250 
  1251 " (Try (Repeat (Calculate PLUS  ))) @@ " ^
  1252 " (Try (Repeat (Calculate TIMES ))) @@ " ^
  1253 " (Try (Repeat (Calculate POWER)))) " ^  
  1254 " t_)";
  1255 -----------------------------------------------------*)
  1256 
  1257 val make_polytest =
  1258   Rls{id = "make_polytest", preconds = []:term list, 
  1259       rew_ord = ("ord_make_polytest", ord_make_polytest false (theory "Poly")),
  1260       erls = testerls, srls = Erls,
  1261       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
  1262 	      ("TIMES" , ("op *", eval_binop "#mult_")),
  1263 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
  1264 	      ],
  1265       (*asm_thm = [],*)
  1266       rules = [Thm ("real_diff_minus",num_str @{thm real_diff_minus}),
  1267 	       (*"a - b = a + (-1) * b"*)
  1268 	       Thm ("left_distrib" ,num_str @{thm left_distrib}),
  1269 	       (*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1270 	       Thm ("right_distrib",num_str @{thm right_distrib}),
  1271 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1272 	       Thm ("left_diff_distrib" ,num_str @{thm left_diff_distrib}),
  1273 	       (*"(z1.0 - z2.0) * w = z1.0 * w - z2.0 * w"*)
  1274 	       Thm ("right_diff_distrib",num_str @{thm right_diff_distrib}),
  1275 	       (*"w * (z1.0 - z2.0) = w * z1.0 - w * z2.0"*)
  1276 	       Thm ("mult_1_left",num_str @{thm mult_1_left}),                 
  1277 	       (*"1 * z = z"*)
  1278 	       Thm ("mult_zero_left",num_str @{thm mult_zero_left}),        
  1279 	       (*"0 * z = 0"*)
  1280 	       Thm ("add_0_left",num_str @{thm add_0_left}),
  1281 	       (*"0 + z = z"*)
  1282 
  1283 	       (*AC-rewriting*)
  1284 	       Thm ("real_mult_commute",num_str @{thm real_mult_commute}),
  1285 	       (* z * w = w * z *)
  1286 	       Thm ("real_mult_left_commute",num_str @{thm real_mult_left_commute}),
  1287 	       (*z1.0 * (z2.0 * z3.0) = z2.0 * (z1.0 * z3.0)*)
  1288 	       Thm ("real_mult_assoc",num_str @{thm real_mult_assoc}),		
  1289 	       (*z1.0 * z2.0 * z3.0 = z1.0 * (z2.0 * z3.0)*)
  1290 	       Thm ("add_commute",num_str @{thm add_commute}),	
  1291 	       (*z + w = w + z*)
  1292 	       Thm ("add_left_commute",num_str @{thm add_left_commute}),
  1293 	       (*x + (y + z) = y + (x + z)*)
  1294 	       Thm ("add_assoc",num_str @{thm add_assoc}),	               
  1295 	       (*z1.0 + z2.0 + z3.0 = z1.0 + (z2.0 + z3.0)*)
  1296 
  1297 	       Thm ("sym_realpow_twoI",
  1298                      num_str (@{thm realpow_twoI} RS @{thm sym})),	
  1299 	       (*"r1 * r1 = r1 ^^^ 2"*)
  1300 	       Thm ("realpow_plus_1",num_str @{thm realpow_plus_1}),		
  1301 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
  1302 	       Thm ("sym_real_mult_2",
  1303                      num_str (@{thm real_mult_2} RS @{thm sym})),	
  1304 	       (*"z1 + z1 = 2 * z1"*)
  1305 	       Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc}),	
  1306 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1307 
  1308 	       Thm ("real_num_collect",num_str @{thm real_num_collect}), 
  1309 	       (*"[| l is_const; m is_const |]==>l * n + m * n = (l + m) * n"*)
  1310 	       Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),
  1311 	       (*"[| l is_const; m is_const |] ==>  
  1312 				l * n + (m * n + k) =  (l + m) * n + k"*)
  1313 	       Thm ("real_one_collect",num_str @{thm real_one_collect}),	
  1314 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
  1315 	       Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
  1316 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
  1317 
  1318 	       Calc ("op +", eval_binop "#add_"), 
  1319 	       Calc ("op *", eval_binop "#mult_"),
  1320 	       Calc ("Atools.pow", eval_binop "#power_")
  1321 	       ],
  1322       scr = EmptyScr(*Script ((term_of o the o (parse thy)) 
  1323       scr_make_polytest)*)
  1324       }:rls;      
  1325 (*WN060510 this was done before 'fun prep_rls' ...
