doc-src/TutorialI/CTL/document/PDL.tex
changeset 11866 fbd097aec213
parent 11458 09a6c44a48ea
child 12815 1f073030b97a
     1.1 --- a/doc-src/TutorialI/CTL/document/PDL.tex	Sun Oct 21 19:48:19 2001 +0200
     1.2 +++ b/doc-src/TutorialI/CTL/document/PDL.tex	Sun Oct 21 19:49:29 2001 +0200
     1.3 @@ -1,9 +1,11 @@
     1.4  %
     1.5  \begin{isabellebody}%
     1.6  \def\isabellecontext{PDL}%
     1.7 +\isamarkupfalse%
     1.8  %
     1.9  \isamarkupsubsection{Propositional Dynamic Logic --- PDL%
    1.10  }
    1.11 +\isamarkuptrue%
    1.12  %
    1.13  \begin{isamarkuptext}%
    1.14  \index{PDL|(}
    1.15 @@ -15,11 +17,13 @@
    1.16  \cite{HarelKT-DL} looks quite different from ours, but the two are easily
    1.17  shown to be equivalent.}%
    1.18  \end{isamarkuptext}%
    1.19 +\isamarkuptrue%
    1.20  \isacommand{datatype}\ formula\ {\isacharequal}\ Atom\ atom\isanewline
    1.21  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Neg\ formula\isanewline
    1.22  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ formula\ formula\isanewline
    1.23  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ formula\isanewline
    1.24 -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula%
    1.25 +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula\isamarkupfalse%
    1.26 +%
    1.27  \begin{isamarkuptext}%
    1.28  \noindent
    1.29  This resembles the boolean expression case study in
    1.30 @@ -27,19 +31,23 @@
    1.31  A validity relation between
    1.32  states and formulae specifies the semantics:%
    1.33  \end{isamarkuptext}%
    1.34 -\isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}%
    1.35 +\isamarkuptrue%
    1.36 +\isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}\isamarkupfalse%
    1.37 +%
    1.38  \begin{isamarkuptext}%
    1.39  \noindent
    1.40  The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of
    1.41  \hbox{\isa{valid\ s\ f}}.
    1.42  The definition of \isa{{\isasymTurnstile}} is by recursion over the syntax:%
    1.43  \end{isamarkuptext}%
    1.44 +\isamarkuptrue%
    1.45  \isacommand{primrec}\isanewline
    1.46  {\isachardoublequote}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequote}\isanewline
    1.47  {\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
    1.48  {\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
    1.49  {\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
    1.50 -{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
    1.51 +{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
    1.52 +%
    1.53  \begin{isamarkuptext}%
    1.54  \noindent
    1.55  The first three equations should be self-explanatory. The temporal formula
    1.56 @@ -51,13 +59,16 @@
    1.57  Now we come to the model checker itself. It maps a formula into the set of
    1.58  states where the formula is true.  It too is defined by recursion over the syntax:%
    1.59  \end{isamarkuptext}%
    1.60 +\isamarkuptrue%
    1.61  \isacommand{consts}\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
    1.62 +\isamarkupfalse%
    1.63  \isacommand{primrec}\isanewline
    1.64  {\isachardoublequote}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequote}\isanewline
    1.65  {\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
    1.66  {\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
    1.67  {\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
    1.68 -{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
    1.69 +{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
    1.70 +%
    1.71  \begin{isamarkuptext}%
    1.72  \noindent
    1.73  Only the equation for \isa{EF} deserves some comments. Remember that the
    1.74 @@ -73,25 +84,37 @@
    1.75  First we prove monotonicity of the function inside \isa{lfp}
    1.76  in order to make sure it really has a least fixed point.%
    1.77  \end{isamarkuptext}%
    1.78 +\isamarkuptrue%
    1.79  \isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
    1.80 +\isamarkupfalse%
    1.81  \isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
    1.82 +\isamarkupfalse%
    1.83  \isacommand{apply}\ blast\isanewline
    1.84 -\isacommand{done}%
    1.85 +\isamarkupfalse%
    1.86 +\isacommand{done}\isamarkupfalse%
    1.87 +%
    1.88  \begin{isamarkuptext}%
    1.89  \noindent
    1.90  Now we can relate model checking and semantics. For the \isa{EF} case we need
    1.91  a separate lemma:%
    1.92  \end{isamarkuptext}%
    1.93 +\isamarkuptrue%
    1.94  \isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
    1.95 -\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
    1.96 +\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}\isamarkupfalse%
    1.97 +%
    1.98  \begin{isamarkuptxt}%
    1.99  \noindent
   1.100  The equality is proved in the canonical fashion by proving that each set
   1.101  includes the other; the inclusion is shown pointwise:%
   1.102  \end{isamarkuptxt}%
   1.103 +\isamarkuptrue%
   1.104  \isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
   1.105 -\ \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
