src/Doc/isac/jrocnik/FFT.thy
changeset 52107 f8845fc8f38d
parent 52106 7f3760f39bdc
child 52108 9aaf0d0f0ce4
     1.1 --- a/src/Doc/isac/jrocnik/FFT.thy	Mon Sep 16 12:27:20 2013 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,532 +0,0 @@
     1.4 -(*  Title:      Fast Fourier Transform
     1.5 -    Author:     Clemens Ballarin <ballarin at in.tum.de>, started 12 April 2005
     1.6 -    Maintainer: Clemens Ballarin <ballarin at in.tum.de>
     1.7 -*)
     1.8 -
     1.9 -theory FFT
    1.10 -imports Complex_Main
    1.11 -begin
    1.12 -
    1.13 -text {* We formalise a functional implementation of the FFT algorithm
    1.14 -  over the complex numbers, and its inverse.  Both are shown
    1.15 -  equivalent to the usual definitions
    1.16 -  of these operations through Vandermonde matrices.  They are also
    1.17 -  shown to be inverse to each other, more precisely, that composition
    1.18 -  of the inverse and the transformation yield the identity up to a
    1.19 -  scalar.
    1.20 -
    1.21 -  The presentation closely follows Section 30.2 of Cormen \textit{et
    1.22 -  al.}, \emph{Introduction to Algorithms}, 2nd edition, MIT Press,
    1.23 -  2003. *}
    1.24 -
    1.25 -
    1.26 -section {* Preliminaries *}
    1.27 -
    1.28 -lemma of_nat_cplx:
    1.29 -  "of_nat n = Complex (of_nat n) 0"
    1.30 -  by (induct n) (simp_all add: complex_one_def)
    1.31 -
    1.32 -
    1.33 -text {* The following two lemmas are useful for experimenting with the
    1.34 -  transformations, at a vector length of four. *}
    1.35 -
    1.36 -lemma Ivl4:
    1.37 -  "{0..<4::nat} = {0, 1, 2, 3}"
    1.38 -proof -
    1.39 -  have "{0..<4::nat} = {0..<Suc (Suc (Suc (Suc 0)))}" by (simp add: eval_nat_numeral)
    1.40 -  also have "... = {0, 1, 2, 3}"
    1.41 -    by (simp add: atLeastLessThanSuc eval_nat_numeral insert_commute)
    1.42 -  finally show ?thesis .
    1.43 -qed
    1.44 -
    1.45 -lemma Sum4:
    1.46 -  "(\<Sum>i=0..<4::nat. x i) = x 0 + x 1 + x 2 + x 3"
    1.47 -  by (simp add: Ivl4 eval_nat_numeral)
    1.48 -
    1.49 -
    1.50 -text {* A number of specialised lemmas for the summation operator,
    1.51 -  where the index set is the natural numbers *}
    1.52 -
    1.53 -lemma setsum_add_nat_ivl_singleton:
    1.54 -  assumes less: "m < (n::nat)"
    1.55 -  shows "f m + setsum f {m<..<n} = setsum f {m..<n}"
    1.56 -proof -
    1.57 -  have "f m + setsum f {m<..<n} = setsum f ({m} \<union> {m<..<n})"
    1.58 -    by (simp add: setsum_Un_disjoint ivl_disj_int)
    1.59 -  also from less have "... = setsum f {m..<n}"
    1.60 -    by (simp only: ivl_disj_un)
    1.61 -  finally show ?thesis .
