src/Doc/isac/jrocnik/calulations.tex
changeset 52107 f8845fc8f38d
parent 52106 7f3760f39bdc
child 52108 9aaf0d0f0ce4
     1.1 --- a/src/Doc/isac/jrocnik/calulations.tex	Mon Sep 16 12:27:20 2013 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,202 +0,0 @@
     1.4 -%\documentclass[a4paper]{scrartcl}
     1.5 -%\usepackage[top=2cm, bottom=2.5cm, left=3cm, right=2cm, footskip=1cm]{geometry}
     1.6 -%\usepackage[german]{babel}
     1.7 -%\usepackage[T1]{fontenc}
     1.8 -%\usepackage[latin1]{inputenc}
     1.9 -%\usepackage{endnotes}
    1.10 -%\usepackage{trfsigns}
    1.11 -%\usepackage{setspace}
    1.12 -%
    1.13 -%\setlength{\parindent}{0ex}
    1.14 -%\def\isac{${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}
    1.15 -%\def\sisac{{\footnotesize${\cal I}\mkern-2mu{\cal S}\mkern-5mu{\cal AC}$}}
    1.16 -%
    1.17 -%\begin{document}
    1.18 -%\title{Interactive Course Material for Signal Processing based on Isabelle/\isac}
    1.19 -%\subtitle{Problemsolutions (Calculations)}
    1.20 -%\author{Walther Neuper, Jan Rocnik}
    1.21 -%\maketitle
    1.22 -
    1.23 -
    1.24 -%------------------------------------------------------------------------------
    1.25 -%FOURIER
    1.26 -
    1.27 -\subsection{Fourier Transformation}
    1.28 -\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally fragment of the exam to \emph{Signaltransformationen VO} from 04.03.2011. Translated from German.}}
    1.29 -\textbf{(a)} Determine the fourier transform for the given rectangular impulse:
    1.30 -
    1.31 -\begin{center}
    1.32 -$x(t)= \left\{
    1.33 -     \begin{array}{lr}
    1.34 -       1 & -1\leq t\geq1\\
    1.35 -       0 & else
    1.36 -     \end{array}
    1.37 -   \right.$
    1.38 -\end{center}
    1.39 -
    1.40 -\textbf{\noindent (b)} Now consider the given delayed impulse, determine its fourie transformation and calculate phase and magnitude:
    1.41 -
    1.42 -\begin{center}
    1.43 -$x(t)= \left\{
    1.44 -     \begin{array}{lr}
    1.45 -       1 & -1\leq t\leq1\\
    1.46 -       0 & else
    1.47 -     \end{array}
    1.48 -   \right.$
    1.49 -\end{center}
    1.50 -
    1.51 -\subsubsection{Solution}
    1.52 -\textbf{(a)} \textsf{Subproblem 1}
    1.53 -\onehalfspace{
    1.54 -\begin{tabbing}
    1.55 -000\=\kill
    1.56 -\texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    1.57 -\`Insert Condition: $x(t) = 1\;$ for $\;\{-1\leq t\;\land\;t\leq 1\}\;$ and $\;x(t)=0\;$ otherwise\\
    1.58 -\texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    1.59 -      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    1.60 -\texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{-1}^1$\\
    1.61 -       \` pbl: integration in $\cal C$\\
    1.62 -\texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{-1}^1\right)$\\
    1.63 -      \` $f\;t\;|_a^b = f\;b-f\;a$\\
    1.64 -\texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot -1}$\\
    1.65 -\texttt{\footnotesize{06}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega} -  \frac{1}{-j\cdot\omega}\cdot e^{j\cdot\omega}$\\
    1.66 -\` Lift $\frac{1}{j\omega}$\\