  1326 val scr_expand_binomtest =
  1327 "Script Expand_binomtest t_ =" ^
  1328 "(Repeat                       " ^
  1329 "((Try (Repeat (Rewrite real_plus_binom_pow2    False))) @@ " ^
  1330 " (Try (Repeat (Rewrite real_plus_binom_times   False))) @@ " ^
  1331 " (Try (Repeat (Rewrite real_minus_binom_pow2   False))) @@ " ^
  1332 " (Try (Repeat (Rewrite real_minus_binom_times  False))) @@ " ^
  1333 " (Try (Repeat (Rewrite real_plus_minus_binom1  False))) @@ " ^
  1334 " (Try (Repeat (Rewrite real_plus_minus_binom2  False))) @@ " ^
  1335 
  1336 " (Try (Repeat (Rewrite mult_1_left             False))) @@ " ^
  1337 " (Try (Repeat (Rewrite mult_zero_left             False))) @@ " ^
  1338 " (Try (Repeat (Rewrite add_0_left      False))) @@ " ^
  1339 
  1340 " (Try (Repeat (Calculate PLUS  ))) @@ " ^
  1341 " (Try (Repeat (Calculate TIMES ))) @@ " ^
  1342 " (Try (Repeat (Calculate POWER))) @@ " ^
  1343 
  1344 " (Try (Repeat (Rewrite sym_realpow_twoI        False))) @@ " ^
  1345 " (Try (Repeat (Rewrite realpow_plus_1          False))) @@ " ^
  1346 " (Try (Repeat (Rewrite sym_real_mult_2         False))) @@ " ^
  1347 " (Try (Repeat (Rewrite real_mult_2_assoc       False))) @@ " ^
  1348 
  1349 " (Try (Repeat (Rewrite real_num_collect        False))) @@ " ^
  1350 " (Try (Repeat (Rewrite real_num_collect_assoc  False))) @@ " ^
  1351 
  1352 " (Try (Repeat (Rewrite real_one_collect        False))) @@ " ^
  1353 " (Try (Repeat (Rewrite real_one_collect_assoc  False))) @@ " ^ 
  1354 
  1355 " (Try (Repeat (Calculate PLUS  ))) @@ " ^
  1356 " (Try (Repeat (Calculate TIMES ))) @@ " ^
  1357 " (Try (Repeat (Calculate POWER)))) " ^  
  1358 " t_)";
  1359 ------------------------------------------------------*)
  1360 
  1361 val expand_binomtest =
  1362   Rls{id = "expand_binomtest", preconds = [], 
  1363       rew_ord = ("termlessI",termlessI),
  1364       erls = testerls, srls = Erls,
  1365       calc = [("PLUS"  , ("op +", eval_binop "#add_")), 
  1366 	      ("TIMES" , ("op *", eval_binop "#mult_")),
  1367 	      ("POWER", ("Atools.pow", eval_binop "#power_"))
  1368 	      ],
  1369       rules = [Thm ("real_plus_binom_pow2"  ,num_str @{thm real_plus_binom_pow2}),     
  1370 	       (*"(a + b) ^^^ 2 = a ^^^ 2 + 2 * a * b + b ^^^ 2"*)
  1371 	       Thm ("real_plus_binom_times" ,num_str @{thm real_plus_binom_times}),    
  1372 	      (*"(a + b)*(a + b) = ...*)
  1373 	       Thm ("real_minus_binom_pow2" ,num_str @{thm real_minus_binom_pow2}),   
  1374 	       (*"(a - b) ^^^ 2 = a ^^^ 2 - 2 * a * b + b ^^^ 2"*)
  1375 	       Thm ("real_minus_binom_times",num_str @{thm real_minus_binom_times}),   
  1376 	       (*"(a - b)*(a - b) = ...*)
  1377 	       Thm ("real_plus_minus_binom1",num_str @{thm real_plus_minus_binom1}),   
  1378 		(*"(a + b) * (a - b) = a ^^^ 2 - b ^^^ 2"*)
  1379 	       Thm ("real_plus_minus_binom2",num_str @{thm real_plus_minus_binom2}),   
  1380 		(*"(a - b) * (a + b) = a ^^^ 2 - b ^^^ 2"*)
  1381 	       (*RL 020915*)
  1382 	       Thm ("real_pp_binom_times",num_str @{thm real_pp_binom_times}), 
  1383 		(*(a + b)*(c + d) = a*c + a*d + b*c + b*d*)
  1384                Thm ("real_pm_binom_times",num_str @{thm real_pm_binom_times}), 
  1385 		(*(a + b)*(c - d) = a*c - a*d + b*c - b*d*)
  1386                Thm ("real_mp_binom_times",num_str @{thm real_mp_binom_times}), 
  1387 		(*(a - b)*(c p d) = a*c + a*d - b*c - b*d*)
  1388                Thm ("real_mm_binom_times",num_str @{thm real_mm_binom_times}), 
  1389 		(*(a - b)*(c p d) = a*c - a*d - b*c + b*d*)
  1390 	       Thm ("realpow_multI",num_str @{thm realpow_multI}),                