    1.62 -qed
    1.63 -
    1.64 -lemma setsum_add_split_nat_ivl_singleton:
    1.65 -  assumes less: "m < (n::nat)"
    1.66 -    and g: "!!i. [| m < i; i < n |] ==> g i = f i"
    1.67 -  shows "f m + setsum g {m<..<n} = setsum f {m..<n}"
    1.68 -  using less g
    1.69 -  by(simp add: setsum_add_nat_ivl_singleton cong: strong_setsum_cong)
    1.70 -
    1.71 -lemma setsum_add_split_nat_ivl:
    1.72 -  assumes le: "m <= (k::nat)" "k <= n"
    1.73 -    and g: "!!i. [| m <= i; i < k |] ==> g i = f i"
    1.74 -    and h: "!!i. [| k <= i; i < n |] ==> h i = f i"
    1.75 -  shows "setsum g {m..<k} + setsum h {k..<n} = setsum f {m..<n}"
    1.76 -  using le g h by (simp add: setsum_add_nat_ivl cong: strong_setsum_cong)
    1.77 -
    1.78 -lemma ivl_splice_Un:
    1.79 -  "{0..<2*n::nat} = (op * 2 ` {0..<n}) \<union> ((%i. Suc (2*i)) ` {0..<n})"
    1.80 -  apply (unfold image_def Bex_def)
    1.81 -  apply auto
    1.82 -  apply arith
    1.83 -  done
    1.84 -
    1.85 -lemma ivl_splice_Int:
    1.86 -  "(op * 2 ` {0..<n}) \<inter> ((%i. Suc (2*i)) ` {0..<n}) = {}"
    1.87 -  by auto arith
    1.88 -
    1.89 -lemma double_inj_on:
    1.90 -  "inj_on (%i. 2*i::nat) A"
    1.91 -  by (simp add: inj_onI)
    1.92 -
    1.93 -lemma Suc_double_inj_on:
    1.94 -  "inj_on (%i. Suc (2*i)) A"
    1.95 -  by (rule inj_onI) simp
    1.96 -
    1.97 -lemma setsum_splice:
    1.98 -  "(\<Sum>i::nat = 0..<2*n. f i) = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
    1.99 -proof -
   1.100 -  have "(\<Sum>i::nat = 0..<2*n. f i) =
   1.101 -    setsum f (op * 2 ` {0..<n}) + setsum f ((%i. 2*i+1) ` {0..<n})"
   1.102 -    by (simp add: ivl_splice_Un ivl_splice_Int setsum_Un_disjoint)
   1.103 -  also have "... = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
   1.104 -    by (simp add: setsum_reindex [OF double_inj_on]
   1.105 -      setsum_reindex [OF Suc_double_inj_on])
   1.106 -  finally show ?thesis .
   1.107 -qed
   1.108 -
   1.109 -
   1.110 -section {* Complex Roots of Unity *}
   1.111 -
   1.112 -text {* The function @{term cis} from the complex library returns the
   1.113 -  point on the unity circle corresponding to the argument angle.  It
   1.114 -  is the base for our definition of @{text root}.  The main property,
   1.115 -  De Moirve's formula is already there in the library. *}
   1.116 -
   1.117 -definition root :: "nat => complex" where
   1.118 -  "root n == cis (2*pi/(real (n::nat)))"
   1.119 -
   1.120 -lemma sin_periodic_pi_diff [simp]: "sin (x - pi) = - sin x"
   1.121 -  by (simp add: sin_diff)
   1.122 -
   1.123 -lemma sin_cos_between_zero_two_pi:
   1.124 -  assumes 0: "0 < x" and pi: "x < 2 * pi"
   1.125 -  shows "sin x \<noteq> 0 \<or> cos x \<noteq> 1"
   1.126 -proof -
   1.127 -  { assume "0 < x" and "x < pi"
   1.128 -    then have "sin x \<noteq> 0" by (auto dest: sin_gt_zero_pi) }
   1.129 -  moreover
   1.130 -  { assume "x = pi"
   1.131 -    then have "cos x \<noteq> 1" by simp }
   1.132 -  moreover
   1.133 -  { assume pi1: "pi < x" and pi2: "x < 2 * pi"
   1.134 -    then have "0 < x - pi" and "x - pi < pi" by arith+
   1.135 -    then have "sin (x - pi) \<noteq> 0" by (auto dest: sin_gt_zero_pi)
   1.136 -    with pi1 pi2 have "sin x \<noteq> 0" by simp }
   1.137 -  ultimately show ?thesis using 0 pi by arith
   1.138 -qed