    1.67 -\texttt{\footnotesize{07}} \> $\frac{1}{j\cdot\omega}\cdot(e^{j\cdot\omega} - e^{-j\cdot\omega})$\\
    1.68 -      \` trick~!\\
    1.69 -\texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot(\frac{-e^{j\cdot\omega} + e^{-j\cdot\omega}}{j})$\\
    1.70 -      \` table\\
    1.71 -\texttt{\footnotesize{09}} \> $2\cdot\frac{\sin\;\omega}{\omega}$
    1.72 -\end{tabbing}
    1.73 -}
    1.74 -
    1.75 -\noindent\textbf{(b)} \textsf{Subproblem 1}
    1.76 -\onehalfspace{
    1.77 -\begin{tabbing}
    1.78 -000\=\kill
    1.79 -\texttt{\footnotesize{01}} \> Definition: $X(j\omega)=\int_\infty^\infty{x(t)\cdot e^{-j\omega t}}$\\
    1.80 -\`Insert Condition: $x(t) = 1\;$ for $\;\{1\leq t\;\land\;t\leq 3\}\;$ and $\;x(t)=0\;$ otherwise\\
    1.81 -\texttt{\footnotesize{02}} \> $X(j\omega)=\int_{-1}^{1}{1\cdot e^{-j\omega t}}$\\
    1.82 -      \` $\int_a^b f\;t\;dt = \int f\;t\;dt\;|_a^b$\\
    1.83 -\texttt{\footnotesize{03}} \> $\int 1\cdot e^{-j\cdot\omega\cdot t} d t\;|_{1}^3$\\
    1.84 -       \` pbl: integration in $\cal C$\\
    1.85 -\texttt{\footnotesize{04}} \> $\left(\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot t} \;|_{1}^3\right)$\\
    1.86 -      \` $f\;t\;|_a^b = f\;b-f\;a$\\
    1.87 -\texttt{\footnotesize{05}} \> $\frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 3} -  \frac{1}{-j\cdot\omega}\cdot e^{-j\cdot\omega\cdot 1}$\\
    1.88 -\`Lift $\frac{1}{-j\omega}$\\
    1.89 -\texttt{\footnotesize{06}} \> $\frac{1}{j\cdot\omega}\cdot(e^{-j\cdot\omega} - e^{-j\cdot\omega3})$\\
    1.90 -      \`Lift $e^{j\omega2}$ (trick)\\
    1.91 -\texttt{\footnotesize{07}} \> $\frac{1}{j\omega}\cdot e^{j\omega2}\cdot(e^{j\omega} - e^{-j\omega})$\\
    1.92 -\`Simplification (trick)\\
    1.93 -\texttt{\footnotesize{08}} \> $\frac{1}{\omega}\cdot e^{j\omega2}\cdot(\frac{e^{j\omega} - e^{-j\omega}}{j})$\\
    1.94 -      \` table\\
    1.95 -\texttt{\footnotesize{09}} \> $2\cdot e^{j\omega2}\cdot\frac{\sin\;\omega}{\omega}$\\
    1.96 -\noindent\textbf{(b)} \textsf{Subproblem 2}\\
    1.97 -\`Definition: $X(j\omega)=|X(j\omega)|\cdot e^{arg(X(j\omega))}$\\
    1.98 -\`$|X(j\omega)|$ is called \emph{Magnitude}\\
    1.99 -\`$arg(X(j\omega))$ is called \emph{Phase}\\
   1.100 -\texttt{\footnotesize{10}} \> $|X(j\omega)|=\frac{2}{\omega}\cdot sin(\omega)$\\
   1.101 -\texttt{\footnotesize{11}} \> $arg(X(j\omega)=-2\omega$\\
   1.102 -\end{tabbing}
   1.103 -}
   1.104 -%------------------------------------------------------------------------------
   1.105 -%CONVOLUTION
   1.106 -
   1.107 -\subsection{Convolution}
   1.108 -\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the SPSC Problem Class 2, Summer term 2008}}
   1.109 -Consider the two discrete-time, linear and time-invariant (LTI) systems with the following impulse response:
   1.110 -
   1.111 -\begin{center}
   1.112 -$h_1[n]=\left(\frac{3}{5}\right)^n\cdot u[n]$\\
   1.113 -$h_1[n]=\left(-\frac{2}{3}\right)^n\cdot u[n]$
   1.114 -\end{center}
   1.115 -
   1.116 -The two systems are cascaded seriell. Derive the impulse respinse of the overall system $h_c[n]$.