  1391 		(*(a*b)^^^n = a^^^n * b^^^n*)
  1392 	       Thm ("real_plus_binom_pow3",num_str @{thm real_plus_binom_pow3}),
  1393 	        (* (a + b)^^^3 = a^^^3 + 3*a^^^2*b + 3*a*b^^^2 + b^^^3 *)
  1394 	       Thm ("real_minus_binom_pow3",num_str @{thm real_minus_binom_pow3}),
  1395 	        (* (a - b)^^^3 = a^^^3 - 3*a^^^2*b + 3*a*b^^^2 - b^^^3 *)
  1396 
  1397 
  1398              (*  Thm ("left_distrib" ,num_str @{thm left_distrib}}),	
  1399 		(*"(z1.0 + z2.0) * w = z1.0 * w + z2.0 * w"*)
  1400 	       Thm ("right_distrib",num_str @{thm right_distrib}),	
  1401 	       (*"w * (z1.0 + z2.0) = w * z1.0 + w * z2.0"*)
  1402 	       Thm ("left_diff_distrib" ,num_str @{thm left_diff_distrib}}),	
  1403 	       (*"(z1.0 - z2.0) * w = z1.0 * w - z2.0 * w"*)
  1404 	       Thm ("right_diff_distrib",num_str @{thm right_diff_distrib}),	
  1405 	       (*"w * (z1.0 - z2.0) = w * z1.0 - w * z2.0"*)
  1406 	       *)
  1407 	       
  1408 	       Thm ("mult_1_left",num_str @{thm mult_1_left}}),              (*"1 * z = z"*)
  1409 	       Thm ("mult_zero_left",num_str @{thm mult_zero_left}}),              (*"0 * z = 0"*)
  1410 	       Thm ("add_0_left",num_str @{thm add_0_left}}),(*"0 + z = z"*)
  1411 
  1412 	       Calc ("op +", eval_binop "#add_"), 
  1413 	       Calc ("op *", eval_binop "#mult_"),
  1414 	       Calc ("Atools.pow", eval_binop "#power_"),
  1415                (*	       
  1416 	        Thm ("real_mult_commute",num_str @{thm real_mult_commute}),		(*AC-rewriting*)
  1417 	       Thm ("real_mult_left_commute",num_str @{thm real_mult_left_commute}),	(**)
  1418 	       Thm ("real_mult_assoc",num_str @{thm real_mult_assoc}),			(**)
  1419 	       Thm ("add_commute",num_str @{thm add_commute}),		(**)
  1420 	       Thm ("add_left_commute",num_str @{thm add_left_commute}),	(**)
  1421 	       Thm ("add_assoc",num_str @{thm add_assoc}),	                (**)
  1422 	       *)
  1423 	       
  1424 	       Thm ("sym_realpow_twoI",
  1425                      num_str (@{thm realpow_twoI} RS @{thm sym})),
  1426 	       (*"r1 * r1 = r1 ^^^ 2"*)
  1427 	       Thm ("realpow_plus_1",num_str @{thm realpow_plus_1}),			
  1428 	       (*"r * r ^^^ n = r ^^^ (n + 1)"*)
  1429 	       (*Thm ("sym_real_mult_2",
  1430                        num_str (@{thm real_mult_2} RS @{thm sym})),
  1431 	       (*"z1 + z1 = 2 * z1"*)*)
  1432 	       Thm ("real_mult_2_assoc",num_str @{thm real_mult_2_assoc}),		
  1433 	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
  1434 
  1435 	       Thm ("real_num_collect",num_str @{thm real_num_collect}), 
  1436 	       (*"[| l is_const; m is_const |] ==> l * n + m * n = (l + m) * n"*)
  1437 	       Thm ("real_num_collect_assoc",num_str @{thm real_num_collect_assoc}),	
  1438 	       (*"[| l is_const; m is_const |] ==>  l * n + (m * n + k) =  (l + m) * n + k"*)
  1439 	       Thm ("real_one_collect",num_str @{thm real_one_collect}),		
  1440 	       (*"m is_const ==> n + m * n = (1 + m) * n"*)
  1441 	       Thm ("real_one_collect_assoc",num_str @{thm real_one_collect_assoc}), 
  1442 	       (*"m is_const ==> k + (n + m * n) = k + (1 + m) * n"*)
  1443 
  1444 	       Calc ("op +", eval_binop "#add_"), 
  1445 	       Calc ("op *", eval_binop "#mult_"),
  1446 	       Calc ("Atools.pow", eval_binop "#power_")
  1447 	       ],
  1448       scr = EmptyScr
  1449 (*Script ((term_of o the o (parse thy)) scr_expand_binomtest)*)
  1450       }:rls;      
  1451 
  1452 
  1453 ruleset' := overwritelthy @{theory} (!ruleset',
  1454    [("make_polytest", prep_rls make_polytest),
  1455     ("expand_binomtest", prep_rls expand_binomtest)
  1456     ]);
  1457 *}
  1458 
  1459 end