   1.139 -
   1.140 -
   1.141 -subsection {* Basic Lemmas *}
   1.142 -
   1.143 -lemma root_nonzero:
   1.144 -  "root n ~= 0"
   1.145 -  apply (unfold root_def)
   1.146 -  apply (unfold cis_def)
   1.147 -  apply auto
   1.148 -  apply (drule sin_zero_abs_cos_one)
   1.149 -  apply arith
   1.150 -  done
   1.151 -
   1.152 -lemma root_unity:
   1.153 -  "root n ^ n = 1"
   1.154 -  apply (unfold root_def)
   1.155 -  apply (simp add: DeMoivre)
   1.156 -  apply (simp add: cis_def)
   1.157 -  done
   1.158 -
   1.159 -lemma root_cancel:
   1.160 -  "0 < d ==> root (d * n) ^ (d * k) = root n ^ k"
   1.161 -  apply (unfold root_def)
   1.162 -  apply (simp add: DeMoivre)
   1.163 -  done
   1.164 -
   1.165 -lemma root_summation:
   1.166 -  assumes k: "0 < k" "k < n"
   1.167 -  shows "(\<Sum>i=0..<n. (root n ^ k) ^ i) = 0"
   1.168 -proof -
   1.169 -  from k have real0: "0 < real k * (2 * pi) / real n"
   1.170 -    by (simp add: zero_less_divide_iff
   1.171 -      mult_strict_right_mono [where a = 0, simplified])
   1.172 -  from k mult_strict_right_mono [where a = "real k" and
   1.173 -    b = "real n" and c = "2 * pi / real n", simplified]
   1.174 -  have realk: "real k * (2 * pi) / real n < 2 * pi"
   1.175 -    by (simp add: zero_less_divide_iff)
   1.176 -  txt {* Main part of the proof *}
   1.177 -  have "(\<Sum>i=0..<n. (root n ^ k) ^ i) =
   1.178 -    ((root n ^ k) ^ n - 1) / (root n ^ k - 1)"
   1.179 -    apply (rule geometric_sum)
   1.180 -    apply (unfold root_def)
   1.181 -    apply (simp add: DeMoivre)
   1.182 -    using real0 realk sin_cos_between_zero_two_pi 
   1.183 -    apply (auto simp add: cis_def complex_one_def)
   1.184 -    done
   1.185 -  also have "... = ((root n ^ n) ^ k - 1) / (root n ^ k - 1)"
   1.186 -    by (simp add: power_mult [THEN sym] mult_ac)
   1.187 -  also have "... = 0"
   1.188 -    by (simp add: root_unity)
   1.189 -  finally show ?thesis .
   1.190 -qed
   1.191 -
   1.192 -lemma root_summation_inv:
   1.193 -  assumes k: "0 < k" "k < n"
   1.194 -  shows "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) = 0"
   1.195 -proof -
   1.196 -  from k have real0: "0 < real k * (2 * pi) / real n"
   1.197 -    by (simp add: zero_less_divide_iff
   1.198 -      mult_strict_right_mono [where a = 0, simplified])
   1.199 -  from k mult_strict_right_mono [where a = "real k" and
   1.200 -    b = "real n" and c = "2 * pi / real n", simplified]
   1.201 -  have realk: "real k * (2 * pi) / real n < 2 * pi"
   1.202 -    by (simp add: zero_less_divide_iff)
   1.203 -  txt {* Main part of the proof *}
   1.204 -  have "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) =
   1.205 -    (((1 / root n) ^ k) ^ n - 1) / ((1 / root n) ^ k - 1)"
   1.206 -    apply (rule geometric_sum)
   1.207 -    apply (simp add: nonzero_inverse_eq_divide [THEN sym] root_nonzero)
   1.208 -    apply (unfold root_def)
   1.209 -    apply (simp add: DeMoivre)
   1.210 -    using real0 realk sin_cos_between_zero_two_pi
   1.211 -    apply (auto simp add: cis_def complex_one_def)
   1.212 -    done
   1.213 -  also have "... = (((1 / root n) ^ n) ^ k - 1) / ((1 / root n) ^ k - 1)"
   1.214 -    by (simp add: power_mult [THEN sym] mult_ac)
   1.215 -  also have "... = 0"
   1.216 -    by (simp add: power_divide root_unity)
   1.217 -  finally show ?thesis .