   1.117 -\subsubsection*{Solution}
   1.118 -
   1.119 -\doublespace{
   1.120 -\begin{tabbing}
   1.121 -000\=\kill
   1.122 -\texttt{\footnotesize{01}} \> $h_c[n]=h_1[n]*h_2[n]$\\
   1.123 -\texttt{\footnotesize{02}} \> $h_c[n]=\left(\left(\frac{3}{5}\right)^n\cdot u[n]\right)*\left(\left(-\frac{2}{3}\right)^n\cdot u[n]\right)$\\
   1.124 -\`Definition: $a^n\cdot u[n]\,*\,b^n\cdot u[n]=\sum\limits_{k=-\infty}^{\infty}{a^k\cdot u[k]\cdot b^{n-k}\cdot u[n-k]}$\\
   1.125 -\texttt{\footnotesize{03}} \> $h_c[n]=\sum\limits_{k=-\infty}^{\infty}{\left(\frac{3}{5}\right)^k\cdot u[n]\,\cdot \,\left(-\frac{2}{3}\right)^{n-k}\cdot u[n-k]}$\\
   1.126 -\`$u[n]= \left\{
   1.127 -     \begin{array}{lr}
   1.128 -       1 & for\ n>=0\\
   1.129 -       0 & else
   1.130 -     \end{array}
   1.131 -   \right.$\\
   1.132 -\`We can leave the unitstep through simplification.\\
   1.133 -\`So the lower limit is 0, the upper limit is n.\\
   1.134 -\texttt{\footnotesize{04}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n-k}}$\\
   1.135 -\`Expand\\
   1.136 -\texttt{\footnotesize{05}} \> $h_c[n]=\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{n}\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
   1.137 -\`Lift\\
   1.138 -\texttt{\footnotesize{06}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{\infty}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{2}{3}\right)^{-k}}$\\
   1.139 -\texttt{\footnotesize{07}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(\frac{3}{5}\right)^k\cdot \left(-\frac{3}{2}\right)^{k}}$\\
   1.140 -\texttt{\footnotesize{08}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\sum\limits_{k=0}^{n}{\left(-\frac{9}{10}\right)^{k}}$\\
   1.141 -\`Geometric Series: $\sum\limits_{k=0}^{n}{q^k}=\frac{1-q^{n+1}}{1-q}$\\
   1.142 -\`Now we have to consider the limits again.\\
   1.143 -\`It is neccesarry to put the unitstep in again.\\
   1.144 -\texttt{\footnotesize{09}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n+1}}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
   1.145 -\texttt{\footnotesize{10}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{1-\left(-\frac{9}{10}\right)}\cdot u[n]$\\
   1.146 -\texttt{\footnotesize{11}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot\frac{1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)}{\left(\frac{19}{10}\right)}\cdot u[n]$\\
   1.147 -\texttt{\footnotesize{12}} \> $h_c[n]=\left(-\frac{2}{3}\right)^{n}\cdot \left(1-\left(-\frac{9}{10}\right)^{n}\cdot\left(-\frac{9}{10}\right)\right)\cdot\left(\frac{10}{19}\right)\cdot u[n]$\\
   1.148 -\`Lift $u[n]$\\
   1.149 -\texttt{\footnotesize{13}} \> $\left(\frac{10}{19}\cdot\left(-\frac{2}{3}\right)^n+\frac{9}{19}\cdot\left(\frac{3}{5}\right)^n\right)\cdot u[n]$\\
   1.150 -\end{tabbing}
   1.151 -}
   1.152 -
   1.153 -%------------------------------------------------------------------------------
   1.154 -%Z-Transformation
   1.155 -
   1.156 -\subsection{Z-Transformation\label{sec:calc:ztrans}}
   1.157 -\subsubsection*{Problem\endnote{Problem submitted by Bernhard Geiger. Originally part of the signal processing problem class 5, summer term 2008.}}
   1.158 -Determine the inverse $\cal{z}$ transform of the following expression. Hint: applay the partial fraction expansion.