   1.106 -\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
   1.107 +\ \isamarkupfalse%
   1.108 +\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
   1.109 +\ \isamarkupfalse%
   1.110 +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse%
   1.111 +\isamarkupfalse%
   1.112 +%
   1.113  \begin{isamarkuptxt}%
   1.114  \noindent
   1.115  Simplification leaves us with the following first subgoal
   1.116 @@ -100,9 +123,13 @@
   1.117  \end{isabelle}
   1.118  which is proved by \isa{lfp}-induction:%
   1.119  \end{isamarkuptxt}%
   1.120 -\ \isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline
   1.121 -\ \ \isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
   1.122 -\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
   1.123 +\ \isamarkuptrue%
   1.124 +\isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline
   1.125 +\ \ \isamarkupfalse%
   1.126 +\isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
   1.127 +\ \isamarkupfalse%
   1.128 +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse%
   1.129 +%
   1.130  \begin{isamarkuptxt}%
   1.131  \noindent
   1.132  Having disposed of the monotonicity subgoal,
   1.133 @@ -115,13 +142,18 @@
   1.134  It is proved by \isa{blast}, using the transitivity of 
   1.135  \isa{M\isactrlsup {\isacharasterisk}}.%
   1.136  \end{isamarkuptxt}%
   1.137 -\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
   1.138 +\ \isamarkuptrue%
   1.139 +\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}\isamarkupfalse%
   1.140 +%
   1.141  \begin{isamarkuptxt}%
   1.142  We now return to the second set inclusion subgoal, which is again proved
   1.143  pointwise:%
   1.144  \end{isamarkuptxt}%
   1.145 +\isamarkuptrue%
   1.146  \isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
   1.147 -\isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}%
   1.148 +\isamarkupfalse%
   1.149 +\isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}\isamarkupfalse%
   1.150 +%
   1.151  \begin{isamarkuptxt}%
   1.152  \noindent
   1.153  After simplification and clarification we are left with
   1.154 @@ -142,7 +174,9 @@
   1.155  \isa{P\ a} provided each step backwards from a predecessor \isa{z} of
   1.156  \isa{b} preserves \isa{P}.%
   1.157  \end{isamarkuptxt}%
   1.158 -\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}%
   1.159 +\isamarkuptrue%
   1.160 +\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}\isamarkupfalse%
   1.161 +%
   1.162  \begin{isamarkuptxt}%
   1.163  \noindent
   1.164  The base case
   1.165 @@ -151,29 +185,42 @@
   1.166  \end{isabelle}
   1.167  is solved by unrolling \isa{lfp} once%
   1.168  \end{isamarkuptxt}%
   1.169 -\ \isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}%
   1.170 +\ \isamarkuptrue%
   1.171 +\isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isamarkupfalse%
   1.172 +%
   1.173  \begin{isamarkuptxt}%
   1.174  \begin{isabelle}%
   1.175  \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
   1.176  \end{isabelle}
   1.177  and disposing of the resulting trivial subgoal automatically:%
   1.178  \end{isamarkuptxt}%
   1.179 -\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}%
   1.180 +\ \isamarkuptrue%
   1.181 +\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isamarkupfalse%
   1.182 +%
   1.183  \begin{isamarkuptxt}%
   1.184  \noindent
   1.185  The proof of the induction step is identical to the one for the base case:%
   1.186  \end{isamarkuptxt}%
   1.187 +\isamarkuptrue%
   1.188  \isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isanewline
   1.189 +\isamarkupfalse%
   1.190  \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
   1.191 -\isacommand{done}%
   1.192 +\isamarkupfalse%
   1.193 +\isacommand{done}\isamarkupfalse%
   1.194 +%
   1.195  \begin{isamarkuptext}%
   1.196  The main theorem is proved in the familiar manner: induction followed by
   1.197  \isa{auto} augmented with the lemma as a simplification rule.%
   1.198  \end{isamarkuptext}%
   1.199 +\isamarkuptrue%
   1.200  \isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline
   1.201 +\isamarkupfalse%
   1.202  \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
   1.203 +\isamarkupfalse%
   1.204  \isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}EF{\isacharunderscore}lemma{\isacharparenright}\isanewline
   1.205 -\isacommand{done}%
   1.206 +\isamarkupfalse%
   1.207 +\isacommand{done}\isamarkupfalse%
   1.208 +%
   1.209  \begin{isamarkuptext}%
   1.210  \begin{exercise}
   1.211  \isa{AX} has a dual operator \isa{EN} 
   1.212 @@ -193,6 +240,20 @@
   1.213  \end{exercise}
   1.214  \index{PDL|)}%
   1.215  \end{isamarkuptext}%
   1.216 +\isamarkuptrue%
   1.217 +\isamarkupfalse%
   1.218 +\isamarkupfalse%
   1.219 +\isamarkupfalse%
   1.220 +\isamarkupfalse%
   1.221 +\isamarkupfalse%
   1.222 +\isamarkupfalse%
   1.223 +\isamarkupfalse%
   1.224 +\isamarkupfalse%
   1.225 +\isamarkupfalse%
   1.226 +\isamarkupfalse%
   1.227 +\isamarkupfalse%
   1.228 +\isamarkupfalse%
   1.229 +\isamarkupfalse%
   1.230  \end{isabellebody}%
   1.231  %%% Local Variables:
   1.232  %%% mode: latex