   1.218 -qed
   1.219 -
   1.220 -lemma root0 [simp]:
   1.221 -  "root 0 = 1"
   1.222 -  by (simp add: root_def cis_def)
   1.223 -
   1.224 -lemma root1 [simp]:
   1.225 -  "root 1 = 1"
   1.226 -  by (simp add: root_def cis_def)
   1.227 -
   1.228 -lemma root2 [simp]:
   1.229 -  "root 2 = Complex -1 0"
   1.230 -  by (simp add: root_def cis_def)
   1.231 -
   1.232 -lemma root4 [simp]:
   1.233 -  "root 4 = ii"
   1.234 -  by (simp add: root_def cis_def)
   1.235 -
   1.236 -
   1.237 -subsection {* Derived Lemmas *}
   1.238 -
   1.239 -lemma root_cancel1:
   1.240 -  "root (2 * m) ^ (i * (2 * j)) = root m ^ (i * j)"
   1.241 -proof -
   1.242 -  have "root (2 * m) ^ (i * (2 * j)) = root (2 * m) ^ (2 * (i * j))"
   1.243 -    by (simp add: mult_ac)
   1.244 -  also have "... = root m ^ (i * j)"
   1.245 -    by (simp add: root_cancel)
   1.246 -  finally show ?thesis .
   1.247 -qed
   1.248 -
   1.249 -lemma root_cancel2:
   1.250 -  "0 < n ==> root (2 * n) ^ n = - 1"
   1.251 -  txt {* Note the space between @{text "-"} and @{text "1"}. *}
   1.252 -  using root_cancel [where n = 2 and k = 1]
   1.253 -  apply (simp only: mult_ac)
   1.254 -  apply (simp add: complex_one_def)
   1.255 -  done
   1.256 -
   1.257 -
   1.258 -section {* Discrete Fourier Transformation *}
   1.259 -
   1.260 -text {*
   1.261 -  We define operations  @{text DFT} and @{text IDFT} for the discrete
   1.262 -  Fourier Transform and its inverse.  Vectors are simply functions of
   1.263 -  type @{text "nat => complex"}. *}
   1.264 -
   1.265 -text {*
   1.266 -  @{text "DFT n a"} is the transform of vector @{text a}
   1.267 -  of length @{text n}, @{text IDFT} its inverse. *}
   1.268 -
   1.269 -definition DFT :: "nat => (nat => complex) => (nat => complex)" where
   1.270 -  "DFT n a == (%i. \<Sum>j=0..<n. (root n) ^ (i * j) * (a j))"
   1.271 -
   1.272 -definition IDFT :: "nat => (nat => complex) => (nat => complex)" where
   1.273 -  "IDFT n a == (%i. (\<Sum>k=0..<n. (a k) / (root n) ^ (i * k)))"
   1.274 -
   1.275 -schematic_lemma "map (DFT 4 a) [0, 1, 2, 3] = ?x"
   1.276 -  by(simp add: DFT_def Sum4)
   1.277 -
   1.278 -text {* Lemmas for the correctness proof. *}
   1.279 -
   1.280 -lemma DFT_lower:
   1.281 -  "DFT (2 * m) a i =
   1.282 -  DFT m (%i. a (2 * i)) i +
   1.283 -  (root (2 * m)) ^ i * DFT m (%i. a (2 * i + 1)) i"
   1.284 -proof (unfold DFT_def)
   1.285 -  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
   1.286 -    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
   1.287 -    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
   1.288 -    (is "?s = _")
   1.289 -    by (simp add: setsum_splice)
   1.290 -  also have "... = (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j)) +
   1.291 -    root (2 * m) ^ i *
   1.292 -    (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j + 1))"
   1.293 -    (is "_ = ?t")
   1.294 -    txt {* First pair of sums *}
   1.295 -    apply (simp add: root_cancel1)
   1.296 -    txt {* Second pair of sums *}
   1.297 -    apply (simp add: setsum_right_distrib)
   1.298 -    apply (simp add: power_add)
   1.299 -    apply (simp add: root_cancel1)
   1.300 -    apply (simp add: mult_ac)
   1.301 -    done
   1.302 -  finally show "?s = ?t" .