   1.159 -
   1.160 -\begin{center}
   1.161 -$X(z)=\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}},\ \ x[n]$ is absolute summable
   1.162 -\end{center}
   1.163 -
   1.164 -\subsubsection*{Solution}
   1.165 -\onehalfspace{
   1.166 -\begin{tabbing}
   1.167 -000\=\kill
   1.168 -\textsf{Main Problem}\\
   1.169 -\texttt{\footnotesize{01}} \> $\frac{3}{z-\frac{1}{4}-\frac{1}{8}z^{-1}}$ \\
   1.170 -\`Divide through z, neccesary for z-transformation\\
   1.171 -\texttt{\footnotesize{02}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}$ \\
   1.172 -\`Start with partial fraction expansion\\
   1.173 -\texttt{\footnotesize{03}} \> $\frac{3}{z^2-\frac{1}{4}z-\frac{1}{8}}=\frac{A}{z-z_1}+\frac{B}{z-z_2}$ \\
   1.174 -\`Eliminate Fractions\\
   1.175 -\texttt{\footnotesize{04}} \> $3=A(z-z_2)+B(z-z_1)$ \\
   1.176 -\textsf{Subproblem 1}\\
   1.177 -\`Setup a linear equation system by inserting the zeros $z_1$ and $z_2$ for $z$\\
   1.178 -\texttt{\footnotesize{05}} \> $3=A(z_1-z_2)$ \& $3=B(z_2-z_1)$\\
   1.179 -\texttt{\footnotesize{06}} \> $\frac{3}{z_1-z_2}=A$ \& $\frac{3}{z_2-z_1}=B$\\
   1.180 -\textsf{Subproblem 2}\\
   1.181 -\`Determine $z_1$ and $z_2$\\
   1.182 -\texttt{\footnotesize{07}} \> $z_1=\frac{1}{8}+\sqrt{\frac{1}{64}+\frac{1}{8}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{1}{64}+\frac{1}{8}}$\\
   1.183 -\texttt{\footnotesize{08}} \> $z_1=\frac{1}{8}+\sqrt{\frac{9}{64}}$ \& $z_2=\frac{1}{8}-\sqrt{\frac{9}{64}}$\\
   1.184 -\texttt{\footnotesize{09}} \> $z_1=\frac{1}{8}+\frac{3}{8}$ \& $z_2=\frac{1}{8}-\frac{3}{8}$\\
   1.185 -\texttt{\footnotesize{10}} \> $z_1=\frac{1}{2}$ \& $z_2=-\frac{1}{4}$\\
   1.186 -\textsf{Continiue with Subproblem 1}\\
   1.187 -\`Get the coeffizients $A$ and $B$\\
   1.188 -\texttt{\footnotesize{11}} \> $\frac{3}{\frac{1}{2}-(-\frac{1}{4})}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
   1.189 -\texttt{\footnotesize{12}} \> $\frac{3}{\frac{1}{2}+\frac{1}{4}}=A$ \& $\frac{3}{-\frac{1}{4}-\frac{1}{2}}=B$\\
   1.190 -\texttt{\footnotesize{13}} \> $\frac{3}{\frac{3}{4}}=A$ \& $\frac{3}{-\frac{3}{4}}=B$\\
   1.191 -\texttt{\footnotesize{14}} \> $\frac{12}{3}=A$ \& $-\frac{12}{3}=B$\\
   1.192 -\texttt{\footnotesize{15}} \> $4=A$ \& $-4=B$\\
   1.193 -\textsf{Continiue with Main Problem}\\
   1.194 -\texttt{\footnotesize{16}} \> $\frac{A}{z-z_1}+\frac{B}{z-z_2}$\\
   1.195 -\texttt{\footnotesize{17}} \> $\frac{4}{z-\frac{1}{2}}+\frac{4}{z-\left(-\frac{1}{4}\right)}$ \\
   1.196 -\texttt{\footnotesize{18}} \> $\frac{4}{z-\frac{1}{2}}-\frac{4}{z+\frac{1}{4}}$ \\
   1.197 -\`Multiply with z, neccesary for z-transformation\\
   1.198 -\texttt{\footnotesize{19}} \> $\frac{4z}{z-\frac{1}{2}}-\frac{4z}{z+\frac{1}{4}}$ \\
   1.199 -\texttt{\footnotesize{20}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}$ \\
   1.200 -\`Transformation\\
   1.201 -\texttt{\footnotesize{21}} \> $4\cdot\frac{z}{z-\frac{1}{2}}+(-4)\cdot\frac{z}{z+\frac{1}{4}}\ \Ztransf\ 4\cdot\left(-\frac{1}{2}\right)^n\cdot u[n]+(-4)\cdot\left(\frac{1}{4}\right)^n\cdot u[n]$\\
   1.202 -\end{tabbing}
   1.203 -}
   1.204 -\theendnotes
   1.205 -%\end{document}
   1.206 \ No newline at end of file