   1.303 -qed
   1.304 -
   1.305 -lemma DFT_upper:
   1.306 -  assumes mbound: "0 < m" and ibound: "m <= i"
   1.307 -  shows "DFT (2 * m) a i =
   1.308 -    DFT m (%i. a (2 * i)) (i - m) -
   1.309 -    root (2 * m) ^ (i - m) * DFT m (%i. a (2 * i + 1)) (i - m)"
   1.310 -proof (unfold DFT_def)
   1.311 -  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
   1.312 -    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
   1.313 -    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
   1.314 -    (is "?s = _")
   1.315 -    by (simp add: setsum_splice)
   1.316 -  also have "... =
   1.317 -    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j)) -
   1.318 -    root (2 * m) ^ (i - m) *
   1.319 -    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j + 1))"
   1.320 -    (is "_ = ?t")
   1.321 -    txt {* First pair of sums *}
   1.322 -    apply (simp add: root_cancel1)
   1.323 -    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
   1.324 -    txt {* Second pair of sums *}
   1.325 -    apply (simp add: mbound root_cancel2)
   1.326 -    apply (simp add: setsum_right_distrib)
   1.327 -    apply (simp add: power_add)
   1.328 -    apply (simp add: root_cancel1)
   1.329 -    apply (simp add: power_mult)
   1.330 -    apply (simp add: mult_ac)
   1.331 -    done
   1.332 -  finally show "?s = ?t" .
   1.333 -qed
   1.334 -
   1.335 -lemma IDFT_lower:
   1.336 -  "IDFT (2 * m) a i =
   1.337 -  IDFT m (%i. a (2 * i)) i +
   1.338 -  (1 / root (2 * m)) ^ i * IDFT m (%i. a (2 * i + 1)) i"
   1.339 -proof (unfold IDFT_def)
   1.340 -  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
   1.341 -    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
   1.342 -    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
   1.343 -    (is "?s = _")
   1.344 -    by (simp add: setsum_splice)
   1.345 -  also have "... = (\<Sum>j = 0..<m. a (2 * j) / root m ^ (i * j)) +
   1.346 -    (1 / root (2 * m)) ^ i *
   1.347 -    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ (i * j))"
   1.348 -    (is "_ = ?t")
   1.349 -    txt {* First pair of sums *}
   1.350 -    apply (simp add: root_cancel1)
   1.351 -    txt {* Second pair of sums *}
   1.352 -    apply (simp add: setsum_right_distrib)
   1.353 -    apply (simp add: power_add)
   1.354 -    apply (simp add: nonzero_power_divide root_nonzero)
   1.355 -    apply (simp add: root_cancel1)
   1.356 -    done
   1.357 -  finally show "?s = ?t" .
   1.358 -qed
   1.359 -
   1.360 -lemma IDFT_upper:
   1.361 -  assumes mbound: "0 < m" and ibound: "m <= i"
   1.362 -  shows "IDFT (2 * m) a i =
   1.363 -    IDFT m (%i. a (2 * i)) (i - m) -
   1.364 -    (1 / root (2 * m)) ^ (i - m) *
   1.365 -    IDFT m (%i. a (2 * i + 1)) (i - m)"
   1.366 -proof (unfold IDFT_def)
   1.367 -  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
   1.368 -    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
   1.369 -    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
   1.370 -    (is "?s = _")
   1.371 -    by (simp add: setsum_splice)
   1.372 -  also have "... =
   1.373 -    (\<Sum>j = 0..<m. a (2 * j) / root m ^ ((i - m) * j)) -
   1.374 -    (1 / root (2 * m)) ^ (i - m) *
   1.375 -    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ ((i - m) * j))"
   1.376 -    (is "_ = ?t")
   1.377 -    txt {* First pair of sums *}
   1.378 -    apply (simp add: root_cancel1)
   1.379 -    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
   1.380 -    txt {* Second pair of sums *}
   1.381 -    apply (simp add: nonzero_power_divide root_nonzero)
   1.382 -    apply (simp add: mbound root_cancel2)
   1.383 -    apply (simp add: setsum_divide_distrib)
   1.384 -    apply (simp add: power_add)
   1.385 -    apply (simp add: root_cancel1)
   1.386 -    apply (simp add: power_mult)
   1.387 -    apply (simp add: mult_ac)
   1.388 -    done
   1.389 -  finally show "?s = ?t" .
   1.390 -qed
   1.391 -
   1.392 -text {* @{text DFT} und @{text IDFT} are inverses. *}
   1.393 -
   1.394 -declare divide_divide_eq_right [simp del]
   1.395 -  divide_divide_eq_left [simp del]
   1.396 -
   1.397 -lemma power_diff_inverse:
   1.398 -  assumes nz: "(a::'a::field) ~= 0"
   1.399 -  shows "m <= n ==> (inverse a) ^ (n-m) = (a^m) / (a^n)"
   1.400 -  apply (induct n m rule: diff_induct)
   1.401 -    apply (simp add: nonzero_power_inverse
   1.402 -      nonzero_inverse_eq_divide [THEN sym] nz)
   1.403 -   apply simp
   1.404 -  apply (simp add: nz)
   1.405 -  done
   1.406 -
   1.407 -lemma power_diff_rev_if:
   1.408 -  assumes nz: "(a::'a::field) ~= 0"
   1.409 -  shows "(a^m) / (a^n) = (if n <= m then a ^ (m-n) else (1/a) ^ (n-m))"
   1.410 -proof (cases "n <= m")
   1.411 -  case True with nz show ?thesis
   1.412 -    by (simp add: power_diff)
   1.413 -next
   1.414 -  case False with nz show ?thesis
   1.415 -    by (simp add: power_diff_inverse nonzero_inverse_eq_divide [THEN sym])
   1.416 -qed
   1.417 -
   1.418 -lemma power_divides_special:
   1.419 -  "(a::'a::field) ~= 0 ==>
   1.420 -  a ^ (i * j) / a ^ (k * i) = (a ^ j / a ^ k) ^ i"
   1.421 -  by (simp add: nonzero_power_divide power_mult [THEN sym] mult_ac)
   1.422 -
   1.423 -theorem DFT_inverse:
   1.424 -  assumes i_less: "i < n"
   1.425 -  shows  "IDFT n (DFT n a) i = of_nat n * a i"
   1.426 -  using [[linarith_split_limit = 0]]
   1.427 -  apply (unfold DFT_def IDFT_def)
   1.428 -  apply (simp add: setsum_divide_distrib)
   1.429 -  apply (subst setsum_commute)
   1.430 -  apply (simp only: times_divide_eq_left [THEN sym])
   1.431 -  apply (simp only: power_divides_special [OF root_nonzero])
   1.432 -  apply (simp add: power_diff_rev_if root_nonzero)
   1.433 -  apply (simp add: setsum_divide_distrib [THEN sym]
   1.434 -    setsum_left_distrib [THEN sym])
   1.435 -  proof -
   1.436 -    from i_less have i_diff: "!!k. i - k < n" by arith
   1.437 -    have diff_i: "!!k. k < n ==> k - i < n" by arith
   1.438 -
   1.439 -    let ?sum = "%i j n. setsum (op ^ (if i <= j then root n ^ (j - i)
   1.440 -                  else (1 / root n) ^ (i - j))) {0..<n} * a j"
   1.441 -    let ?sum1 = "%i j n. setsum (op ^ (root n ^ (j - i))) {0..<n} * a j"
   1.442 -    let ?sum2 = "%i j n. setsum (op ^ ((1 / root n) ^ (i - j))) {0..<n} * a j"
   1.443 -
   1.444 -    from i_less have "(\<Sum>j = 0..<n. ?sum i j n) =
   1.445 -      (\<Sum>j = 0..<i. ?sum2 i j n) + (\<Sum>j = i..<n. ?sum1 i j n)"
   1.446 -      (is "?s = _")
   1.447 -      by (simp add: root_summation_inv nat_dvd_not_less
   1.448 -        setsum_add_split_nat_ivl [where f = "%j. ?sum i j n"])
   1.449 -    also from i_less i_diff
   1.450 -    have "... = (\<Sum>j = i..<n. ?sum1 i j n)"
   1.451 -      by (simp add: root_summation_inv nat_dvd_not_less)
   1.452 -    also from i_less have "... =
   1.453 -      (\<Sum>j\<in>{i} \<union> {i<..<n}. ?sum1 i j n)"
   1.454 -      by (simp only: ivl_disj_un)
   1.455 -    also have "... =
   1.456 -      (?sum1 i i n + (\<Sum>j\<in>{i<..<n}. ?sum1 i j n))"
   1.457 -      by (simp add: setsum_Un_disjoint ivl_disj_int)
   1.458 -    also from i_less diff_i have "... = ?sum1 i i n"
   1.459 -      by (simp add: root_summation nat_dvd_not_less)
   1.460 -    also from i_less have "... = of_nat n * a i" (is "_ = ?t")
   1.461 -      by (simp add: of_nat_cplx)
   1.462 -    finally show "?s = ?t" .
   1.463 -  qed
   1.464 -
   1.465 -
   1.466 -section {* Discrete, Fast Fourier Transformation *}
   1.467 -
   1.468 -text {* @{text "FFT k a"} is the transform of vector @{text a}
   1.469 -  of length @{text "2 ^ k"}, @{text IFFT} its inverse. *}
   1.470 -
   1.471 -primrec FFT :: "nat => (nat => complex) => (nat => complex)" where
   1.472 -  "FFT 0 a = a"
   1.473 -| "FFT (Suc k) a =
   1.474 -     (let (x, y) = (FFT k (%i. a (2*i)), FFT k (%i. a (2*i+1)))
   1.475 -      in (%i. if i < 2^k
   1.476 -            then x i + (root (2 ^ (Suc k))) ^ i * y i
   1.477 -            else x (i- 2^k) - (root (2 ^ (Suc k))) ^ (i- 2^k) * y (i- 2^k)))"
   1.478 -
   1.479 -primrec IFFT :: "nat => (nat => complex) => (nat => complex)" where
   1.480 -  "IFFT 0 a = a"
   1.481 -| "IFFT (Suc k) a =
   1.482 -     (let (x, y) = (IFFT k (%i. a (2*i)), IFFT k (%i. a (2*i+1)))
   1.483 -      in (%i. if i < 2^k
   1.484 -            then x i + (1 / root (2 ^ (Suc k))) ^ i * y i
   1.485 -            else x (i - 2^k) -
   1.486 -              (1 / root (2 ^ (Suc k))) ^ (i - 2^k) * y (i - 2^k)))"
   1.487 -
   1.488 -text {* Finally, for vectors of length @{text "2 ^ k"},
   1.489 -  @{text DFT} and @{text FFT}, and @{text IDFT} and
   1.490 -  @{text IFFT} are equivalent. *}
   1.491 -
   1.492 -theorem DFT_FFT:
   1.493 -  "!!a i. i < 2 ^ k ==> DFT (2 ^ k) a i = FFT k a i"
   1.494 -proof (induct k)
   1.495 -  case 0
   1.496 -  then show ?case by (simp add: DFT_def)
   1.497 -next
   1.498 -  case (Suc k)
   1.499 -  assume i: "i < 2 ^ Suc k"
   1.500 -  show ?case proof (cases "i < 2 ^ k")
   1.501 -    case True
   1.502 -    then show ?thesis apply simp apply (simp add: DFT_lower)
   1.503 -      apply (simp add: Suc) done
   1.504 -  next
   1.505 -    case False
   1.506 -    from i have "i - 2 ^ k < 2 ^ k" by simp
   1.507 -    with False i show ?thesis apply simp apply (simp add: DFT_upper)
   1.508 -      apply (simp add: Suc) done
   1.509 -  qed
   1.510 -qed
   1.511 -
   1.512 -theorem IDFT_IFFT:
   1.513 -  "!!a i. i < 2 ^ k ==> IDFT (2 ^ k) a i = IFFT k a i"
   1.514 -proof (induct k)
   1.515 -  case 0
   1.516 -  then show ?case by (simp add: IDFT_def)
   1.517 -next
   1.518 -  case (Suc k)
   1.519 -  assume i: "i < 2 ^ Suc k"
   1.520 -  show ?case proof (cases "i < 2 ^ k")
   1.521 -    case True
   1.522 -    then show ?thesis apply simp apply (simp add: IDFT_lower)
   1.523 -      apply (simp add: Suc) done
   1.524 -  next
   1.525 -    case False
   1.526 -    from i have "i - 2 ^ k < 2 ^ k" by simp
   1.527 -    with False i show ?thesis apply simp apply (simp add: IDFT_upper)
   1.528 -      apply (simp add: Suc) done
   1.529 -  qed
   1.530 -qed
   1.531 -
   1.532 -schematic_lemma "map (FFT (Suc (Suc 0)) a) [0, 1, 2, 3] = ?x"
   1.533 -  by simp
   1.534 -
   1.535 -end